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Christoffel symbols

Exercise 1.1: Geodesic equations of motion using the Lagrangian approach

Let’s do Robertson-Friedmann-Walker cosmology as a precursor to later chapters. Con-
sider the following 1+1 dimensional metric

g = —dt* + a(t)*(1 — kr®)"tdr?

(a) Using the Lagrangian approach, derive the geodesic equations for the ¢ and r
coordinates from Lagrange’s equations.

(b) Check the geodesic equations by computing the Christoffel coefficients I‘O‘ﬁv for this
spacetime and inserting them into the standard geodesic equation.

Riemann tensor

Exercise 1.2: Riemann tensor symmetries

Show that in n dimensions the Riemann tensor has n?(n? — 1)/12 independent compo-
nents. [There are many ways to solve this problem. One is to consider particular cases,
e.g., n = 2,3, and generalize from these.]

Exercise 1.3: Riemann tensor
Compute Rabcd, Ry and R for (M, g) with

o g =dx?+ dy?
o g = a*(dh* + sin Od¢?) with a € R* (2-sphere of radius a)
e g=r2d¢? + dz? (Cylinder)

Note: though you may find some of the results in this exercise trivially disappointing.
Think of these as practice rounds for similar calculations in more interesting spacetimes.



Parallel transport

Exercise 1.4: Parallel transport on the 2-sphere
Consider the parallel transport of a vector along the 6 = 6y curve, C, on the 2-sphere of
radius R given by the metric

ds®* = R%d#* + R*sin” 0 do*.

By answering the questions below, you will teach yourself how to parallel transport a
given vector along this particular curve on the 2-sphere.

(a) Determine the unit tangent vector to C.

(b) Show that along C, the parallel transport equation for a vector v’ is given by
8¢vi + F§¢vj =0.

(c¢) Using your results from previous assignments on computing Christoffel symbols
for the 2-sphere, obtain the two coupled differential equations for the components

of vt
!
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(d) Solve these differential equations using the initial conditions v’(¢ = 0) = (v9, vg) )T

[Hint: v%(¢) = v§ cos(¢cosbp) + .. ]
(e) Finally, compute the inner product u- v to show that

T
u-v= Rv(q;, at the equator, i.e., 6y = 5

u-v=~R (QOUE’; cos ¢ — vg sin <Z>> ,  near the North pole, i.e., 0y < 1.



