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1 Tests of weak-field general relativity

Exercise 1.1: Light deflection

Consider a light ray trajectory in a weak, spherically symmetric, static gravitational
field, passing close to a mass M (for instance our Sun) with impact parameter b. See
Fig. 1. Calculate the deflection angle for small light deviations. Follow steps (a) to (e).

(a) The equation of motion for a light ray in Schwarzschild spacetime is

1

1− 2m/r
E2 − 1

1− 2m/r
ṙ2 − L2

r2
= 0, (1)

where m = GM/c2, and the constants of motion E and L correspond to energy
and angular momentum, respectively. A dot denotes differentiation with respect
to proper time. We are interested in orbital trajectories r(ϕ). Use the definition
L := r2ϕ̇ to show that Eq. (1) can be written as the orbit equation

u′′ + u = 3mu2, (2)

where u = u(ϕ) := 1/r(ϕ), and primes denote differentiation with respect to ϕ.

(b) Verify that the right-hand side of Eq. (2) is small when evaluated using solar
parameters.

(c) Neglecting the term 3mu2, verify that Eq. (2) describes a straight light path u(ϕ) =
b−1 sinϕ. Use this 0th-order solution in the right-hand side of Eq. (2) to obtain
a 1st-order perturbation equation for the orbit. Solve it by finding a particular
solution and the solution of the homogeneous equation.

(d) For large r, ϕ→ ϕ∞. Show that ϕ∞ = −2m/b.

(e) Define the total deflection angle δ := 2|ϕ∞|, and obtain Einstein’s famous predic-
tion δ = 1.75′′ for a light ray grazing the surface of the Sun.
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Figure 1:

Exercise 1.2: Shapiro time delay

Suppose that a radar signal is transmitted from point 1 with Schwarzschild coordinates
(r1, ϑ = π/2, ϕ1) to point 2 with (r2, ϑ = π/2, ϕ2) [see Fig. 2], and then reflected from
point 2 back to point 1. Calculate the time delay of the signal along the circuit due to
the presence of the Sun. Follow the steps (a) to (d).

(a) Use the definition E := ṫ (1− 2m/r), where the dot denotes derivative with respect
to proper time, to show that Eq. (1) can be written as(

1− 2m

r

)−3(dr
dt

)2

=

(
1− 2m

r

)−1
−
(
L

E

)2 1

r2
. (3)

(b) The derivative dr/dt vanishes at the radius r = r0 of closest approach to the Sun.
Use this fact in Eq. (3) to show that the coordinate time which the light requires
to go from r0 to r (or reverse) is

t(r, r0) =

∫ r

r0

dr

1− 2m/r

[
1− 1− 2m/r

1− 2m/r0

(r0
r

)2]−1/2
. (4)

(c) The weak gravitational field allows you to treat the term 2m/r in the integrand of
Eq. (4) as small. Under this assumption, obtain

t(r, r0) '
√
r2 − r20 + 2m ln

(
r +

√
r2 − r20
r0

)
+m

(
r − r0
r + r0

)1/2

.

(d) Along the circuit point 1 – point 2 – point 1, compute the Shapiro delay in coor-

dinate time ∆t := 2
(
t(r1, r0) + t(r2, r0)−

√
r21 − r20 −

√
r22 − r20

)
.

Exercise 1.3: Perturbative solution of precession equation

Consider the equation
u′′ + u = A+Bu2 , (5)

with A,B constants. For B = 0 the solutions are Newtonian ellipses uN (φ) = A(1 +
e cosφ) characterized by their eccentricity e.
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Figure 2:

(a) Let u = uN + v, and derive an equation for v.

(b) Linearize the equation for v, v′′ + v = s, where s is a term that does not depend
on v.

(c) The linearized equation corresponds to a forced oscillator; its solution is given by
the general solution of the homogeneous equation plus a particular solution of the
full equation.

(d) Verify that each of the equations on the left has the particular solution on the
right:

v′′ + v = C v = C (6)

v′′ + v = C cosφ v =
C

2
φ sinφ (7)

v′′ + v = C cos2 φ v =
C

2
− C

6
cos(2φ) (8)

(e) Write down the solution of the linearized equation for v, and discuss the effect of
each of the three terms.
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