GR — Exercise sheet 13

Francesco Zappa

[francesco.zappa@uni-jena.de, Abbeanum, office 219] (Return date: 04.02.18)

28.01.2019

2 Cosmology

Exercise 2.1: Cosmological constant

The Hilbert-Einstein action for vacuum spacetime can be modified by adding the cosmological constant

$$S = \frac{1}{16\pi G} \int \sqrt{-g} (R - 2\Lambda) d^4 x ,$$

- Derive the modified Einstein field equations (EFEs) by varying S.
- The vacuum EFE with cosmological constant can be written in the form

$$G_{ab} = 8\pi G T_{ab}^{\rm vac}$$

Where the additional term $\propto \Lambda$ is often interpreted as *vacuum energy* ρ_{vac} . Comparing T_{ab}^{vac} with the perfect fluid expression, what is the expression for $\rho_{vac}(\Lambda)$?

• Write down the components of $T_{ab}^{\rm vac}$ and discuss the properties of the fluid described by this tensor.

Exercise 2.2: *Robertson-Walker metric* Consider the RW metric

$$ds^{2} = -dt^{2} + a^{2} \left(\frac{dr^{2}}{1 - \kappa r^{2}} + r^{2} d\Omega^{2} \right)$$

• For $\kappa = +1$ is possible to better understand the geometrical features of the metric defining $r = \sin \chi$. Write down the expression of ds^2 in this case.

• Defining

 $X = a \sin \chi \sin \theta \cos \phi$ $Y = a \sin \chi \sin \theta \sin \phi$ $Z = a \sin \chi \cos \theta$ $W = a \cos \chi$

The spatial part of the metric takes the form of the 3-sphere embedded in \mathbb{R}^4

$$ds^{2} = -dt^{2} + dX^{2} + dY^{2} + dZ^{2} + dW^{2}.$$

Show that a is the radius of the sphere. What portion of the 3-sphere defined above is covered by the initial coordinates (r, θ, ϕ) ?

• Derive the FRW equations for the case $\kappa = \pm 1$. [Hint: write the trace reverse EFE, and use the expressions of the Ricci tensor that you have from the notes.]

Exercise 2.3: Static Universe

Consider the FRW equations with the cosmological constant:

$$\begin{cases} \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}\rho + \frac{\Lambda}{3} - \frac{k}{a^2}\\ \frac{\ddot{a}}{a} = -\frac{4\pi}{3}(\rho + 3P) + \frac{\Lambda}{3} \end{cases}$$

Show that static solutions $(\dot{a} = 0 = \ddot{a})$ are possible only for $\kappa > 0$ and $\Lambda > 0$. [Hint: do first the dust case P = 0]