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0. About

These are semiprivate notes sketching topics and calculations discussed in about 25 lectures of 1.5-2 hours each at
Jena FSU. They are not meant to substitute books. Please visit

http://sbernuzzi.gitpages.tpi.uni-jena.de/gr/

for an updated list of books, references and other material, including the exercise sheets distributed each week.

I welcome constructive feedbacks. Red text is work in progr...

Conventions. The spacetime and the metric are indicated as (M, gab) and the notation mostly follows Wald’s book:
signature convention (−,+,+,+), a, b, ... indexes in abstract notation, α, β, ... indexes of tensor components, i, j, ...
spatial coordinate indexes, etc. Coordinate basis of the tange vector space Tp(M) are indicated as eµ; the natural basis
of partial derivatives is eµ = ∂µ. The dual basis e∗ν (eµe

∗ν = δνµ) is constructed by the gradients of the coordinates
is e∗µ = dxµ. The exterior derivative of an n-form is indicated with d; applied to scalars it reduces to the gradient
(1-form) df = df = grad(f) with components (df)µ = (df)µ = ∂µf . Covariant derivatives (Levi-Civita connection)
are indicated with ∇. ∇ applied to scalars reduces to the gradient ∇f = df (components ∇µf = (df)µ = ∂µf) and it
is consistent with the concept of tangent vector v(f) = vµ∇µf . The symbol := is an assignment, while ≡ an identity.

Units are c = G = 1 if not specified.

4

http://sbernuzzi.gitpages.tpi.uni-jena.de/gr/


1. Introduction

2○
These introductory lectures briefly summarize the key GR concepts and historical milestones in a very basic and

accessible way (BSc level). All the concepts will be developed in detail during the course.

Suggested readings. There are several popular books, readings and videos on GR, please see the course webpage. I
recommend a classic: Kip S. Thorne, “Black holes and time warps: Einstein’s outrageous legacy.”.

TODO
Please temporary refer to the handwritten notes at:

http://sbernuzzi.gitpages.tpi.uni-jena.de/gr/notes/2018/intro_notes.pdf

5

http://sbernuzzi.gitpages.tpi.uni-jena.de/gr/notes/2018/intro_notes.pdf


2. Special Relativity

3○
These lectures summarize the theory of special relativity (SR) from the postulates to the dynamics of particles and

fields. I assume the students are already familiar with some SR concepts from the electromagnetism and relativistic
physics courses. A definition of tensor is introduced using the transformation rule for its components in SR.

Suggested readings. Chap. 1 of Landau and Lifschits (1975); Chap. 1 of Schutz (1985); Chap. 1 of Carroll (1997);
Chap. 1 of Wald (1984).

2.1 SR postulates

Definition 2.1.1. Inertial observer (frame) = reference system in which a free moving body (no forces acting on the
body) moves at constant velocity.

SR postulates [Einstein (1905)]
(i) Relativity principle: Laws of nature are the same in all inertial frames.
⇒ Physics laws be invariant with respect to transformation of coordinates connecting inertial frames.

(ii) The speed of light in vacuum is the same in all inertial frames, and its value is finite

c ' 2.99 . . . 1010 cm/s . (2.1)

Definition 2.1.2. Spacetime = continuum, composed of events.

Definition 2.1.3. Event = when & where, point of the spacetime labelled by coordinates (t, x, y, z) ∈ R4.

2.2 Spacetime & Causal structure

The SR postulates determine a peculiar causal structure of the spacetime.

Causal structure in pre-relativistic physics. Given an event p, an observer/material body can either (i) move
from p to q; or (ii) move from q′ to p; and (iii) cannot be at p and at p′. Hence one defines

(i) Set of events that can be reached from p, {q} = FUTURE of p;
(ii) Set of events that can reach p, {q′} = PAST of p;
(iii) Set {p′} = SIMULTANEOUS to p.

In other terms,
• there exists an absolute time t (observer/frame independent);
• t = const defines a 3D surface of simultaneous events.

This causal structure has an important consequence illustrated in what follows.

Distances in pre-relativistic physics. Consider two distinct events in space, p and q, and two Cartesian frames.
The frame O′ : (t′, x′, y′, z′) moves a constant velocity ~V = V x̂ along the x-axis of frame O : (t, x, y, z). Another
equivalent notation for the coordinate labels is (t, x, y, z) = (x0, x1, x2, x3) and same with primes.

The Galilean tranformation connecting the coordinates of the two frames is
t′ = t (absolute time)

x′ = x− V t
y′ = y

z′ = z

. (2.2)

The formula above can be easily generalized for more complicated orientation of O′; but it sufficient to capture all the
concepts described here. The key point is that one always has t′ = t in pre-relativistic physics: the time is absolute.

6



2.2. Spacetime & Causal structure GR notes - S.Bernuzzi

Figure 2.1: Causal structure in pre-relativistic physics.

The (infinitesimal) distance p̄q = d` is given by Pythagorean’s theorem and can be written in many equivalent
ways:

d`2 = dx2 + dy2 + dz2 =

3∑
i=1

(dxi)
2 (2.3a)

=

3∑
i=1

3∑
j=1

δij(dxi)(dxj) with δij := diag(1, 1, 1) Euclidean metric (2.3b)

= δij(dx
i)(dxj) = (dxi)(dx

i) , (2.3c)

where in the last line Einstein’s sum-convention is introduced.
The square distance `2 is clearly the square Eucliden distance in R3 defined by the standard scalar product as a

quadratic form in the coordinates. `2 has the same value in O and O′; i.e. it is invariant in pre-relativistic physics.
This can be immediately verified in the special case by applying Eq. (2.2)

δ`2
′

= (δx)2 = (x′p − x′q)2 = (xp − V t− xq + V t)2 = (xp − xq)2 = δ`2 , (2.4)

and it is clearly a consequence of the absolute time in Eq. (2.2) that implies one needs to consider only spatial
translations and rotations.

Causal structure in SR. Given an event p, material bodies can still move to/from p. Hence, there exists events
in the

(i) FUTURE of p;
(ii) PAST of p.

But there exists also events that (iii) can be connected only by light and not by material bodies; (iv) cannot be
connected even by light because they would require a speed larger than c. Hence, one defines

(iiia) Set of events that can be reached from p following light rays, {i+} = FUTURE LIGHT CONE of p;
(iiib) Set of events that can reach p following light rays, {i−} = PAST LIGHT CONE of p;
(iv) Set of events causally disconnected from p, {p′} = SPACELIKE events.

Consider now an inertial observer O and draw a spacetime diagram, Fig. (2.2). In a spacetime diagram spacetime is
often represented with diagram (t, x) where the x axes represent the spatial dimensions in 1D. A point of the diagram
is an event, a line represents uniform motion at speed v such that dt/dx = 1/v. One uses units with c = 1 so that
45 degrees lines represent the motion of light (photons); For example, the lines t = ±x represent light rays passing
trhough the origin. To label events with coordinates the observer must (i) place a rigid frame to measure distances in
the 3D space; (ii) place a clock at each point of space; (iii) syncronize the clocks by sending ligh pulses (e.g. each clock
starts when the light pulse arrives). The observer O makes an observation when it assigns to the event p the spatial
coordinate (x, y, z) and the time t read by the clock at (x, y, z). Note this is different from a visual observation of the

7



GR notes - S.Bernuzzi Special Relativity

Figure 2.2: Spacetime diagrams and causal structure in SR.

event made by a scientist stitting at, e.g. (x, y, z) = (0, 0, 0). The intertial observers measure as simultaneous all the
events happening at the same time as indicate by the clocks in their position (t = const); the scientist sitting at the
origin sees as simultaneous all the events happening at the same time as indicated by his clock (at his position).

Once a time axis is chosen, the spatial axes (only one in the figure) can be defined by (i) drawing light rays from
points r and s chosen such that they are at the same distance from the origin, r̄o = s̄o; (ii) drawing the line from o
to the intersection q of the light rays, Fig. (2.2).

A second inertial observer O′ moving at speed V is set up in an analogous way by first chosing a time axes t′

inclined of angle φ : tanφ = V and then constructing the spatial axes from the light rays. As clear from the picture,
the second observer will obviously not agree on which events are simultaneous to an event p. For example, the planes
t = const and t′ = const are different in the figure, and none of the two frames is preferred. The two observers
measure the same value of c for light speed, but in general they disagree on the values of dt and d`.

Summary 2.2.1. Time in SR is not absolute; time intervals can have different values in different frame of reference.
Without notion of simultaneity one cannot define distances (spatial intervals) in a observer-invariant way.

2.3 Spacetime invariant interval

Question 2.3.1. Does SR have an “invariant interval” similar to Galileian physics?

One must consider the 4D spacetime and two inertial observers, O and O′. Let us label coordinates as xµ with
µ = 0, 1, 2, 3, where as above (x0, x1, x2, x3) = (t, x, y, z) and events labels are placed as subscripts. Take 2 specific
events:

(p) emission of a light pulse at spacetime coordinates xµp for O and xµ
′

p for O′;
(q) arrival of the light pulse at spacetime coordinates xµq for O and xµ

′

q for O′.
Because light propagates at c in both frames, one can calculate the spatial distances in the two frames as

δ` =
√

(xq − xp)2 + (yq − yp)2 + (zq − zp)2 = c(tq − tp) (2.5)

δ` =
√

(x′q − x′p)2 + (y′q − y′p)2 + (z′q − z′p)2 = c(t′q − t′p) , (2.6)

and observe that the quantity

s2
qp = (xq − xp)2 + (yq − yp)2 + (zq − zp)2 − c2(tq − tp)2 = (x′q − x′p)2 + (y′q − y′p)2 + (z′q − z′p)2 − c2(t′q − t′p)2 (2.7)

is always invariant for events connected by light and has value s2
qp = 0 (light-like events).

Observations
• s2

qp is a quadratic form “similar” to the Euclidean distance in R4 but with a “minus” sign.
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2.4. Lorentz transformations GR notes - S.Bernuzzi

• In infinitesimal notation we could write it in many ways:

ds2 = −c2dt2 + dx2 + dy2 + dz2 = −c2dt2 +

3∑
i=1

(dxi)2 (2.8a)

=

3∑
µ=0

3∑
ν=0

ηµνdx
µdxν with ηµν := diag(−c2, 1, 1, 1) Flat/Minwowski/Lorentz metric (2.8b)

= ηµνdx
µdxν = dxµdx

µ , (2.8c)

where in the last line Einstein’s sum-convention is used again.
• In general the ds2 computed by two inertial observers must be infinitesimal of the same order 1, thus proportional

to a function a of the relative velocity between the observers,

ds2 = a ds2′ with a = a(|~V |) . (2.9)

The fact that the function a is only a function of the relative velocity follows from the basic assumptions of
homogeneity of spacetime ⇒ a cannot depend on xµ, otherwise different point would not be equivalent;
isotropy of space ⇒ a cannot depend on V̂ , otherwise there would be a favourite direction.

The last observation allows one to show that

Theorem 2.3.1. The spacetime interval ds2 = ηµνdx
µdxν between two events is invariant for all the inertial observers.

Proof. Take 3 inertial observers O,O1,O2 with relative velocities ~V1 (O1−O), ~V2 (O2−O), ~V12 (O1−O2). Using
Eq. (2.10):

ds2 = a(V1)ds2
1 = a(V2)ds2

2

ds2
1 = a(V12)ds2

2

}
⇒ a(V12) =

a(V1)

a(V2)
. (2.10)

The l.h.s. of the last equation depends on the angle between ~V1 and ~V2 because the modulus V12 depends on V1, V2 and
that angle. But the r.h.s. does not depend on the angle, thus a(V ) = const. The only constant compatible with the
equation is however one, thus a(V ) ≡ 1.

Remark 2.3.1. Despite its notation, the spacetime invariant is not positive definite. Two events are precisely char-
acterized by the value of ds2 in a observer independent (absolute) way. The spacetime interval between them can
be

ds2


= 0 : lightlike or null

< 0 : timelike

> 0 : spacelike .

(2.11)

Definition 2.3.1. Proper time = the time interval measured by an observer at rest (carrying his clock). Since for
an observer at rest ds2 = −c2dt2, proper time is an invariant. Equivalently, one can define the proper time as the
interval dt2 = −ds2/c2 for a timelike worldline; proper time is thus the time elapsed between two events as measured
by an observer moving on a straight path between the two events.

Referrring again to the spacetime diagram of Fig. (2.2) it is easy to idenfy which event are null/timelike/spacelike
w.r.t. to o.

• Region I: {
t > 0 ⇒ all event occur after o

t > x ⇒ −t2 + x2 < 0 ⇒ timelike events
(2.12)

Region I is the future of event o. No events are simultaneous to o
• Region III: {

t < 0 ⇒ all event occur before o

t > x ⇒ −t2 + x2 < 0 ⇒ timelike events
(2.13)

Region III is the past of event o. No events are simultaneous to o
• Region II and IV. Events are connected to o by spacelike intervals: they are causally disconnected from o.

For any event in these region there exist a frame such that the event occur before/after/simultaneously to o
[exercise].

2.4 Lorentz transformations

Inertial frames must be connected by transformations that leave the spacetime interval ds2 invariant (Relativity
principle). Let us find these trasformations.

1This just follows from the fact that ds2 → 0⇒ ds2
′ → 0 for arbitrary coordinates. See Schutz (1985) for a rigorous derivation.
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Translations. The coordinate transformation

xµ 7→ xµ
′

= xµ + aµ with aµ ∈ R4 , (2.14)

leaves ds2 invariant because dxµ = dxµ
′
. [Note: as in the equation above, the prime for the new coordinates ′ is

sometimes indicated with the index, instead of being “attached” to the x′. This is a slight abuse of notation as
indexes at l.h.s. and r.h.s. “do not match”, but it is often used.].

Lorentz Transformations. Consider the linear coordinate trasformation

xµ 7→ xµ
′

= Λµ
′

νx
ν with Λµ

′

ν 4× 4 matrix , (2.15)

or in matrix notation 2

x′ = Λx . (2.16)

Combining the above equation with the distance between two events in the two frames one obtains an equation for
the Λ matrices{

ds2 = (dx)Tη(dx) = (dx′)Tη(dx′)

dx′ = Λdx
⇒ ds2 = (dx)Tη(dx) = (Λdx)Tη(Λdx) ⇒ η = ΛTηΛ (2.17)

or in components
ηµν = Λµ

′

µΛν
′

νηµ′ν′ Lorentz transformation . (2.18)

Every coordinate transformation where Λ satisfies Eq. (2.18) preserves ds2 by construction.
Eq. (2.18) reminds to the expression for rotation matrices R in 3D:

δij = Ri
′

i R
j′

j δi′j′ or I = RTIR , (2.19)

where I := diag(1, 1, 1) is the identity matrix. In fact, rotations are a special case of Lorentz transformations restricted
to the spatial sector. If the time coordinate does not change, the first column and row in the l.h.s. of Eq. (2.18) are
trivially satisfied and one needs only to deal with the “spatial” sub-block which is precisely Eq. (2.19). Schematically,

η =

[
−1 0
0 I

]
= ΛTηΛ =

[
1 0
0 RT

] [
−1 0
0 I

] [
1 0
0 R

]
. (2.20)

The Λ above matrix that describes a rotation of an angle θ ∈ (0, 2π] around the ẑ axis is for example,

Λµ
′

ν =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 , (2.21)

and one can verify immediately that Eq. (2.18) holds. A generic rotation is a combination of rotations around each
axis, thus it is described by 3 angles.

In 4D one can additionally consider “rotations involving the time coordinate”. For example, the matrix

Λµ
′

ν =


coshφ − sinhφ 0 0
− sinhφ coshφ 0 0

0 0 1 0
0 0 0 1

 , (2.22)

leads to the coordinate transformation 
t′ = t coshφ− x sinhφ

x′ = −t sinhφ+ x coshφ

y′ = y

z′ = z ,

(2.23)

which is similar to the rotation except that it is expressed with hyperbolic sine and cosine and φ ∈ (−∞,∞). The
hyperbolic functions are clearly needed to fullfill Eq. (2.18) (now we are changing the time coordinate!) and one can
easily prove by using

cosh2(x)− sinh2(x) = 1 (2.24)

that the first two lines of Eq. (2.23) are the most general transformation preserving ds2 = −dt2 + dx2 [Exercise].
What does these “time rotations” describe? Hint: inertial observers are moving with respect to each other by

constant velocity ... the transformation must connect an inertial observer with another one in motion at constant

2Notation: the Λ matrix element (µν) corresponds to Λµν ; the ΛT matrix element (µν) corresponds to Λνµ.
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velocity. It is simple to see this explicitely. Consider the origin in O′, i.e. point x′ = 0; using Eq. (2.23) it is immediate
to see that it moves at tanhφ with respect to O:

x′ = 0 = −t sinhφ+ x coshφ ⇒ x

t
=

sinhφ

coshφ
= tanhφ =: V . (2.25)

Using Eq. (2.24) to invert [exercise]coshφ =

[
1−

(
V

c

)2
]−1/2

=: γ , Lorentz factor (1 ≤ γ <∞)

sinhφ = V γ ,

(2.26)

one obtains the transformation in the most usual form (factors c are restored for clarity)t′ = γ(t− V

c2
x)

x′ = γ(x− V t)
. (2.27)

These transformations are called boosts. A generic boost is a combination of boosts along each axis, thus it is
described by 3 boost parameters (velocities).

Observations
• The inverse of a Lorentz transformation from the unprimed to the primed coordinates is also a Lorentz trans-

formation, this time from the primed to the unprimed systems. Schematically

xµ
Λν
′
µ←−−−−→

(Λ−1)ν′µ

xν
′
i.e. x′ = Λx and x = Λ−1x′ . (2.28)

It is convenient to define the notation
Λ µ
ν′ := (Λ−1)ν

′

µ (2.29)

such that
xν
′

= Λν
′

µx
µ and xµ = Λ µ

ν′ x
ν′ . (2.30)

and
Λ µ
ν′Λ

ρ′

µ = δρ
′

ν′ and Λ µ
ν′Λ

ν′

ρ = δµρ (2.31)

where δµµ = diag(1, 1, 1, 1).
• Lorentz transformations contain Galileian ones for sufficiently small velocities

V � c or c→∞ ⇒ γ → 1 and
V

c2
γ → 0 ⇒

{
t′ = t

x′ = x− V t
(2.32)

• Boosts are undefined for V > c as transformations in R4 because (V/c)2 > 1 and γ becomes imaginary.
• No material body can move at V = c because γ →∞.
• Boosts transformations generate time dilation and length contractions.

Remark 2.4.1. Lorentz transformations form a six-parameter (3 rotations, 3 boosts) group called Lorentz group.
The Lorentz group is nonabelian since the transformations do not commute. The set of translations and Lorentz
transformation form a ten-parameter nonabelian group called the Poincare’ group. The Poincare group encodes the
isometries of SR.

Example 2.4.1. Time dilation and proper time. Consider two events o and p occurring at the same point in O;
the interval between the events is dt = tp − to. Take O′ in relative motion with relative velocity V ; the time interval
between the events is

t′o = γ(to − V xo) = γto

t′p = γ(tp − V xp) = γtp

}
⇒ dt′ = t′p − t′o = γdt = (1− V 2)−1/2dt > dt , (2.33)

This illustrates that proper time is the minimal time interval measured by inertial frames for a given worldline between
two events, i.e. time runs slower for moving clocks.

However, consider now the same two events connected by two different worldlines: a straight line and a nonstraight
line returning at the same spatial location (Cf. Twin paradox). In general, one worldline describes uniform motion
(constant speed) from o to p but the second worldline must accelerate at some point, the simplest case being composed
of moving away at constant speed, turning at halfway and returning at constant speed. In this case the Lorentz
transformations do not apply because the second observer is noninertial. The proper time is given by the integral

11



GR notes - S.Bernuzzi Special Relativity

of −ds2 along the path. If δt is the time interval for the straight path, for the second simplest path it is trivial to
calculate that each half travel at constant speed v takes

√
(δt2/2)− (δx)2 with δx = δt v/2. Hence, one obtains that

the accelerated path has the shorter proper time,

δt′ = 2×
√

(δt2/2)− (δx)2 = 2×
√

(δt2/2)− (vδt/2)2 =
√

1− v2δt < δt . (2.34)

In Euclidean space straight lines are the shorter distance between two points; in Mikowski spacetime straight lines are
the longest proper time interval between two events.

2.5 4-vectors and tensors in SR

A first definition of vectors, one-forms and tensors in terms of the transformation of the components.

Definition 2.5.1. 4-vector = an object made of 4 (contravariant) components vµ that under a Lorentz transformation
change as

vµ
′

= Λµ
′

µv
µ . (2.35)

From the definition one sees immediately that the scalar quantity given by the contraction of the 4-vector with
the flat metric,

ηµ′ν′v
µ′vν

′
= ηµ′ν′Λ

µ′

µΛν
′

νv
µvν = ηµνv

µvν , (2.36)

is invariant under Lorentz transformation. A vector is thus classified accordingly

vµv
µ


= 0 : null vector

< 0 : timelike vector

> 0 : spacelike vector .

(2.37)

Remark 2.5.1. If xµ(λ) is a curve in the spacetime parametrized by λ, the components of the tanget vector at a given point
are

vµ =
dxµ

dλ
, (2.38)

and Eq. (2.35) follows from the transformation of the coordinates, from the fact that λ is left unaltered by the Lorentz
transformation, and from the linearity of the derivative. Vectors at a given point form a vector space called tangent
space Tp.

Definition 2.5.2. covector/ dual vector/ 1-form = an object made of 4 (covariant) components wµ that under a
Lorentz transformation change as

wµ′ = Λ µ
µ′wµ . (2.39)

Remark 2.5.2. Covectors form a tangent space T ∗p that is dual 3 to Tp:

w(v) = wµv
µ ∈ R . (2.40)

One can interpret vectors as linear maps on dual vectors by defining

v(w) := w(v) = wµv
µ ∈ R , (2.41)

which shows dual space of the dual vector space is the original space T ∗∗p = Tp.

The invariant vµvµ can be considered as the contraction of the vector components vµ with those of the associated
covector computed as

vµ = ηµνv
ν . (2.42)

Note here vµvµ is analogous to the vector’s norm given by the Euclidean scalar product but it can be zero or negative.
It should also remind to the bra 〈Ψ| and ket |ϕ〉 of quantum mechanics. Similarly, given covector components wµ one
obtains the components of the associated vector using

wµ = (η−1)µνwν = ηµνwν , (2.43)

where in the last passage we introduce a short notation for the inverse metric: ηµρη
ρν = δνµ. Note the inverse metric

ηµν has exactly the same components as ηµν in flat space and in Cartesian coordinates.
In order to generalize the notion of vectors, it is useful to observe that the relation

∂xµ
′

∂xµ
=

∂

∂xµ
(Λµ

′

νx
ν) = Λµ

′

ν

∂xν

∂xµ
= Λµ

′

νδ
ν
µ = Λµ

′

µ , (2.44)

allows on to use the following notation for the transformation of the ctor/covector components

vµ
′

=
∂xµ

′

∂xµ
vµ and wµ′ =

∂xµ

∂xµ′
wµ ; (2.45)

Cf. notation introduced in Eq. (2.29).

3Recall the dual space is the space of all linear maps from the original vector to real numbers.
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Definition 2.5.3. (k,l)-tensor = an object with arbitrary components Tµ1....µk
ν1...νl

that under coordinate transformation
change as

T
µ′1...µ

′
k

ν′1...ν
′
l

=
∂xµ

′
1

∂xµ1
...
∂xµ

′
k

∂xµk
∂xν1

∂xν
′
1

...
∂xνk

∂xν
′
k

Tµ1...µk
ν1...νl

(2.46)

Example: (0, 2) tensors

• Tµν is a tensor of type (0, 2), the component transform as Tµν = ∂xµ
′

∂xµ
∂xν
′

∂xν Tµν .
• Tµν is a symmetric (0, 2) tensor iff Tµν = Tνµ. A generic (0, 2) tensor can be symmetrized T(µν) := (Tµν+Tνµ)/2.
• Tµν is a antisymmetric (0, 2) tensor iff Tµν = −Tνµ. A generic (0, 2) tensor can be antisymmetrized T[µν] :=

(Tµν − Tνµ)/2.
• In 4D Tµν has 4×4 = 16 independent components; T(µν) has 4+6 = 10 indep. comp. (diagonal+lower tringular

part); T[µν] has 6 indep. comp. (the diagonal is zero!).
• ηµν is an example of (0, 2) tensor. In this case however the components remain unchanged in any Cartesian

coordinate system in flat spacetime.

Remark 2.5.3. The quantities ηµν , ηµν , δµν are tensor (components) that, even though they all transform according
to the tensor transformation law Eq. (2.46), their components remain unchanged in any Cartesian coordinate system
in flat spacetime. In more general coordinate systems the components can change, except for the Kronecker delta that
has exactly the same components in any coordinate system in any spacetime. This follows from the fact that tensors
are, in their abstract definition, linear maps and the Kronecker tensor, among them, is the identity map.

2.6 Kinematics

Concepts of 4-velocity and acceleration.

Definition 2.6.1. Worldline = set of spacetime events corresponding to the motion of a particle (material body or
photon). In general it is indicated as xµ(λ), where λ is the curve parameter.

Definition 2.6.2. Given a worldline xµ(λ), the 4-velocity is

uµ :=
dxµ

dλ
= ẋµ . (2.47)

While λ is a generic parameter, for timelike wordlines one can use the proper time calculated as

τ =

∫
dt =

∫ √
−ds2 =

∫ √
−ηµνdxµdxν =

∫ √
−ηµν ẋµẋνdλ , (2.48)

and reparametrize the worldline with τ(λ). In this case the 4-velocity is normalized:

uµ =
dxµ

dτ
⇒ uµuµ = ηµνu

µuν = ηµν ẋ
µẋν =

ηµνdx
µdxν

dτ2
=
ds2

dτ2
= −1. (2.49)

The above calculation can be repeated with the generic parametrization in λ leading to uµuµ = ds2/dλ2: while one
obviously loses the normalization, the sign of uµuµ is still determined by the sign of ds2. This way the 4-velocity
explains the link between the vector classification and the classification of spacetime intervals given above: for two
events sufficiently close and laying on the same curve xµ(λ) are separated by a null/timelike/spacelike interval if the
norm of the 4-velocity (tangent vector to the curve) is null/timelike/spacelike. If along the curve the tangent vector
remain (for all λ) the curve is called null/timelike/spacelike.

More properties.
• uµ is defined dimensionless
• Components in the rest frame uµ = (1, 0, 0, 0).
• Components in a generic frame uµ = (γ, γvi). This can be readily seen by boosting the rest frame component

along e.g. x-direction: uµ
′

= Λµ
′

µ u
µ = (γ, γV, 0, 0) using Eq. (2.22).

Definition 2.6.3. Given a worldline xµ(λ), the 4-acceleration is

aµ :=
d2xµ

dλ2
= u̇µ = ẍµ . (2.50)

The acceleration is orthogonal to the velocity:

0 =
d

dτ
(−1) =

d

dτ
(uµuµ) =

d

dτ
(ηµνu

µuν) = 2ηµν u̇µu
ν = 2aµuµ . (2.51)
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2.7 Dynamics of particles

The motion of material bodies is described by a Lagrangian L and a action S =
∫
Ldt. Let us find an action for free

bodies.
Since the Lagrangian has dimensions of energy [L] = E, the action has dimension [S] = ET = ML2T−1. Requiring

that the action is Lorentz invariant, the simplest form for particles (timelike worldlines) is

S = K

∫
ds = K

∫ √
−ηµνuµuνdλ = Kc

∫
dτ =

∫
Kcγ−1︸ ︷︷ ︸

=L

dt , (2.52)

where c is included for clarity and K is a constant with dimensions [K] = MLT−1. The latter can be determined by
forcing the Lagrangian to the Newtonian limit

LNewt =
1

2
mv2 . (2.53)

Expanding for small velocities v/c� 1 and up to an overall constant (see below) one obtains 4

L = K(−ηµν ẋµẋν)1/2 = Kcγ−1 = Kc

√
1− v2

c2
≈ Kc

(
1− 1

2

v2

c2
+O(

v4

c2
)

)
⇒ K = −mc . (2.54)

Note the action is invariant with respect changes of the parametrization of the worldline, since λ appears as mute
variable in the integral.

Given the Lagrangian one can calculate the conjugate 3-momentum ~p = (pi) and the Hamiltonian

pi =
∂L

∂vi
= −mc2 1

2

−2√
1− v2

c2

vi
c2

= γmvi (2.55)

H = ~p · ~v − L = γmv2 −mc2
√

1− v2

c2
= γmv2 +mc2γ−1 = m(γv2 + γ−1c2) = m

v2 + c2(1− v2/c2)√
1− v2/c2

= mγc2 (2.56)

Observations
• Newtonian limit v � c: ~p ≈ m~v and H ≈ mc2 +mv2/2
• v → c ⇒ ~p→∞.
• For a particle at rest γ = 1 and H = mc2 ⇒ the energy of the particle has a contribution from the mass.

Equations of motion (EOM). Considering in general L = L(xµ, ẋµ) the Euler equations follows from the sta-
tionarity of the action. Denoting with δ the variation,

δS = 0 ⇒ ∂L

∂xµ
− d

dt

∂L

∂ẋµ
= 0 . (2.57)

Applying the equations above to L = K(−ηµν ẋµẋν)1/2 one obtains:

0 =
∂L

∂xα︸︷︷︸
=0

− d

dτ

∂L

∂ẋα
= − d

dτ

∂

∂uα
(−ηαβuαuβ)1/2 = +

d

dτ

[
1

2

(
−ηαβuαuβ

)−1/2
2ηµνu

ν

]
⇒ d

dτ
uµ = aµ = 0 . (2.58)

The last equation is trivial as there is always a multiplicative term u̇µ when taking the time derivative of the term in
braket. The last expression of the first equation deserves instead a closer look as this is a calculation that will often
return:

∂

∂uµ
(−ηαβuαuβ)1/2 =

1

2

(
−ηαβuαuβ

)−1/2 ∂

∂uµ
(ηαβu

αuβ) ; (2.59)

note the term under square root is a scalar and remember the Einstein’s sum-convention, the interesting part is

∂

∂uµ
(ηαβu

αuβ) =
∂

∂uµ
(η00u

0u0 + η11u
1u1 + η22u

2u2 + η33u
3u3) (2.60a)

= η00
∂u0

∂uµ︸︷︷︸
=δ0µ

u0 + η00u
0 ∂u

0

∂uµ
+ . . . = 2ηµ0u

0 + . . . (2.60b)

= 2(ηµ0u
0 + ηµ1u

1 + ηµ2u
2 + ηµ3u

3) = 2ηµνu
ν . (2.60c)

4Recall the expansion
√

1− x2 ≈ 1− x2/2 +O(x4) for x� 1.
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The result for the EOM is what one expects: a free body has no acceleration. In case presence of a force fµ the EOM
are

aµ = fµ . (2.61)

For example, but without giving a full derivation, the EOM of a particle with charge q is

m
duµ

dτ
=
q

c
Fµνuν , (2.62)

where Fµν is the Faraday tensor (see below). The above equation can be derived from the action

S = −mc
∫
ds+

q

c

∫
Aµdx

µ , (2.63)

where Aµ is the vector potential (see below for its definition).

Definition 2.7.1. The 4-momentum is pµ := mcuµ = mc(γ, γvi) = (E/c, pi).

Observations
• From the definition, pµp

µ = m2c2uµuµ = −m2c2 and pµp
µ = −E2/c2 +p2. Together these two equations implies

the expression for the relativistic Hamiltonian with its appropriate Newtonian limit,

E = c
√
p2 +m2c2 ≈ mc2 +

p2

2m
. (2.64)

• The definition is consistent with the definition pµ = −∂S/∂xµ.

2.8 Dynamics of fields

The equations of motion for a classical field φ(xµ) (or a set of such fields) are derived from the action

S =

∫
Ldt =

∫
dt

∫
d3xL[φ; ∂µφ] , (2.65)

written in terms of the Lagrangian density L, Lorentz invariant. Schematically the EOM are obtained by
• Varying the fields and their derivatives

φ 7→ φ+ δφ , ∂µφ 7→ ∂µφ+ δ(∂µφ) = ∂µφ+ ∂µ(δφ) ; (2.66)

• Varying the Lagrangian

L[φ+ δφ; ∂µφ+ ∂µ(δφ)] ≈ L[φ; ∂µφ] +
∂L
∂φ

δφ+
∂L
∂∂µφ

∂µδφ ; (2.67)

• Extremizing the action

0 = δS =

∫
d4x

∂L∂φ δφ+
∂L
∂∂µφ

∂µδφ︸ ︷︷ ︸
b.p.

 =

∫
d4x

∂L
∂φ

δφ−
∫
d4x∂µ

(
∂L
∂∂µφ

)
δφ+

∫
d4x∂µ

(
∂L
∂∂µφ

δφ

)
︸ ︷︷ ︸

total derivative

(2.68a)

⇒ ∂L
∂φ
− ∂µ

(
∂L
∂∂µφ

)
= 0 (2.68b)

where the second term is integrated by parts and the total derivative give a boundary term which is set to zero
assuming δφ|boundary = 0. The EOM follows from the remaning terms since the field variation is generic and
non zero.

Example 2.8.1. The Lagrangian density of the scalar field ϕ with potential V is

L = −1

2
ηµν∂µϕ∂νϕ− V (ϕ) , (2.69)

and it is manifestly Lorentz invariant. The EOM

∂L
∂ϕ

= −dV
dϕ

,
∂L
∂∂µϕ

= −ηαµ∂αϕ ⇒ 0 = ∂µ (ηµν∂νϕ)− V ′ = 2ϕ− V ′ . (2.70)

Note that above we have defined 2 = ηµν∂µ∂ν = −∂2
t +

∑3
i=1 ∂

2
i . It is left as exercise to find the dimentions of L in

units c = G = ~ = 1, and specify the equation to the Klein-Gordon potential V = m2ϕ2/2.
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2.9 Maxwell equations

Maxwell equations can be written in an explicitely Lorentz invariant form using 4D tensor quantities.
Let us start from

∇× ~B − ∂t ~E = 0 = εijk∂jBk − ∂tEi (2.71a)

∇ · ~E = 4πρ = ∂iE
i (2.71b)

∇× ~E − ∂t ~B = 0 = εijk∂jEk − ∂tBi (2.71c)

∇ · ~B = 0 = ∂iB
i , (2.71d)

where the blue equations are written down in terms of components rather than in vector notation. Note that spatial
indexes i, j, k, ... = 1, 2, 3 can be put up or down arbitrarily because the spatial part of the Lorentz/Minkowski metric is
the identiy, ηij = ηij = δij . The quantity εijk is the usual Levi-Civita symbol; its values are +1 for even permutation of
the index, −1 for odd, 0 if two indexes are the same (for 3 indexes even permutation coincides with cyclc permutations,
odd permutations with anticyclic). Note the definition generalizes to higher dimensions/multiple indexes.

Since the divergence of the magnetic field is zero, the magnetic field can be expressed in terms of a vector potential.
Substituing into the “curl equation” for the electric field, the latter can be expressed as combination of the vector and
a scalar potential (See Jackson (1975) for the derivation of some of the equations of his paragraph),

~B = ∇× ~A , ~E = ∇φ− ∂t ~A . (2.72)

In terms of the potentials Maxwell equations read

∇φ− ∂t∇ · ~A = ρ , 2 ~A+∇(∇ · ~A− ∂tφ) = 4π ~J . (2.73)

The potentials definition in Eq. (2.72) is up to scalar function,

φ 7→ φ− ∂tχ , ~A 7→ ~A+∇χ , (2.74)

that determines the gauge freedomn of electromagnetism. Choosing the Lorentz gauge

∇ · ~A− ∂tφ = 0 , (2.75)

leads to wave equations for the potentials
2φ = ρ , 2 ~A = 4π ~J . (2.76)

Towards a manifestly covariant set of equation one defines the 4-vectors

Definition 2.9.1. The 4-potential Aµ = (φ,Ai) and the 4-current Jµ = (ρ, J i). (Note Aµ = ηµνA
ν = (−φ,Ai).)

Maxwell equation in terms of the 4-potential becomes the single equation

2Aµ = 4πJµ with ∂µA
µ = 0 (Lorentz gauge) , (2.77)

which is manifestly Lorentz invariant.

Definition 2.9.2. Faraday/Maxwell tensor Fµν := ∂µAν − ∂νAµ.

Properties
• Antisymmetric by construction Fµν = −Fνµ.
• Electric field: F0i = ∂0Ai − ∂iA0 = ∂tAi − ∂iφ = −Ei.
• Magnetic field: Fij = ∂iAj − ∂jAi = εijkB

k.
• Matrix form

Fµν =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E − 3 B2 −B1 0

 . (2.78)

Inverse Fαβ = ηµαηνβFµν

Fµν =


0 +E1 +E2 +E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E − 3 B2 −B1 0

 , (2.79)

Note it changes only the first row and columns; the nonzero components are

F 0i = Ei , F ij = εijkBk . (2.80)

16



2.9. Maxwell equations GR notes - S.Bernuzzi

• Lorentz transformation (verify it is a tensor) Fµ′ν′ = Λµµ′Λ
ν
ν′Fµν . For example a boost in x-direction gives

E′1 = E1

E′2 = γ(E2 − V B3)

E′3 = γ(E3 − V B2)

and


B′1 = B1

B′2 = γ(B2 − V E3)

B′3 = γ(B3 − V E2)

(2.81)

that are the trasformations for the electric and magnetic fields derived in Jackson (1975).
To write the Maxwell equations in terms of the Faraday tensor let us compute the derivatives of Fµν

∂iF
0i = ∂i(η

00ηiiF0i) = ∂iE
i (2.82a)

∂µF
iµ = ∂0 F i0︸︷︷︸

=−Ei
+∂j F ij︸︷︷︸

=εijkBk

= −∂tEi + εijk∂jBk . (2.82b)

Comparing to Eq. (2.71), Maxwell equations are rewritten as

∂µF
νµ = 4πJµ (2.83a)

∂[µFνλ] = ∂µFνλ + ∂νFλµ + ∂λFµν = 0 , (2.83b)

where the first equation corresponds to Eq. (2.71b) and Eq. (2.71a), and the second equation to the other two
(derivation left as exercise.)

Remark 2.9.1. Charge conservation follows from antisymmetry by taking a derivative of the first equation:

0 = ∂µ∂ν︸ ︷︷ ︸
sym

Fµν︸︷︷︸
asym

= 4π∂σJ
σ . (2.84)

The above equation is the 4-divergence of the 4-current; taking the integral of a 3D volume Σ closed by a 2D surface
∂Σ and using Gauss theorem, one gets the usual expression

dQ

dt
=

∫
Σ

∂tφ =

∫
Σ

∇ · ~J =

∫
∂Σ

~J · n̂ , (2.85)

stating that the charge variation follows from the current (flux) through ∂Σ.

Remark 2.9.2. The maxwell equations can be derived from the following Lagrangian density

L = −1

4
FµνF

µν +
1

c
JµA

µ . (2.86)
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3. Manifolds & Tensors

4○
These lectures in differential geometry introduce the definitions of manifolds, tensors and other objects to arrive

to the presentation of Stokes theorem. The concepts of metric and stress energy tensor are introduced here.

Suggested readings. Chap. 2 of Wald (1984); Chap. 2 of Carroll (1997); Chap. 2-4,6 of Schutz (1985); O’Neill
(1983) book.

3.1 Differential geometry language for GR

An event in spacetime is characterized by four numbers xµ. In pre-relativity and SR spacetime is globally in a one-

to-one correspondence with R4. In GR, instead, the spacetime is not “fixed” but determined by the matter content
via Einstein equations. Thus, we need to introduce and use some more general mathematical formalism that allows
us to describe non-Euclidean, arbitrary geometries, and write differential equations in those geometries. This is what
differential geometry provides us with.

Example 3.1.1. Measure distances and describe waves on the 2-sphere S2. Imagine to live in this 2D world: locally a
sphere behaves like R2 and one can compute small distances from point A to point B as ĀB =

√
(xB − xA)2 − (yB − yA)2,

but measuring global distances need something else. Note there is no one-to-one correspondence between all the points
on the sphere and the two coordinates (an subset of R2): using the usual angles (φ, θ), the polar angle φ is undefined
at the poles of S2. A way to approach this problem is to embed S2 in R3, i.e. consider the sphere as immersed
in a Euclidean space of higher dimension (3D). This approach allows one to calculate meridians or parallel as path
of minimal lenght between 2 points on the sphere. It also allows to write wave equations on S2 using the standard
transformation from Cartesian to spherical coordinates (and “throwing away terms” i.e. reducing the equation from
3D to 2D). However, this is not the aproach we can take in GR because (i) we do not experience higher dimensions
than 4, and (ii) we do not know in advance the geometry of spacetime. Another possibility to approach the S2 problem
could be to employ multiple (at least 2) coordinate patches that are slighly overlapping (think of wrapping up a ball
with small pieces of a paper sheet) and for which the points on the sphere covered by the patch are in one-to-one
correspondence with the two coordinates of the patch. This goes in the right direction ...

3.2 Manifold

The concept of manifold is introduced in order to map a generic set into Rn. Such a map is not always possible for the
whole set (global map), but it is often possible locally. The example is the atlas that covers Earth with many charts.
A manifold is such a “structure” used to map a generic geometry into a Eucliden space, eventually piece-by-piece.

Definition 3.2.1. Map between two sets φ : M 7→ N such that is assign to each element p ∈M one element q ∈ N .

A map can be
• injective : ∀ elements of N ∃ at most one element of M ;
• surjective : ∀ elements of N ∃ at least one element of M ;
• bijective (invertible) : injective and surjective, i.e. ∃φ−1 such that the composition φ−1 ◦ φ(p) = p.
• None of the above.

Definition 3.2.2. Open ball in Rn of radius r around y ∈ Rn is the set of points: Br = {x ∈ Rn : |x − y| =(∑n
i=1(xi − yi)2

)1/2
< r}.

Definition 3.2.3. Open set in Rn = any set of Rn that can be expressed as a union of balls.

Definition 3.2.4. Manifold is a set M together with a set of subsets {Oα ⊂M} such that
1. {Oα} cover M , i.e. each p ∈M is contained in a at least one of the Oα.
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Figure 3.1: Illustration of a manifold.

2. ∀ α ∃ a bijective map to an open subset of Rn, ψα : Oα 7→ Uα ⊂ Rn.

3. If any two sets overlap Oα ∩Oβ, then the function ψβ ◦ ψ−1
α : Oα ∩Oβ ⊂ Rn 7→ Rn is C∞.

The picture is shown in Fig. (3.1). ψα is called a chart or a coordinate system. {ψα} is called an atlas. The manifold
(M, {Oα}, {ψα}) is usually shortly indicated with M. The dimension of M is n.

Examples
• M = Rn is a manifold: O = Rn (one chart), ψ = identity.
• Unit circle S1 The natural coordinate system for the unit circle is the angle θ : S2 7→ R. Does that single chart

define a manifold? Check properties 1)-3) of the Def. 3.2.4.
1) θ ∈ [0, 2π) or θ ∈ (0, 2π] cover S1. Ok.
2) Including θ = 0 (or θ = 2π) gives a close interval in R. Excluding both θ = 0, 2π does not cover the full circle.
⇒ the circle cannot be covered with one chart !

Let us try with two charts given by two angles each spanning only a part of the circle and overlapping on two
arcs segments. Say, θ1 ∈ (0, 5/4π) ad θ2 ∈ (π, π/4). By construction the two sets are now open, and cover the
unit circle. A point on the unit circle is identified with the value of one of these two angles. Hence S1 with these
two charts is a manifold. In general, one can use an atlas with more than two of similarly constructed charts
and still make a manifold.

Another option is to use stereographic projections. Consider the circle embedded in standard Euclidean coordi-
nates in R2. One can define two charts PN,S by taking the north or south pole of the circle, finding any other
point on the circle and projecting the line segment onto the x-axis. This provides the mapping from a point of
S1 to R1. Clearly each of the maps excludes the other pole. They cover the circle (property 1.) and maps to
open sets of R (2.). Note the local coordinates for the charts are different: the same point on the circle mapped
via the two charts do not map to the same point in R. Explicitely, the map is 1

up = PN (p) = PN (xp, yp) =
xp

1− yp
, u′p = PS(p) = PS(xp, yp) =

xp
1 + yp

. (3.1)

The inverse maps are P−1
N/S(up) = (xp, yp) such that

xp =
2up
u2
p + 1

, yp = ±
u2
p − 1

u2
p + 1

, (3.2)

and the composition is

u′p = PS ◦ P−1
N (up) = PS(P−1

N (up)) = PS(
2up
u2
p + 1

,
u2
p − 1

u2
p + 1

) =
1

up
. (3.3)

1Recall the circle has unit radius and the triangles formed by the (pole-point on x-axis-point on S1) are similar.
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The latter is C∞ in the overlap region, i.e. for all points of the circles except the poles. This verifies property 3.
• An example of a set which is not a manifold is a plane with a line ending on it. It is left as an exercise to discuss

why (no calculations required, just think of an argument).

Remark 3.2.1. A manifold is a space that is locally like Rn but globally different (generic). This allows one to import
all the analysis tools from Euclidean spaces to generic spaces! For example, a map f :M 7→M′ connecting the points
of the two manifolds p′ = f(p) can be identified, and should be always understood as, a “regular” function

F : ψα ◦ f ◦ ψ′α : Rn 7→ Rn
′
. (3.4)

We abandon immediately the notation f and F and always consider “functions on manifolds” in the above sense. In
particular one talks of smoothness of f thinking of F ∈ C∞. A smooth and invertible function is called diffeomorphism,
an important concept for GR.

3.3 Tangent vector space

Introduce the concept of tanget vector space at a point of the manifold by starting with the Eucliean analogy.

Euclidean geometry. Here one uses vectors to describe “displacements”. In Rn one has that
• Vectors form a vector space;
• Vectors are defined globally in Rn. There is a intuitive notion of “rigidly transporting” vectors at different

points, sum and subtract them;
• A vector introduces a direction, and can be naturally associated to the derivative of a function in that direction

vector ~v = (v1, ..., vn)︸ ︷︷ ︸
direction

↔ directional derivative

n−1∑
µ=0

vµ∂µ︸ ︷︷ ︸
derivative in direction ~v

. (3.5)

In particular, given a curve γ : R 7→ Rn with p = xµ(λ) ∈ γ ⊂ Rn, the tangent vector to γ at point p is made of
components

vµ(p) =
dxµ

dλ
. (3.6)

Any function derivative long γ is

df

dλ
=

n−1∑
µ=0

dxµ

dλ

∂µf

∂xµ
= vµ∂µf . (3.7)

Recall that the properties of derivatives are linearity and Leibnitz rule.

Arbitrary geometry. The concept of tangent vector space is globally lost and it is not obvious how to transport
vectors “rigidly” from point to point. Rather, tangent vectors are defined only at a point. The idea can be visualized
by embedding the manifold in a larger Rn space. If one thinks for example to S2 in R3, a vector on the surface at
point p “goes out” of the sphere in a neighbourg of p and has thus meaning only at point p; vectors on the sphere are
meaningful only to describe infinitesimal displacements.

In order to generalize the concept of vectors to generic geometries, and to give an intrinsic way of characterizing
them without the need of embedding the space, one uses theirs identification with direction derivatives. Consider the
set of smooth functions F = {f : M 7→ R : f ∈ C∞}.

Definition 3.3.1. Tangent vector space at point p ∈M is TpM = {v : F 7→ R} such that the map v ∈ TpM is
1. linear, v(af + bg) = av(f) + bv(g) with a, b ∈ R and f, g ∈ F ;
2. Leibniz rule, v(fg) = fv(g) + gv(f);

and TpM is a vector space,
3. (va + v2)(f) = v1(f) + v2(f);
4. (av)(f) = av(f).

Note that if {eµ ∈ TpM} is a set of n independent vectors, then any vector of the vector space can be written as
v =

∑
µ v

µeµ such that its action on a any function is v(f) =
∑
µ v

µeµ(f).

Properties
1. f(p) = const ≡ K ⇒ v(f) = 0.

Proof.

v(f2) =

{
v(Kf) = Kv(f) linearity

f(p)v(f) + f(p)v(f) = 2Kv(f) Leibnitz
⇒ v(f) = 0 . (3.8)
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2. Dimension and basis are determined by the following

Theorem 3.3.1. The dimension of TpM is n and v ∈ TpM is such that v =
∑
µ v

µ∂µ with ∂µ := ∂/∂xµ are
the partial derivatives in a coordinate basis.
Proof. Introduce a basis of TpM composed of the n vectors {eµ} and show that the choice eµ = ∂µ corresponds
to (i) n independent vectors; (ii) spans TpM. {∂µ} is called natural basis or coordinate basis.
(i) Take local coordinates ψ(p) = xµ ∈ Rn. The coordinate representation of f is f ◦ψ−1, that is a function from
Rn to R. The set {∂µ := ∂/∂xµ} is composed of n tangent vectors acting on f that are linearly independent
(each is a derivative in one of the directions of the coordinate axes). The action of each basis vector is

eµ(f) = ∂µ(f) =
∂

∂xµ
(f ◦ ψ−1)|ψ(p) . (3.9)

(ii) A fundamental calculus theorem for the function F : O ⊂ Rn 7→ R, where O the unit radius ball centered at
the origin, says that

F (x)− F (0) =

∫ 1

0

d

dt
F (tx1, ..., txn)dt =

∑
µ

xµ
∫ 1

0

∂

∂xµ
F (tx1, ..., txn)dt︸ ︷︷ ︸
=:Hµ(xν)

=
∑
µ

xµHµ(xν) . (3.10)

Note that Hµ(0) = ∂F/∂xµ|0. For a function on manifolds one takes F = f ◦ψ−1, ψ(p) = 0, and the result can
be re-written for any q ∈ O close to p as

f(q) = f(p) +
∑
µ

xµ ◦ ψ(q)− xµ ◦ ψ(p)︸ ︷︷ ︸
=0

Hµ ◦ ψ(q) . (3.11)

Stress: this is just rewriting the equation above in the way it should be interpreted for functions on manifolds.
Apply the vector (directional derivative at p) to the generic f = f(q):

v (f(q)) = v (f(p))︸ ︷︷ ︸
=0

+v

(∑
µ

(xµ ◦ ψ(q))Hµ ◦ ψ(q)

)
=
∑
µ

v ( (xµ ◦ ψ(q))Hµ ◦ ψ(q) ) (3.12a)

=
∑
µ

(xµ ◦ ψ(p))︸ ︷︷ ︸
=0

v (Hµ ◦ ψ) +
∑
µ

v (xµ ◦ ψ)Hµ ◦ ψ(p) (3.12b)

=
∑
µ

v (xµ ◦ ψ)︸ ︷︷ ︸
=:vµ

∂µf =
∑
µ

vµ∂µf ∀ f . (3.12c)

The first line uses linearity and the results above that v(K) = 0. The second line uses Leibnitz. The third lines
follows from the fact that Hµ ◦ψ(p) = Hµ(ψ(p)) = ∂µf and the definition of the vector component as the values
of v applied to the function xµ ◦ ψ. Hence, any vector at point p is generated by the coordinate basis.

3. Under a change of coordinate xµ 7→ xµ
′
, the basis changes as

∂µ 7→ ∂µ′ =
∑
µ

∂xµ

∂xµ′
∂

∂xµ
=
∑
µ

∂xµ

∂xµ′
∂µ (3.13)

where ∂xµ

∂xµ′
is the Jacobian of the transformation. Since the value of v(f) cannot depend on the basis choice,

the components must change as

vµ
′

=
∑
µ

∂xµ
′

∂xµ
vµ =

∂xµ
′

∂xµ
vµ , (3.14)

where in the last expression the Einstein sum-convention is used for the first time in this chapter. The trans-
formation law above is the same derived int he context of SR, but it is not generic and valid for every space-
time/geometry.

Definition 3.3.2. Tangent vector field = assignment of TpM for each point of the manifold.

Observations.
1. If p 6= q, then TpM 6= TqM. Tangent spaces at different points are different !
2. ∀p, the action of the vector v(f) ∈ TpM is a function M 7→ R. The vector field at point p is said smooth iff
∀f ∈ C∞ ⇒ v(f) ∈ C∞. Note that if ∂µ and v are smooth, then the components vµ are smooth functions in
Rn 7→ R.

3. From now on we will not distinguish between tangent vectors and tangent vector fields and their relative spaces.
The context should be sufficient to clarify which object one is using. The extension from tensors to tensors field
is analogous and we won’t bother too much also in that case. In most of GR applications we will deal with
tensor fields.
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Figure 3.2: Illustration of a curve on manifold. In the inset a function on the manifold is also illustrated.

3.4 Smooth curve on M
The definition of vector given above is compatible with what one expects from vector tangent to a curve.

Definition 3.4.1. A smooth curve M is a C∞ function γ : R 7→ M, associating a real parameter to points of the
manifold, γ(λ) = p.

For each point of the curve one can define the tangent vector vγ : F 7→ R such that

vγ(f) ≡ d

dλ
(f ◦ γ) =

d

dλ
(f ◦ ψ−1 ◦ ψ ◦ γ) =

d

dλ
(f ◦ ψ−1︸ ︷︷ ︸

R 7→Rn

◦ψ ◦ γ︸ ︷︷ ︸
xµ(λ)

) =
dxµ(λ)

dλ︸ ︷︷ ︸
=vµγ

∂

∂xµ︸︷︷︸
basis

(f ◦ ψ−1) . (3.15)

This shows that the components of the tangent vector are the partial derivatives of the coordinates, as expected.

Observations
• Given a curve in local coordinates xµ(λ), one can find the tangent vector at all points from its components
vµ = dxµ/dλ.

• Given a vector at one point, one can construct the curce γ by solving the ODE dxµ/dλ = vµ with the given
initial condition. This is a ODE system of 1st order for which local existance and uniqueness of the solution is
guaranteed.

Remark 3.4.1. Vector fields as generators of diffeomorphisms. The tangent vector can be interpreted as infinitesimal
displacement. Consider the 1-parameter family of diffeomorphisms

φt : R×M 7→M , t ∈ R such that φt ◦ φs = φt+s ∀ t, s ∈ R . (3.16)

The map describes a smooth transformation between points of the manifold and φ0 is the identity map. Given p ∈M
one can define the curve through p as

γp := φt : R 7→ M , such that φ0(p) = p . (3.17)

This curve is now associated with a tangent vector at each point which is the infinitesimal generator of the transfor-
mations on the manifold.

Summary 3.4.1. The definition of tangent vector is compatible and extend the definition of 4-vectors given in SR.
The abstract definition given here is “intrinsic” and apply to arbitrary geometries, dimensions, and coordinate systems.
Key steps to the definition: (i) intuitive idea of tangent vectors as infinitesimal displacements; (ii) vectors as direction
derivatives; (iii) compatibility with the tangent to a curve at given point.
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3.5 Dual or cotangent vector space

Definition 3.5.1. The dual space of TpM is the set of linear maps T ∗pM = {ω : TpM 7→ R, linear}.

Observations

• T ∗pM is a vector space and ω is called dual vector or 1-form.
• Basis of TpM. Given a basis {eµ} of TpM one defines the set {e∗µ ∈ T ∗pM} such that e∗µ(eν) = δµν .

(i) {e∗µ} is a basis of T ∗pM and ω = ωµe
∗µ.

(ii) The dimension of T ∗pM is the same as the dimension of TpM.
(iii) The action of a 1-form ω is simply given by the action of the basis:

ω(v) =
∑
µ

ωµe
∗µ(v) =

∑
µ

ωµe
∗µ(
∑
ν

vνeν) =
∑
µ,ν

ωµv
ν e∗µ(eν)︸ ︷︷ ︸

=δµν

=
∑
µ

ωµv
µ = ωµv

µ , (3.18)

where ωµv
µ is a function at p, i.e. a number.

• For a given basis there is a correspondence between vector and covectors: one can think of vectors as linear
maps on duals

v(ω) ≡ ω(v) = ωµv
ν . (3.19)

So in this sense T ∗∗p M = T ∗pM.
• The natural basis of T ∗pM is the gradient of the local coordinates

dxµ(∂ν) =
∂xµ

∂xν
= δµν ⇒ ω = ωµdxµ. (3.20)

Under a coordinate transformation the basis and the components transform as

dxµ
′

=
∂xµ

′

∂xµ
dxµ ⇒ ωµ′ =

∂xµ

∂xµ′
ωµ . (3.21)

One thus find again 1-form are the generalization of 4-covectors.

Example 3.5.1. Gradient of a scalar field. Consider a worldline in Mikowski spacetime, i.e. a curve xµ(λ) in R4,
and a scalar field ϕ(xµ). The tangent vector to the curve has components vµ = dxµ/dλ = ẋµ; the values of the scalar
field along the curve is ϕ(xµ(λ)). The “rate of change” of the scalar field along the curve is

dϕ

dλ
=

∂ϕ

∂xµ
dxµ

dλ
= vµ

∂ϕ

∂xµ
. (3.22)

The equation above can be viewed as a map v 7→ dϕ/dλ ∈ R, i.e. it is a 1-form! The components of the 1-form are
precisely the components of the gradient:

ω(v) = ωµv
µ = vµ

∂ϕ

∂xµ
⇒ ωµ =

∂ϕ

∂xµ
= (

∂ϕ

∂t
,
∂ϕ

∂x1
,
∂ϕ

∂x2
,
∂ϕ

∂x3
) . (3.23)

Example 3.5.2. The simplest 1-form is the gradient df of a function on M. Consider the vector v = d/dλ (you
can think of it as the vector tangent to a curve, but it can be also a general vector), the 1-form defined as the gradient
of the function f acts on this vector and results in the directional derivative of the function:

ω(v) = df(v) = df(
d

dλ
) =

df

dλ
. (3.24)

The gradient is the simplest choice that allows one to obtain the derivative at point p of the function.

Example 3.5.3. Visualization of 1-forms. A vector v is interpreted as an abstract displacement and it is usually
illustrated/imagined as an “arrow”. How can one imagine a 1-form?

Consider a topographical map in which countours of constant elevation are equisurfaces of a scalar field, e.g. each
contour represent the same altitude h, the closer the lines are, the largest the gradient dh is. In order to know the
elevation from point a point A to a point B one draws the vector ~AB and count the lines that the vector crosses. In
other terms, the values of the gradient is the number of surfaces crossed by the vector, Fig. (3.3).

A 1-form can be thus thought as a series of surfaces and abstractly visualized as straight lines. Surfaces are parallel
because the 1-form is defined at one point in the manifold. If one draws a vector, the value of ω(v) is the number of
lines the vectors crosses.
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Figure 3.3: Abstract visualization of 1-form as series of surfaces Schutz (1985).

3.6 Tensors

Tangent vectors and covectors generalize to tensors.

Definition 3.6.1. A tensor of type (rank) (k, l) is a multilinear map taking k 1-forms and l vectors and giving a
number, T : T ∗pM× ...× T ∗pM︸ ︷︷ ︸

k

×TpM× ...× TpM︸ ︷︷ ︸
l

7→ R.

Multilinear means linear in each of the arguments.

Examples (math).
• (0, 0) tensor = scalar;
• (0, 1) tensor = dual vector;
• (1, 0) tensor = vector.

Examples (physics).
• The Farady/Maxwell trensor is a (0, 2) tensor field;
• The stress-energy tensor for particles, matter fields, etc is a (0, 2) tensor.

Properties.
• Tensors on a n-dimensional manifold form a vector space τ(k, l) of dimension nk+l.
• Tensor product. Given two tensor T1 ∈ τ(k, l) and T2 ∈ τ(k′, l′), the tensor product is defined as

⊗ : τ(k, l)× τ(k′, l′) 7→ τ(k + k, l + l′) (3.25a)

T1 ⊗ T2(ω1, ..., ωk+k′ , v1, ..., vl+l′) := T1(ω1, ..., ωk, v1, ..., vl)T2(ωk+1, ..., ωk+k′ , vl+1, ..., vl+l′) (3.25b)

Its action is simply the product of the action of the two tensors on the appropriate arguments. Note that
T1⊗T2 6= T2⊗T1 and that the subscripts of ω and v are not the components but label the vectors and 1-forms.

• Tensor basis. Given {eµ} basis of TpM and {e∗µ} basis of T ∗pM let us construct a basis for the elements of
τ(k, l) by considering the action of the tensor on 1-forms and vectors :

T (ω1, ..., ωk, v1, ..., vl) = T (..., ωµje
∗µj︸ ︷︷ ︸

jth argument

, ..., vνieνj︸ ︷︷ ︸
ith argument

, ...) (3.26a)

=
∑
µ1

...
∑
ν1

... ωµ1
...ωµkv

ν1 ...vνl T (..., e∗µj , ..., eνj , ...)︸ ︷︷ ︸
tensor components =:T

µ1...µk
ν1...νl

(3.26b)

= ωµ1
...ωµkv

ν1 ...vνlTµ1...µk
ν1...νl

. (3.26c)
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The first line writes the argument in terms of components; note that in component notation the label of the
vector/covectors gets attached to the index. The second line uses linearity and defines the tensor components
Tµ1...µk
ν1...νl

. The last line uses the sum-convention. The claim here is that a basis for the tensor is given by the
tensor product (note the indexes):

eµ1 ⊗ ...⊗ eµk ⊗ e∗ν1 ⊗ ...⊗ e∗νl . (3.27)

Direct verification:

T (ω1, ..., ωk, v1, ..., vl) = Tµ1...µk
ν1...νl

eµ1 ⊗ ...⊗ eµk ⊗ e∗ν1 ⊗ ...e∗νl(ω1, ..., ωk, v1, ..., vl) (3.28a)

= Tµ1...µk
ν1...νl

eµ1 ⊗ ...⊗ eµk ⊗ e∗ν1 ⊗ ...e∗νl(..., ωαje∗αj , ..., vβieβi , ...) (3.28b)

= Tµ1...µk
ν1...νl

ωα1 ...ωαkv
β1 ...vβleµ1 ⊗ ...⊗ eµk ⊗ e∗ν1 ⊗ ...e∗νl(..., e∗αi , ..., eβj , ...) (3.28c)

= Tµ1...µk
ν1...νl

ωα1
...ωαkv

β1 ...vβleµ1
(e∗µ1)...eµk(e∗αk)e∗ν1(eβ1

)...e∗νl(eβl) (3.28d)

= Tµ1...µk
ν1...νl

ωα1
...ωαkv

β1 ...vβlδ∗µ1
µ1

...δ∗αkµk
δ∗ν1β1

...δ∗νlβl
(3.28e)

= ωµ1
...ωµkv

ν1 ...vνlTµ1...µk
ν1...νl

. (3.28f)

First line write simply the tensor in terms of “components×basis”. The second line writes the arguments in
terms of the components; third line uses linearity; fourth line uses the definition of tensor product; fifth line uses
the definition of basis of the dual space. Note how useful is here the Einstein-sum convention. Note also that
the tensor product is terms of components is simply the product of the components

(T1 ⊗ T2)
µ1...µk+k′
ν1...νl+l′ = Tµ1...µk

1 ν1...νl
T
µk+1...µk+k′
2 νl+1...νl+l′

. (3.29)

• Tensor contraction. The operation

C(ij) : τ(k, l) 7→ τ(k − 1, l − 1) (3.30a)

C(ij)T :=
∑
σ

T (..., e∗σ︸︷︷︸
jth argument

, ..., eσ︸︷︷︸
ith argument

, ...) , (3.30b)

is called a contraction. In terms of components (C(ij)T )
µ1...µk−1
ν1...νl−1 = Tµ1...σ...µk

ν1...σ...νl
, and the notation C(ij) is usually

omitted, e.g. Tαβ = Tασβσ is the contraction C(22) (see below Remark 3.6.1).
• Change of coordinates. The natural basis made of eµ = ∂µ and e∗µ = dxµ change under coordinate transforma-

tion as

∂µ′ =
∂xµ

∂xµ′
∂µ , dxµ

′
=
∂xµ

′

∂xµ
dxµ . (3.31)

Substituting in the tensor basis eµ1 ⊗ ...⊗ eµk ⊗ e∗ν1 ⊗ ...e∗νl and using linearity one immediately sees that the
components change as

T
µ′1...µ

′
k

ν′1...ν
′
l

=
∂xµ

′
1

∂xµ1
...
∂xµ

′
k

∂xµk
∂xν1

∂xν
′
1

...
∂xνk

∂xν
′
k

Tµ1...µk
ν1...νl

, (3.32)

which again generalize the SR result, Eq. (2.46), to arbitrary geometries.

Remark 3.6.1. Abstract notation. Tensors v, ω, T are often indicated by their components (functions) vµ, ωµ, T
µ1...µk
ν1...νl

with greek indexes α, β, ..., µ, ν, ... employed by convention. The component notation simplify many calculations and
but has the drawback that the equations in terms components might not be tensor equations. In fact, a particular basis
might simplify the equations for the components (for example because it exploits coordinates adapted to the symmetries
of the problem) but such equations might be not valid for every basis.

Wald (1984) proposes a third notation va, ωa, T
a1...ak
b1...bl

with latin indexes a, b, c, ... where the symbols indicate the
tensor (not its components). In this notation one writes tensor equations valid in every basis. The notation has the
advantage of indicating what type of tensor is, “where” the component indexes must go, and keeping the formulas
compact (e.g. avoid to introduce other symbols for contrations). Examples: T abcde indicate an element of τ(3, 2); T abcbe

indicate an element of τ(2, 1) obtained by the contration C(24); T
abc
de S

f
g is an element of τ(4, 3) obtainted by the tensor

product (T abcde )⊗ (Sfg ).

Symmetries and antisymmetries .

• S ∈ τ(0, 2) is symmetric iff S(v1, v2) = s(v2, v1) ∀v1,2 ∈ TpM (symmetry is defined according to the exchange
of arguments). In abstract notation one has Sabv

avb = Sbav
avb, which implies for components Sµν = Sνµ.

A (0, 2) tensor T can be symmetrized by defining S(v1, v2) = (T (v1.v2) + T (v2, v1)))/2; in abstract notation
S(ab) = (Tab + Tba)/2.

• A ∈ τ(0, 2) is antisymmetric iff A(v1, v2) = −A(v2, v1) ∀v1,2 ∈ TpM. In abstract notation one has Aab = −Aba.
A (0, 2) tensor T can be antisymmetrized by defining A[ab] = (Tab − Tba)/2.
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• Generic totally symmetric/antisymmetric tensors are given by

T(a1...an) =
1

n!

∑
π

Taπ(1)...π(n)
, T[a1...an] =

1

n!

∑
π

σπTaπ(1)...π(n)
, (3.33)

where π are the permutations and σπ = ±1 for even/odd permutation. It is possible to symmetrize also upper
indexes in the same way and group of indexes. Examples

T[abc] =
1

3!
(Tabc + Tcab + Tbca − Tbac − Tacb − Tcba) (3.34a)

T
(ab)c
de =

1

2
(T abcde + T bacde ) (3.34b)

T
(ab)c
de =

1

2
(T abcde + T bacde ) (3.34c)

T
(ab)c
[de] =

1

2
(T abc[de] + T bac[de]) =

1

4
(T abcde − T abced + T bacde − T baced ) (3.34d)

Example 3.6.1. The physical meaning of a tensor object is clarified by the stress-energy tensor of matter. The
latter is an object that, given the 4-velocity of the particles worldline, output the energy density. This is exactly the
action of a tensor. The energy and momenum of matter fields are thus described by T ∈ τ(0, 2) symmetric tensor.
Specifically, given the timelike vector field u representing the 4-velocity tangent to the worldline of an observer O 2,
the stress-energy tensor is defined as that bilinear map such that T (u, u) = energy density measured by O [Complete
definition is given below].

3.7 Metric

Given a point p ∈ M, we introduce here an object that gives the “infinitesimal squared interval” (or line element)
associated to an infinitesimal displacement. The idea is clearly to generalize the intervals in R4

d`2 = δijdx
idxj Euclidean spacetime (3.35a)

ds2 = ηµνdx
µdxν Mikowski spacetime , (3.35b)

to arbitrary manifolds. Since an infinitesimal displacement is represented by a vector v ∈ TpM and ds2 must be a
quadratic form, the object we are looking for must take two vectors and give a number, i.e. it must be a symmetric
(0, 2) tensor.

Definition 3.7.1. Metric = g ∈ τ(0, 2), symmetric g(v1, v2) = g(v1, v2) (gab = gba), and nondegenerate g(v, v1) = 0
∀v ⇒ v1 = 0.

In a coordinate basis the metric tensor writes

g = gµνdxµ ⊗ dxν , (3.36)

where one should note that dxµ are not differentials but 1-forms. The action on two vectors is

g(u, v) = gµνdxµ ⊗ dxν(u, v) = uαvβgµνdxµ ⊗ dxν(∂α, ∂β) = uαvβgµν dxµ(∂α)︸ ︷︷ ︸
δµα

dxν(∂β)︸ ︷︷ ︸
δνβ

= uµvνgµν . (3.37)

If one takes the vector v = dxµ∂µ connecting point p to an infiniteismally close point p+ δp, the line element is

ds2 = g(v, v) = dxµdxνgµνdxµ(∂α)dxν(∂β) = dxµdxνgµν . (3.38)

Properties.
1. Since the metric is nondegenrate, the determinant of its components det g 6= 0. Once can thus define the inverse

metric as the tensor gab such that gacgbc = δac . The inverse metric is clearly symmetric. Differently from SR the
components of the inverse metric are in general different from those of the metric.

2. It is always possible to introduce special coordinates called normal coordinates such that the metric at a point
is diagonal with elements ±1 (Schutz, 1985; Carroll, 1997; O’Neill, 1983),

g(eµ, eν) = gµν = diag(−1,−1, ...,+1,+1, ...) . (3.39)

Physically these coordinates must exists in GR because the Einstein’s equivalence principle (EEP) states that
locally (at point p) one must be able to reduce to SR (“remove gravity”).
Mathematically the number of basis vectors giving “-1” and those giving “+1” is independent on the specific
choice of the basis. One can thus define unambiguously

2A timelike vector field was defined in SR as a vector with negative norm; the concept generalizes in GR where the norm is given by
the metric (see below). For the moment one can think of the SR case.
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Definition 3.7.2. Signature of g = sign(g) the set of “-1” and “+1” in normal coordinates.

3. A metric g is called
• Euclidean or Riemannian iff sign(g) has all “+1” (metric is positive definite)
• Lorentzian iff sign(g) has one “-1” (metric is locally Mikowski)

4. The metric g establishes a natural correspondence between TpM and T ∗pM. Given a 1-form ω ∈ T ∗pM acting
on vectors v ∈ TpM, one can associate a vector ω̄ ∈ TpM

ω → g(., ω̄) , (3.40)

such that
ω(v) = g(v, ω̄) = gµν ω̄

ν︸ ︷︷ ︸
ωµ

vµ = ωνv
µ . (3.41)

The metric defines the isomorphism between TpM and T ∗pM. This property allows on to “raise and lower”
indexes with the metric. Note this is what happens in SR where the metric is g = η.

5. In 4D the number of independent components of the metric tensor is 10: diagonal + lower (or upper) triangular
part. In dimension n the number of independent components is n(n+ 1)/2 because there are n components on
the diagonal and the lower triangular part has (n2 − n)/2 = n(n− 1)/2.

Remark 3.7.1. Raising and lowering indexes of tensor components using the metric (and its inverse) corresponds to
the well defined operations of tensor product and contraction. Applying these operations result in building other tensors,
different from the originals. For example by lowering the index of a vector one is defining the 1-form associated by
the metric tensor. In practical calculation: (a) raising and lowering does not change the position of an index relative
to other indices; (b) free indices (not summed over) must bet he same on both sides of an equation; (c) mute indices
(summed over) only appear on one side.

Example 3.7.1. The metric of the 2-sphere S2 in terms of the usual (θ, φ) coordinates is gµν = diag(1, sin2 θ). The
line element is dΩ2 = dθ2 + sin2 θdφ2.

Example 3.7.2. In Euclidean R3 the metric components in Cartesian and spherical coordinates are given by

gµν = diag(1, 1, 1) gµν = diag(1, r2, r2 sin2 θ) . (3.42)

While the components are different, the line element is the same

d`2 = gµνdx
µdxν = dx2 + dy2 + dz2 = dr2 + r2dθ2 + r2 sin2 θdφ2 . (3.43)

Example 3.7.3. In Mikowski spacetime R4 the metric components in Cartesian coordinates are gµν = ηµν =
diag(−1, 1, 1, 1).

Example 3.7.4. Surfaces are naturally represented by 1-forms. Consider Mikowski spacetime with metric η and a
surface ϕ = const determined by the scalar field ϕ(xµ). The gradient 1-form of ϕ has components

(dϕ)µ = (
∂ϕ

∂t
,
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z
) , (3.44)

and uniquely identifies the surface ϕ = const. The normal vector to the surface is determined by demanding that it
is the vector orthogonal to all the vectors laying on the surface ϕ = const. It is the vector associated to the 1-form
throughout the metric tensor, nµ = ηµν(dϕ)ν , the components are thus

nµ = (−∂ϕ
∂t
,
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z
) . (3.45)

Note that, while the normal vector requires the metric η and the concept of orthogonality, using dϕ allows for a
metric-independent characterization of the surface.

Example 3.7.5. Lorentzian geometry of an expanding universe. Consider a 2D universe with metric

g = −dt⊗ dt+ a2(t)dx⊗ dx = −dt2 + a2(t)dx2 , (3.46)

with coordinates xµ = (t, x) (t ∈ (0,∞) and x ∈ (−∞,+∞) and scale factor a(t) := tq with 0 < q < 1. Note the
second expression of g above is often used: it has the same meaning as the first but it is slightly less rigourous and
should not be confused with the differential. The metric Eq. (3.46) is a special case of the Roberts-Walker metric in
lower dimensions and describes a universe that at fixed t-coordinate is a flat 1D Eucliden space whose volume expands
in time according to the scale factor a(t).

We want to compute the causal structure of this universe, i.e. to compute the “light cones” for this spacetime.
Specifically, one looks for curves xµ(λ) with null tangent vectors v = ẋµ∂µ defined by analogy to SR:

v is null vector iff g(v, v) = 0 . (3.47)
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Figure 3.4: 2D expanding universe.

The computation is easy if one remembers that e.g. dt(∂µ) is the gradient of t,

0 = g(v, v) = −dt⊗ dt(v, v) + a2dx⊗ dx(v, v) = −dt(v)dt(v) + a2dx(v)dx(v) (3.48a)

= −dt(ẋµ∂µ)dt(ẋν∂ν) + a2dx(ẋα∂α)dx(ẋβ∂β) (3.48b)

= − (ẋµdt(∂µ)) (ẋνdt(∂ν)) + a2 (ẋαdx(∂α))
(
ẋβdx(∂β)

)
(3.48c)

= −
(
ẋµ

∂t

∂xµ

)2

+ a2

(
ẋα

∂x

∂xα

)2

= −
(
dt

dλ

)2

+ a2

(
dx

dλ

)2

(3.48d)

where in the last expression now differential do appear! Thus the light curves are(
dt

dλ

)2

= a2

(
dx

dt

dt

dλ

)2

⇒ dx

dt
= (a2)−1/2 = ±t−q ⇒ t = ((1− q)(±x− x0))

1/(1−q)
. (3.49)

Note that one would have obtained the same result by incorrectly interpreting the equation for the metric with the
differentials instead of 1-forms, and simply dividing by dx2,

0 = −dt2 + a2dx2 ⇒ 0 = − dt
2

dx2
+ a2 . (3.50)

A plot of the light curves is shown in Fig. (3.4). The light “cones” are asymptotically tangent to the x-axis at t = 0,
which is not a singular point for the metric/scale factor since t = 0 is excluded. Thus, the light cones of two events do
not necessairly intersect (in SR they always do!); there exist worldlines that are causally disconnected. This example
suggests how curvature (see next chapter) can generate “horizons”, i.e. surfaces that divide set of events causally
disconnected from each other.

3.8 Stress-energy tensor

Let us consider a timelike vector field u ∈ TM tangent to the worldline of an observer O, and a set of three vectors
fields ei (we work in 4D in this section) that are orthogonal to the worldline, g(u, ei) = 0, and form a basis of the 3D
space perpendicular to the worldline (g(ei, ej) = δij). One can think of Mikowski spacetime, although the spacetime
can be general e.g. the one determined by Einstein equations.

Definition 3.8.1. The stress-energy tensor is a symmetric (0, 2) tensor field physically defined by the following
conditions

• T (u, u) =: E is the energy density measured by O;
• − 1

cT (ei, u) =: P i is the impulse density measured by O (3 numbers);
• −cT (u, ei) =: ϕi is the energy flux measured by O (3 numbers);
• T (ei, ej) =: Sij is the force exerted by the matter in direction ei on the unit surface identified by ej.
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Observations
• P = P iei and ϕ = ϕiei are, respectively, the impulse vector of the matter and the energy per unit of time

measured trhough a surface element perpendicular to u.
• By symmetry 3 one has

ϕi = c2P i i.e. energy flux = c2 × impulse density , (3.51)

which generalizes the “E = mc2” of SR.

Definition 3.8.2. Matter obeys the
Weak energy condition (WEC) iff E = T (u, u) > 0 ∀u timelike.
Dominant energy condition (DEC) iff E2 ≥ c2P 2, ∀P not spacelike P iPi ≤ 0.

Note that DEC⇒WEC. Standard matter forms (particles, fluids, electromagnetic fields) obey the DEC.

Example 3.8.1. The perfect fluid model is a fluid (continuum medium characterized by a 4-velocity field) character-
ized by isotropic pressure in the fluid’s rest-frame. The stress-energy tensor in a generic spacetime is

T = (ρc2 + p)u⊗ u+ pg , (3.52)

where g is the spacetime metric, u is the 1-form associated to the fluid’s 4-velocity uµ = gµνu
ν (or u = g(., ū)), ρ, p

are the energy density and pressure (scalars) in the fluid’s rest frame (or comoving rest frame, u = 0). In abstract
notation,

Tab = (ρc2 + p)uaub + pgab . (3.53)

The expression above can be justified from the general definition. Consider an observer O with velocity V with respect
to the fluid. The energy measured by O is

E = T (V, V ) = (ρc2 + p)u⊗ u(V, V ) + p g(V, V )︸ ︷︷ ︸
gabV aV b=VaV a=−1

(3.54a)

= (ρc2 + p)u(V )u(V )− p = (ρc2 + p) g(V, u)︸ ︷︷ ︸
=uaV a=−W

g(V, u)︸ ︷︷ ︸
=ubV b=−W

−p (3.54b)

= (ρc2 + p)W 2 − p , (3.54c)

where W is the Lorentz factor between O and the fluid’s frame 4. If ū = V , then W = 1 and ρc2 is the density energy
of the fluid. Compare the expression for E to SR’s “E = Wmc2”: the square W 2 appears because here we denote
as “E” the energy density (E = energy/volume) and an additional W comes from the length contraction along the
direction of movement (volume = W · proper volume) that reduces the volume and increases the energy density.

Similarly, the momentum density is

P i = −T (V, ei) = (ρc2 + p) g(V, u)︸ ︷︷ ︸
=uaV a=−W

g(ei, u) + pg(V, ei) (3.55a)

= W (ρc2 + p) g(ei, u)︸ ︷︷ ︸
=uaeai=:WV i/c

+pg(V, ei) (3.55b)

= W 2(ρ+
p

c2
)V i + p g(V, ei)︸ ︷︷ ︸

=0

(3.55c)

= (ρ+
p

c2
)W 2V i , (3.55d)

where V i = cW−1gabu
aebi is the relative velocity between O and the fluid’s frame in direction “i”. Finally,

Sij = T (ei, ej) = (ρc2 + p)g(ei, u)g(ej , u) + pg(ei, ej) = (ρc2 + p)(uae
a
i )(ube

b
j) + pδij (3.56a)

= W 2(ρ+
p

c2
)V iV j + pδij (3.56b)

If V = ū, then W = 1 and V i = 0 and Sij = pδij is the isotropic pressure in the fluid’s frame. The WEC (E ≥ 0)
and DEC (P iPi ≤ E) imply that ρ ≥ 0 and ρc2 + p ≥ 0, and ρc2 ≥

√
P iPi respectively.

3.9 Differential forms or p-forms

Definition 3.9.1. p-form = totally antisymmetric (0, p) tensor.

The vector space of p-forms is indicated as ΛpM; ω ∈ ΛpM is indicated as ω[a1...ap]. An example of 2-form is the
Faraday/Maxwell tensor.

3For the moment symmetry is assumed from physical considerations, mathematical justification will be given in the context of GR and
Einstein equations.

4If not obvious, one can think of SR and take V = (1, 0i) (rest frame) and ua = (W,Wui) (generic expression): uaV a = ηabu
aV b = −W .

Note the change of notation with respect to SR’s γ.
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Properties
• Dimension of M is n ⇒ dimension of ΛpM is n!/p!(n− p)!.
• There are no p-forms for p > n. For example, for n = 2 one has 0-forms (scalars with 1 independent component),

1-forms (dual vectors with 2 components), and 2-forms (2 × 2 antisymmetric matrices with 1 independent
components):
n = 2 p 0 1 2

dimΛpM 1 2 1
For n = 3 one has scalars, dual vectors with 3 components, antisymmetric matrices with 3 independent compo-
nents and 3-forms with 1 component:
n = 3 p 0 1 2 3

dimΛpM 1 3 3 1
For n = 4 one has scalars, dual vectors with 4 components, antisymmetric matrices with 6 independent compo-
nents (e.g. Faraday tensor), 3-forms with 4 components and 4-forms with one component:
n = 4 p 0 1 2 3 4

dimΛpM 1 4 6 4 1
etc. etc.

• Given basis {eµ} and {e∗µ} for TpM and T ∗pM, a basis for a (0, p) tensor is given by

e∗µ1 ⊗ ...⊗ e∗µp . (3.57)

If the tensor is also antisymmetric several components in this basis would be redundant. In the following we
define a “better basis” for p-forms.

Definition 3.9.2. The wedge product of two 1-forms is

∧ : Λ1M× Λ1M 7→ Λ2M (3.58a)

(ω, η) ∈ Λ1M 7→ ω ∧ η := ω ⊗ η − η ⊗ ω (3.58b)

Check that it is a 2-form, ∀ u, v ∈ TpM:

ω ∧ η(u, v) = ω ⊗ η(u, v)− η ⊗ ω(u, v) = ω(u)η(v)− η(u)ω(v) (3.59a)

= η(v)ω(u)− ω(v)η(u) (product does commute!) (3.59b)

= − (ω(v)η(u)− η(v)ω(u)) (3.59c)

= − (ω ⊗ η(v, u)− η ⊗ ω(v, u)) = −ω ∧ η(v, u) . (3.59d)

The wedge product is associative (a ∧ b) ∧ c = a ∧ b ∧ c and can be extended to arbitrary p-forms:

∧ : ΛpM× ΛqM 7→ Λp+qM (3.60a)

(ω, η) 7→ ω ∧ η := antisymmetric combination ofω ⊗ η (3.60b)

(ω ∧ η)a1...apap+1...ap+q =
(p+ q)!

p!q!
ω[a1...apηap+1....ap+q ] . (3.60c)

Note that ω ∧ η = (−1)pq(η ∧ ω).

Basis of ΛpM. Let us find the basis of ΛpM.
• A basis for Λ2M is given by the set {e∗µ ∧ e∗ν}, i.e. α ∈ Λ2M is such that α = αµνe

∗µ ∧ e∗ν with components
αµν = α[µν] given by

α(eµ, eν) = αρσe
∗ρ ⊗ e∗σ(eµ, eν) = αρσ e

∗ρ(eµ)e∗σ(eν) = αρσ δ
ρ
µδ
σ
ν = αµν . (3.61)

Verify first that the components of the 2-form are antisymmetric: it is immediate from the expression above to
obtain

α(eµ, eν) = −α(eν , eµ) ⇒ αµν = −ανµ . (3.62)

Now verfy that {e∗µ ∧ e∗ν} is a basis:

e∗ρ ∧ e∗σ(eµ, eν) = e∗ρ(eµ)e∗σ(eν)− e∗σ(eµ)e∗ρ(eν) = δρµδ
σ
ν − δσµδρν (3.63a)

e∗ρ ∧ e∗σ(eν , eµ) = δρνδ
σ
µ − δσν δρµ , (3.63b)

hence, taking linear combinations of {e∗µ ∧ e∗ν} span all the 2-forms:

αρσe
∗ρ ∧ e∗σ(eµ, eν) = ανµ − αµν (3.64a)

αρσe
∗ρ ∧ e∗σ(eν , eµ) = αµν − ανµ = − (ανµ − αµν) . (3.64b)

• A basis of ΛpM is by the set {e∗µ1 ∧ ... ∧ e∗µp}, a p-form is written as

ω = ωµ1...µpe
∗µ1 ∧ ... ∧ e∗µp . (3.65)

If e∗µ = dxµ is the dual basis associated to the natural basis eµ = ∂µ, then a basis for the p-forms is

dxµ1 ∧ ... ∧ dxµp (3.66)
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n-form on a n-manifold. A special case of p-form is when p = n. In this case the dimension of ΛnM is = 1, and
an element ω ∈ ΛnM can be written as

ω = a(xµ)dx1 ∧ ... ∧ dxn , (3.67)

where a is a function, the single component of the n-form (note there is no summation in the baove expression). Under
a coordinate transformation, the component transforms as

xµ 7→ xµ
′
⇒ a(xµ) 7→ a(xµ

′
)| ∂x

µ

∂xµ′
| , (3.68)

where |...| is the determinant of the coordinate transformation.
Let us verify explicitely the above formula for n = 2, considering a transformation (x1, x2) 7→ (y1, y2) with

dyµ = ∂yµ/∂x1dx1 + ∂yµ/∂x2dx2:

ω = a(x1, x2)dx1 ∧ dx2 = a(x1, x2)
(
dx1 ⊗ dx2 − dx2 ⊗ dx2

)
(3.69a)

= a(y1, y2)dy1 ∧ dy2 = a(y1, y2)
(
dy1 ⊗ dy2 − dy2 ⊗ dy2

)
= (3.69b)

= a(y1, y2)

[(
∂y1

∂x1
dx1 +

∂y1

∂x2
dx2

)
⊗
(
∂y2

∂x1
dx1 +

∂y2

∂x2
dx2

)
−
(
∂y2

∂x1
dx1 +

∂y2

∂x2
dx2

)
⊗
(
∂y1

∂x1
dx1 +

∂y1

∂x2
dx2

)]
(3.69c)

= a(y1, y2)

[(
∂y1

∂x1

∂y2

∂x1
dx1 ⊗ dx1 +

∂y1

∂x2

∂y2

∂x2
dx2 ⊗ dx1 +

∂y1

∂x1

∂y2

∂x2
dx1 ⊗ dx2 +

∂y2

∂x2

∂y2

∂x2
dx2 ⊗ dx2

)
(3.69d)

−

(
∂y2

∂x1

∂y1

∂x1
dx1 ⊗ dx1 +

∂y2

∂x1

∂y2

∂x2
dx1 ⊗ dx2 +

∂y2

∂x2

∂y1

∂x1
dx2 ⊗ dx1 +

∂y2

∂x2

∂y2

∂x2
dx2 ⊗ dx2

)]

= a(y1, y2)


(
∂y1

∂x1

∂y2

∂x2
− ∂y2

∂x1

∂y1

∂x2

)
︸ ︷︷ ︸

=det ∂y∂x

dx1 ⊗ dx2 −
(
∂y1

∂x1

∂y2

∂x2
− ∂y2

∂x1

∂y1

∂x2

)
︸ ︷︷ ︸

=det ∂y∂x

dx2 ⊗ dx1

 (3.69e)

= adet
∂y

∂x
(dx1 ⊗ dx2 − dx2 ⊗ dx1) = a det

∣∣∣∣∂y∂x
∣∣∣∣dx1 ∧ dx2 . (3.69f)

Above, underlined terms cancel each other.

3.10 Integration on M
Integrals on a manifold of dimension n are defined using n-forms ω ∈ ΛnM.

Euristic argument. An integral of a function ∫
f(x)dµ , (3.70)

is given by specifying a measure

dµ : infinitesimal region 7→ infinitesimal volume (number) . (3.71)

An infinitesimal region is identified by vectors. For example in n = 3, three orthogonal vectors make a small cube,
and dµ(v1, v2, v3) gives the volume of such small cube. In other terms the measure is an object that

• maps vectors to numbers (n vectors if the dimension of M is n);
• it is linear in the vectors and dµ(av1, bv2, cv3) = abcdµ(v1, v2, v3) with a, b, c ∈ R;
• it is antisymmetric because if one changes orientation to one of the vectors the measure has to change sign.

The properties above should clarify that the measure is a n-form.

Integration of a n-form on a n-manifold. Given a ω ∈ ΛnM on a manifold M of dimension n and introducing
a coordinate systems such that

ω = a(xµ)dx1 ∧ ... ∧ dxn , (3.72)

the integral of the n-form on the local set O ⊂ M is the defined by the number given by the integral on Rn of the
function a: ∫

O

ω :=

∫
ψ(O)

a(xµ)dx1...dxn . (3.73)

The key observation here is that because of the transformation properties of the n-forms, the definition does not
depend on the particular coordinate system employed. This can be verified immediately considering a transformation
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xµ 7→ xµ
′

such that a 7→ a′ = a|∂x/∂x′|: the integral does not change because the transformation is equivalent to the
standard “change of variable” in Rn∫

ψ′(O)

a(xµ
′
)dx1′ ... dxn

′
=

∫
ψ′(O)

a(xµ
′
)dx1′ ... dxn

′
=

∫
ψ′(O)

a(xµ)a
∂x

∂x′
dx1′ ... dxn

′
=

∫
ψ(O)

a(xµ)dx1...dxn . (3.74)

Caveats and extensions:
• The relation above holds for fixed O. If one changes O than the relation hold only in the intersection O ∩ O′.

One can think of “smoothly contracting” O until it is contained in O′. In general this is possible in simply
connected manifolds, in which curves can be contracted to a point.

• The definition has a sign ambiguity. The sign can be fixed by introducing an orientation in the manifold, i.e. a
continuous nonvanishing n-form (Wald, 1984). Simply connected manifolds admit an orientation. An example
of nonorientable manifold is the Moebius strip.

• The extension of the integral to the entire manifold is obtained by “summing the integrals” on the subsets, that
is possible under some general conditions (Wald, 1984).

3.11 Integration of functions on a n-manifold.

Given a function f :M 7→ R the integral on a n-dimensional manifold is defined as∫
f :=

∫
fε , (3.75)

where ε is a n-form providing us with the measure.
Let us find ε. Because the measure is an n-form it must be

ε = a dx1 ∧ ... ∧ dxn ; (3.76)

with a yet unspecified function a. The metric is the object that allows one to caculate lengths, so it should be used to
determined a. However, the metric is a tensor and one needs a function such that under coordinate transformation

a = a(metric) : a 7→ a′ = a

∣∣∣∣∂x′∂x

∣∣∣∣ . (3.77)

Noting that a similar transformation is given by the determinant of the metric

det(g) 7→ det(g)

∣∣∣∣∂x′∂x

∣∣∣∣2 , (3.78)

one can take a :=
√

det(g) =
√
|g| and obtain the measure to be used in the definition of the integral:

ε =
√
|g|dx1 ∧ ... ∧ dxn . (3.79)

The definition of integral of a n-form extends to functions:∫
O

f :=

∫
O

f
√
|g|dx1 ∧ ... ∧ dxn =

∫
ψ(O)

f
√
|g|dx1... dxn . (3.80)

3.12 Exterior derivative

Forms can also be derived.

Definition 3.12.1. Exterior derivative d : ΛpM 7→ Λp+1M such that ∀α, β ∈ ΛpM
1. Linear d(α+ β) = dα+ dβ;
2. Leibnitz antiderivative property: d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ;
3. d(dα) = d2α = 0.

Observations.
• For 0-forms (functions) the 1-form given by the gradient is an external derivative, d = d.
• Property 3. guarantees the exterior derivative is an antisymmetric object. Consider for example the exterior

derivative of the 1-form given by the grandient

d(df) = d(df) = d(
∂f

∂xµ
dxµ) ≈ ∂2

∂xµ∂xν
, (3.81)

because 2nd partial derivatives are symmetric, one must require d2α = 0 to have an antisymmetric object.
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• Properties 1.-3. define an object formed by an antisymmetric combination of derivatives. In the natural basis
of Λp+1M, the components of the exterior derivative must be then written in terms of the the components of
the p-form in argument as

(dω)µ1...µpµp+1 = (p+ 1)∂[µ1
ωµ2...µp+1] . (3.82)

The above expression can be alternatively taken as a definition of dω, and one verifies that these components
transform as a tensor and properties 1.-3. [exercise]. Note again property 3. simply follows from the antisym-
metric combination of second derivatives.

Definition 3.12.2. A p-form ω ∈ ΛpM is called closed iff dω = 0.
A p-form η ∈ ΛpM is called exact iff η = dω, for some ω ∈ Λp−1.

Note that exact ⇒ closed.

Example 3.12.1. Exterior derivatives in R3 (n = 3). The exterior derivative of a 0-form (function) is the gradient
df = df . The exterior derivative of a 1-form ω = ωidx

i is the 2-form of dimension 3

dω = d(ωidx
i) = ∂jωidx

j ∧ dxi (3.83a)

= (∂1ω2 − ∂2ω1)dx1 ∧ dx2 + (∂2ω3 − ∂3ω2)dx2 ∧ dx3 + (∂3ω1 − ∂1ω3)dx3 ∧ dx1 . (3.83b)

If one identifies the components of the 1-form with those of a 3-vector ~ω (ωi = δijωj), then the 2-form dω can be
interpreted as the curl ∇× ~ω (with components εijk∂jωk.)

The exterior derivative of a 2-form η = η12dx1 ∧ dx2 + η23dx2 ∧ dx3 + η31dx3 ∧ dx1 is a 3-form of dimension 1,
i.e. can be written as

dη = (a function) dx1 ∧ dx2 ∧ dx3 =: a dx1 ∧ dx2 ∧ dx3 . (3.84)

If one identifies the 3 components of the 2-form with those of a 3-vector ~v = (η13, η31, η12), then the component of the
3-form dη is identified with the divergence a = ∇ · ~v. The latter is the only scalar that can be constructed from the
derivatives of the vector ~v.

Note that the property d2 = 0 implies the usual calculus identities{
f ∈ Λ0 d(df) = 0 ⇒ ∇× (∇f) = 0

ω ∈ Λ1 d(dω) = 0 ⇒ ∇ · (∇× ~ω) = 0 .
(3.85)

Exterior derivative of an (n-1)-form in a n-dimensional manifold: divergence of a vector. The Ex-
ample 3.12.1 suggests the existance of a relation between the exterior derivative of a (n-1)-form in a n-dimensional
manifold and the divergence of a vector. This relation becomes manifest introducing the Hodge operator 5 and
anticipating the use of the covariant derivative ∇ (If uncomfortable, skip this paragraph and return here later. If
comfortable, can think of ∇ as the “appropriate” tensorial derivative generalizing ∂, or simply think of Mikowski and
identify ∇ = ∂.)

Definition 3.12.3. The Hodge operator ∗ : Λ1M 7→ Λn−1M in a n-dimensional manifold transforms a 1-form η into
a (n-1)-form ω = ∗η such that ωa1...an−1

= (∗η)a1...an−1
:= εba1...anηb, where ε is the Levi-Civita tensor antisymmetric

tensor.

Note that the Hodged (n-1)-form can be written in term of the vector ηb

(∗η)a1...an−1 = εba1...anηb = εba1...anη
b , (3.88)

and that its exterior derivative is the n-form given by the total antisymmetric derivative (all the index but the already
contracted one!):

(d(∗η))ca1...an−1
= n∇[c|εb|a1...an]η

b = nεb[a1...an∇c]η
b . (3.89)

We anticipate here the expression in terms of the covariant derivative ∇ and in the last passage we used metric
compatibility (Alt. if the metric is flat and ∇ = ∂, the expression above holds in Cartesian coordinates). But the
above n-form must be d(∗η) = (function) × ε since it has dimension one. The function/component can be found
applying the Hodge again (see footnote and Carroll (1997) Appendix E):

(∗d(∗η)) =
n

n!
εca1...anεb[a1...an∇c]η

b = (−1)sδcb∇cηb = (−1)s∇bηb ⇒ d(∗η) = [(−1)s∇bηb]ε . (3.90)

This show that the exterior derivative of the (n-1)-form ∗η on a n-manifold represent the divergence of the vector
associated to η.

5Note the Hodge operator can be defined more generally as a map associating p-forms with (n-p)-forms ∗ : ΛpM 7→ Λn−pM where

(∗ω)a1...an−p =
1

p!
ε
b1...bp
a1...an−pωb1...bp . (3.86)

applying twice the Hodge returns the original p-form up to a sign determined by the signature of the metric (s = −1 for Lorentz metric)

∗ ∗ω = (−1)s+p(n−p)ω . (3.87)

Note that for a 0-form (function) the double Hodge is the function component of the associated n-form up to a sign.
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Example 3.12.2. Maxwell equations can be written in terms of the exterior derivative, the farady tensor is a closed
2-form. Consider R4 with the Mikowski metric. The Faraday tensor is a 2-form because F[ab]. Some of the Maxwell
equations can be written as the antisymmetric combination of derivatives of F[ab], hence

0 = ∂[aFbc] = dF . (3.91)

It is possible to prove that in Minkowski spacetime all closed forms are exact. Taking this result without proof, implies
that there exists a 1-form A such that F = dA. The Maxwell equations for the vector potential 1-form are simply

d2A = 0 . (3.92)

The other Maxwell equations ∂aF
ba = 4πJb also admit an expression in terms of the exterior derivative [exercise],

d(∗F ) = 4π(∗J) . (3.93)

From the above equation, charge conservation now follows taking another exterior derivative and considering the vector
associated to the (n-1)-form ∗J :

0 = d2(∗F ) = 4πd(∗J) ∝ ∇aJa . (3.94)

3.13 Stokes theorem

Stokes theorem generalizes the fundamental theorem of calculus to generic manifolds.
Consider a n-dimensional oriented manifoldM with boundary ∂M. The definition of ∂M is given in Wald (1984)

but there is an intuitive notion which is sufficient here: (i) a manifold with boundary is a manifold in which the charts
map to Rn with x1 ≥ 0 (“half” the Euclidean space); (ii) the boundary ∂M is the the set of points of M that don’t
have open neighborhoods which are isomorphic to open sets in Rn, i.e. they are mapped to x1 = 0. Given a (n− 1)
form on ω ∈ Λn−1M, Stokes theorem says that ∫

M
dω =

∫
∂M

ω . (3.95)

Stokes theorem can be cast in a more familar expression by considering the vector v associated to the (n-1)-form
ω = ∗v:

dω = ∇avaε = ∇avaε = ∇avadx1 ∧ ... ∧ dxn = ∇ava
√
|g|dnx , (3.96)

Thus the r.h.s. of Eq. (3.95) is the integral of the divergence of v. To manipulate the l.h.s. of Eq. (3.95) one must
express the (n-1)-form ω in terms of v in the boundary. The boundary is a (n − 1)-dimensional manifold equipped
with a metric γ that is induced by the ambient metric g. The Levi-Civita tensor (surface element) on ∂Σ is given by
(Carroll (1997) Appendix E, Wald (1984) Appendix B):

εa1...an−1
= nbεba1...an−1

, (3.97)

where n is the normal vector to the boundary. The (n-1)-form on the boundary can be written

ω = van
a
√
|γ|dn−1y . (3.98)

Putting together everything one gets to a familar form:∫
M
∇ava

√
|g|dnx =

∫
∂M

nbv
b
√
|γ|dn−1y . (3.99)
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4. Curvature & Connection

3○
These lectures in differential geometry are about curvature, Riemann tensor and connection. The concepts of

geodesic and the equation of geodesic deviation are introduced here. Calculations of gravitational redshift in GR are
discussed in the end as application.

Suggested readings. Chap. 3 of Wald (1984); Chap. 3 of Carroll (1997); Chap. 5-6 of Schutz (1985); O’Neill
(1983) book.

4.1 Intuitive/simple definition of curvature of a curve

Consider curves in R2, and think on “how much they bend” or “how much curved they are”:

• To a straight line, one would assign zero curvature, κ ≡ 0;
• To a circle of radius R, one would assign a constant curvature of κ = 1/R;
• To a generic curve, one would consider the osculating circle at a given point p (and two other infinitesimally

close points) on the curve, and assign κ(p) = 1/R.

A BSc physicist might proceed in a slightly more sophisticated way by

• Considering the tangent vector ~v at each point of the curve;
• Calculating the curve acceleration as ~a = d~v/dt, where t is the curve parameter;
• Defining the curvature as the modulus of the acceleration, κ′ = |~a|, as a measure on “how fast” the vector ~v

rotates from point to point along the curve.

Interestingly, the two definitions are basically the same. If ~v is normalized,

κ =
1

R
=

2π

circumference
=

1 arc angle

lenght of curve
(4.1)

κ′ =

∣∣∣∣d~vdt
∣∣∣∣ =

dθ

dt
=

infinitesimal arc lenght of rotation

lenght of the infinitesimal curve element
. (4.2)

Remark 4.1.1. In order to define d~v and take the derivative, one must rigidly “transport back” the vector ~v(dt) at
point p+ δp (t = dt) to the point p (t = 0) and take the difference to compute the differential.

4.2 Intrinsic and extrinsic curvature of surfaces & relation to parallel
transport

To define and study the curvature of 2D surfaces one could think of embedding them in R3 and study their normal
vectors Fig. (4.1). For example, normal vectors along the plane are tangent to curves that never touch each other, i.e.
that remain parallel. Tangent curves that focus would be associated to negative curvature, while curves that depart
from each other to positive curvature, etc.

However, as usual, we do not want to rely on introducing an n + 1 Euclidean space to describe something on a
n-dimensional manifold. We need to proceed differently but, before that, the above example already suggests that
there exist two different types of curvature we might be interested to consider. It is convenient to discuss them
immediately.

Consider a n-dimensional manifold M,

• One problem is to define a curvature of a subset (a “section”) Σ ⊂ M of dimension n − 1 the manifold. The
“child” manifold is called an embedding and inherits [in a precise sense, (Wald, 1984; Carroll, 1997)] structures
from the “parent”M. Characterizing the curvature of an embedding in relation to the ambient space, i.e. study
“how σbends in M”, leads to the concept of extrinsic curvature.

• Another problem is the definition of instrinsic curvature of M, without using any ambient space.
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Figure 4.1: Examples of 2D surfaces with their normal vectors.

The two concepts are distinct, as illustrated in the example below, and both useful. We focus here only on the intrinsic
curvature, which is the most fundamental one. The intrinsic curvature follows from the latter (Wald, 1984; Carroll,
1997).

Example 4.2.1. Cylinder in R3. A cylinder of radius R in R3 is somehow “round”; in relation to the ambient
Euclidean space it is natural to assign an extrinsic curvature κ = 1/R. However, if we restrict to think of the cylinder
as 2D surface, then we could think of unfolding the cylinder by cutting along the height, open it in a plane and identify
the two sides of the plane where the cut was. In this plane: parallel lines remain parallel, all Euclid axioms are valid,
and the onlyl difference to R2 is that walking in a direction would bring us back to the starting point. Mathematically,
the cylinder has the metric

g = R2dφ+ dz2 = dy2 + dz2 , (4.3)

where the first expression uses standard cylindrical coordinatres and the second simplly defines y = Rφ. The second
expression for the metric is exactly the Euclidean metric of R2. For this reason we assign intrinsic curvature κ = 0.
Note that the periodic condition on the plane is a statement about the topology of the manifold and does not affect
the curvature. Moreover, comparing with the 2-sphere, one notice immediately that differently from the cylnder, two
parallel lines (e.g. meridians) do meet. Hence, the 2-sphere must have intrinsic curvature not null.

Curvature from “rigidly moving” vectors (parallel transport). Take a plane in 2D and a closed curve on
it. If one rigidly transports a vector ~v around the curve in such a way that ~v remains parallel to (point to the same
direction of) the previous moved one, then after a lap one obtains the initial vector, Fig. (4.2). Take now a sphere and
do the same: (i) the initial and final vector are different; and (ii) different choices of the curve give different result !

We conclude that the intrinsic curvature of a manifold can be detected by rigidly moving, technically parallel
transporting, vectors and that, in general, paralleling transporting vector depends on the followed path. The main
difficulty to overcome is that on a generic manifold the tangent vector spaces at different points are different. It is
not possible to compare v ∈ TpM with u ∈ TpM if p 6= q. Thus, it is necessary to introduce a method to implement
such parallel transport.

4.3 Procedure to define curvature on M
Outline the logic procedure to define the curvature of a manifold.

Observations.

• If we knew how to parallel transport a vector v on a curve γ on M, then we could compare vectors of the same
TpM and calculate their difference or variation, i.e. a derivative ∇v|p.

• If we knew how to compute ∇v|p, then we could define the parallel transport of v along γ as the operation that
does not change the vector: ∇v|γ = 0.
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Figure 4.2: Transporting a vector along a curve in a 2D surface.

• A derivative operator ∇ and the concept of parallel transport would allow us to identify or connect the tangent
spaces TpM and TqM at two different points.

• Curvature could be then defined from the parallel transport of a vector along an infinitesimal closed curve. In
particular, a nonzero intrinsic curvature would correspond to the case where two successive differentiation of v
do not commute:

[∇,∇]v = (∇∇−∇,∇)v = 0 ⇒ κ 6= 0 . (4.4)

Procedure. The following key steps will be expanded below:
• Define ∇: the covariant derivative of tensors, Sec. 4.4.
• Prove that a metric determines a unique ∇ (Levi-Civita connection). The latter defines a map between vectors

of TpM and those at points infinitesimally close to p. For this reason the covariant derivative is also called a
connection.

• Define parallel transport of a vector v along a curve γ with tangent vector t as the operation such that ta∇avb = 0,
Sec. 4.5.

• The commutator [∇,∇] defines the Riemann tensor that encodes and quantifies the idea of curvature as “failure
of vectors and tensors fields to return to their original values after being transported along an infinitesimal closed
loop”, Sec. 4.6.

• Geodesics are defined as curves whose tangent vector is parallel propagated along itself, ta∇atb = 0, Sec. 4.7.
They correspond to curves that extremize the lenght between two points of the manifold.

• The geodesics deviation equation establishes that the acceleration between two nearby geodesics is zero if the
Riemann tensor (curvature) is zero, Sec. 4.8. This corresponds to the intuitive notion that (i) in absence of
curvature, “straight lines remain parallel” and in (ii) in presence of curvature “lines focus”.

4.4 Connection or Covariant derivative

Definition 4.4.1. The map ∇ : τ(k, l) 7→ τ(k, l + 1) is a covariant derivative iff ∀α, β ∈ R and ∀A,B ∈ τ(k, l) the
following properties hold:

1. Linear: ∇(αA+ βB) = α∇A+ β∇B;
2. Leibnitz (w.r.t. tensor product): ∇(A⊗B) = ∇A⊗B +A⊗∇B;
3. Commutation with contraction operator C(ij): ∇(C(ij)A) = C(ij)(∇A);
4. Consistency with derivative of functions: ∇f := df ∀f ∈ F ;
5. Consistency with concept of tangent vector: v(f) := va∇af = va∂af ;
6. Torsion free: [∇,∇]f = 0 ∀f ∈ F .

Observations. Let us consider the action of the covariant derivative in abstract notation and some properties
following the definition:

• The covariant derivative maps T a1...akb1...bl
7→ ∇cT a1...akb1...bl

.
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• Property 2. is: ∇c(Aa1...akb1...bl
B
a1...ak′
b1...bl′

) = ∇cAa1...akb1...bl
B
a1...ak′
b1...bl′

+Aa1...akb1...bl
∇cBa1...ak′b1...bl′

.

• Property 3. is: ∇d(Aa1...c...akb1...c...bl
) = ∇dAa1...c...akb1...c...bl

.
• Property 6. is : (∇a∇b −∇b∇a)f = 0 ⇒ ∇a∇bf = ∇(a∇b)f is symmetric.
• Property 5.-6. ⇒ the commutator of two vectors can be expressed as

[v, u](f) = v(u(f))− u(v(f)) = v(ua∇af)− u(vb∇bf) = vd∇d(ua∇af)− uc∇c(vb∇bf) (4.5a)

= vd∇d︸ ︷︷ ︸
d→c

ua∇af + vdua∇d(∇af)− uc∇c vb∇b︸ ︷︷ ︸
b→a

f − ucvb∇c(∇bf) (4.5b)

=
(
vb∇bua − ub∇bva

)
∇af − [∇,∇]f︸ ︷︷ ︸

=0

=
(
vb∇bua − ub∇bva

)
∇af ∀f . (4.5c)

• Note that ∇c is not a dual vector !

Main steps to define a unique connection.
(i) Observe that in a coordinate system the partial derivative ∂ satisfies property 1. − 6. but the resulting object

∂T is not a tensor.
(ii) The difference between covariant derivatives is a tensor.
(iii) Given a metric, there is a unique covariant derivative compatible with the metric, i.e. such that ∇g = 0.
(iv) The unique, metric compatible, covariant derivative can be constructed from the partial derivatives and the

Christoffel symbols (or connection coefficients).

(i) Partial derivatives. Introduce a coordinate system and the natural basis {∂µ} of TpM. The components of
T ∈ τ(k, l) are Tµ1...µk

ν1...νl
and the quantity

∂σT
µ1...µk
ν1...νl

(4.6)

fullfills the properties 1.-6. defining a covariant derivative. However it is not a tensor τk,l+1 because these components
do not transform as those of a tensor under coordinate transformation. For example for a vector,

∂σv
µ 7→ ∂σ′v

µ′ =
∂xσ

∂xσ′
∂σ(

∂xµ
′

∂xµ
vµ) =

∂xσ

∂xσ′
∂xµ

′

∂xµ
∂σv

µ︸ ︷︷ ︸
ok

+
∂xσ

∂xσ′
vµ

∂xµ
′

∂xσ∂xµ︸ ︷︷ ︸
not ok

, (4.7)

one does not get the correct transformation because of the second term. A possible approach here is to introduce a
symbol with 3 indexes Γσµµ′ and search for its coordinate expression such that

∇µvσ = ∂µv
σ + Γσµλv

λ (4.8)

transforms as a tensor and is unique. We will basically follow this route, but instead of doing a direct calculation in
components we will show (ii) and (iii) and get to the result from those theorems (Wald, 1984).

(ii) Difference of covariant derivatives. Take two covariant derivatives ∇ and ∇̃. Property 4. implies that both
derivatives are the same when acting on functions ∇f = ∇̃f = df . Consider the action on 1-forms

∇̃a(fωb)−∇a(fωb) = ∇̃afωb+f∇̃aωb−∇afωb−f∇aωb = (df)aωb+f∇̃aωb−(df)aωb−f∇aωb = f(∇̃a−∇a)ωb . (4.9)

The difference of covariant derivatives is linear in f and depends only on objects at point p,⇒ it is a tensor C ∈ τ(1, 2)

(∇̃a −∇a)ωb =: Ccabωc . (4.10)

Note that the tensor must be symmetric Cc(ab) because of the torsion-free property 6.; setting ωb = ∇bf = ∇af

∇a∇bf︸ ︷︷ ︸
sym

= ∇̃a∇bf︸ ︷︷ ︸
sym

−Ccab∇cf . (4.11)

Calculate now the action of the difference on vector in the following way:

0 = ∇̃a(vbωb)−∇a(vbωb) = (∇̃a −∇a)(ωb)v
b + ωb(∇̃a −∇a)vb = Ccabωcv

b + ωb(∇̃a −∇a)vb (4.12a)

= Cbadωbv
d + ωb(∇̃a −∇a)vb = ωb

(
Cbadv

d + (∇̃a −∇a)vb
)
∀ωb ⇒ (4.12b)

∇avb = ∇̃avb + Cbadv
d or (∇̃a −∇a)vb = −Cbadvd . (4.12c)

The zero is because vbωb is a function and the two covariant derivatives act the same way to functions. In the second
line the mute indexes have been renamed as c → b and b → d. The difference of the covariant derivatives applied to
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vectors is also a tensor. For generic tensor one simply repeat the same calculation by contracting with vectors and
forms, to obtain the generic formula

∇̃cT a1...akb1...bl
= ∇cT a1...akb1...bl

−
∑
i

CaicdT
a1...d...ak
b1...bl

+
∑
j

CdcbjT
a1...ak
b1...d...bl

. (4.13)

The above shows that:
• The difference of two covariant derivatives is completely characterized by the symmetric tensor Ca(bc).

• Conversely, given ∇̃ and a tensor filed Ca(bc), the equation above defines a covariant derivative ∇.

• The covariant derivative is in general not unique because it requires to specify Ca(bc) (n2(n− 1)/2 independent

components).
• In a coordinate basis one can take ∇̃µ = ∂µ (that satifies the properties used to derive the equation above)

and specify a C to define the covariant derivative using the formula above. However, in this case one cannot
expect that the “symbols with 3 indexes” appearing in the coordinate expression of the equation change as
tensor components under coordinate transformation. The reason is that if the basis changes, then one must pick
another tensor C ′ in order to obtain the same result. This shows again that the Γ symbols in Eq. (4.8) are not
tensor components, but also that their difference is.

(iii) Unique connection.

Theorem 4.4.1. Given a metric gab there is a unique covariant derivative that satisfies ∇agbc = 0 (compatible with
the metric).

Proof. For any derivative operator ∇̃ explicitely construct the connection compatible with g. Start from

0 = ∇agbc = ∇̃agbc − Cdabgdc − Cdacgbd ⇒ ∇̃agbc = Cdabgdc + Cdacgbd = Ccab + Cbac , (4.14)

where the last passage takes the contraction of the mute indexes (note it goes in the first position). Now write the last
equation substituting index names:

∇̃agbc = Ccab + Cbac (abc) (4.15a)

∇̃bgac = Ccba + Cabc (bac) (4.15b)

∇̃cgab = Cbca + Cacb (cab) (4.15c)

and consider the combination

(abc) + (bac)− (cab) = ∇̃agbc + ∇̃bgac − ∇̃cgab (4.16a)

= Ccab +HHHCbac + Ccba +�
��Cabc −HHHCbca︸︷︷︸

Cbac

−���Cacb︸︷︷︸
Cabc

= 2Ccab , (4.16b)

where the symmetry in the last indexes is used. The choice

Ccab = gcdCdab =
1

2
gcd(∇̃agbd + ∇̃bgad − ∇̃dgab) , (4.17)

fixes a unique covariant derivative ∇̃ and guarantees that it is compatible with the metric.

(iv) Levi-Civita connection & Christoffel symbols. The Levi-Civita connection is constructed by introducing
a coordinate basis, taking ∇̃ = ∂ and computing the Christoffel symbols

Γσµν =
1

2
gρσ(

∂gνσ
∂xµ

+
∂gµσ
∂xν

− ∂gµν
∂xσ

) . (4.18)

In terms of the components, the covariant derivatives of tensor follows from the above equations

∇µvν = ∂µv
ν + Γνµσv

σ (4.19a)

∇µων = ∂µων − Γλµνωλ (4.19b)

∇σTµ1...µk
ν1...νl

= ∂µT
µ1...µk
ν1...νl

+
∑
i

ΓµiσλT
µ1...λ...µk
ν1...νl

−
∑
j

ΓλσνjT
µ1...µk
ν1...λ...νl

. (4.19c)

Notes:
• Γ’s are defined by assuming a particular derivative operator and coordinate basis; they do not transform s a

tensor if one changes basis.
• Given the basis eµ1

⊗ ...⊗ eµk ⊗ e∗ν1 ⊗ ...e∗νl of τ(k, l), the covariant derivative is expressed as

∇T = ∇σTµ1...µk
ν1...νl

eµ1
⊗ ...⊗ eµk ⊗ e∗ν1 ⊗ ...e∗νl ⊗ e∗σ , (4.20)

i.e. the new index goes in the last position. An alternative notation for the components that is more consistent
is ∇σTµ1...µk

ν1...νl;σ
.
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4.5 Parallel transport

Consider a connection ∇ and a curve γ on M with tange vector ta.

Definition 4.5.1. A vector field va is parallel transported along γ iff ta∇avb = 0. Similarly, a tensor is parallel
transported along the curve iff tc∇cT a1...akb1...bl

= 0.

Observations.
• Parallel transport depends only on v on the curve (do not need the “full field”).
• In a coordinate system:

0 = tµ∇µvα = tµ∂µv
α + tµΓαµσv

σ =
dvα

dt
+ tµΓαµσv

σ . (4.21)

The above equation is an ODE of first order for the vector components: given a initial value vµ(0), the solution
exists and it is unique. This implies that a vector a one point p (t = 0) defines uniquely the parallel transport
along γ. In other terms, given γ and ∇, the tangent space TpM can be connected to TqM for any q ∈ γ.

• The above definition and observation are not restricted to a Levi-Civita connection (hold also if ∇ is not unique,
but specified).

Geometrical meaning of Levi-Civita connection. If the manifold is equipped with a metric, the quantity g(v, u)
can be considered the angle between vectors u and v. Thus, the intuitive notion of vectors parallel transported along
the curves can be implemented by requiring that

g(v, u) = gabv
aub = constant along γ . (4.22)

If the vectors are parallel transported we have e.g. ta∇avc = 0, then one immediately sees that the metric compatibility
of the connection is the condition that gives that the derivative of g(v, u) is zero:

0 = ta∇a(gcbv
cub) = tavcub∇agcb + gcb t

a∇avc︸ ︷︷ ︸
=0

ub + gcbv
c ta∇aub︸ ︷︷ ︸

=0

= vcubta∇agcb . (4.23)

4.6 Riemann tensor

The Riemann tensor measures the noncommutation of covariant derivatives.
Given a connection, a 1-form, and a function one has:

∇a∇b(fωc) = ∇a(f∇bωc) +∇a(ωc∇bf) = ∇aωc∇bf + ωc∇a∇bf +∇af∇bωc + f∇a∇bωc , (4.24)

from which one sees that the commutator

[∇a,∇b](fωc) = (∇a∇b −∇b∇a)(fωc) = f(∇a∇b −∇b∇a)ωc = f [∇a,∇b]ωc , (4.25)

is a linear map from T ∗pM to τ(0, 3). In other terms,

Definition 4.6.1. It exists a tensor R ∈ τ(1, 3) called Riemann tensor such that

R d
abc ωd := [∇a,∇b]ωc . (4.26)

Using the deifnition above, a similar calculation to the one for the connection shows that for vectors

[∇a,∇b]va = −R c
abd va , (4.27)

and in general for tensors

[∇a,∇b]T c1...ckd1...dl
= −

∑
i

R ci
abe T c1...e...ckd1...dl

+
∑
j

R e
abdj T

c1...ck
d1...e...dl

. (4.28)

Properties.
1. Antisymmetry in index 1 and 2: R d

abc = −R d
bac . This follows from the definition Eq. (4.26).

2. R d
[abc] = 0. Direct proof:

R d
[abc] ωd = ∇[a∇bωc] −∇[b∇aωc] = 2∇[a∇bωc] = 2∂[a∂bωc] = 2d2ω = 0 . (4.29)

3. If ∇ is metric compatible: Rabcd = −Rabdc. Direct proof using the definition:

0 = (∇a∇b −∇b∇a)gcd = R e
abc ged +R e

abd gec . (4.30)
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4. Bianchi identities. ∇[aR
e

bc]d = 0.
Proof. Take the two expressions{

(∇a∇b −∇b∇a)∇cωd = R e
abc ∇eωd +R e

abd ∇cωe
∇a(∇b∇cωd −∇c∇bωd) = ∇a(R e

bcd ωe) = ωe∇aR e
bcd +R e

bcd ∇aωe
(4.31)

and antisymmetrize them w.r.t. [abc]: the l.h.s. become equal, matching the r.h.s. and suing property 2. one
gets the result:

R e
[abc]︸ ︷︷ ︸
=0

∇aωd +
��

���
��

R f
[ab|d| ∇|c]ωf = ωe∇[aR

e
bc]d +

��
���

�
R e

[bc|d∇|a]ωe . (4.32)

5. Symmetric in pairs of down indexes: Rabcd = Rcdab [exercise].
6. In a coordinate basis the Riemann tensor “R ∼ ∂Γ− ∂Γ + ΓΓ− ΓΓ” [exercise]:

Rσµνρ = ∂νΓσµρ − ∂µΓσνρ +
∑
α

(ΓαµρΓ
σ
αν − ΓανρΓ

σ
αµ) . (4.33)

Note the upper index is often “shifted back” in this coordinate notation.

Riemann contractions.

Definition 4.6.2. The Ricci tensor is the (0, 2) symmetric tensor Rab := R c
acb .

Definition 4.6.3. The Ricci scalar is the trace R := gabRab = Raa.

The contracted Bianchi identities are obtained from the contraction C(14) of the Bianchi identities ∇[aR
e

bc]d = 0,
i.e. contracting a with e, and using the symmetries of the Riemann:

0 = ∇[aR
a

bc]d = ∇aR a
bcd +∇bRcd −∇cRbd (4.34a)

0 = ∇aR da
bc +∇bRdc −∇cRdb (raise d with the metric and use metric compatibility) (4.34b)

0 = ∇aR a
c +∇bRbc −∇cRbb (contract b with d) (4.34c)

= 2∇aR a
c −∇cR ⇒ (4.34d)

0 = ∇a(Rca −
1

2
gcaR) =: ∇aGac . (4.34e)

Definition 4.6.4. The Einstein tensor is the (0, 2) symmetric tensor Gab := Rab − 1
2Rgab.

Riemann tensor as measure of the deviation of parallel transported vectors. Consider the parallel trans-
port of a vector from p to q = p+ δp along two different paths. One path passes by intermediate point r and the other
by intermediate point s. The coordinates of the four points are

p : xµ0 , r : xµ0 + dxµ1 , s : xµ0 + dxµ2 , q : xµ0 + dxµ1 + dxµ2 . (4.35)

The parallel transport equation for vector v components are

0 = tµ∂µv
α + tµΓαµβv

β = dxµ∂µv
α + dxµΓαµβv

β ⇒ dxµ∂µv
α = −dxµΓαµβv

β . (4.36)

The transported vector along ¯prq is (up to second order in dx)

vα(r) = vα(p) + dxµ∂µv
α(p) + ... = vα(p)− Γαµβ(p)vβ(p)dxµ1 + ... (4.37a)

vα(q) = vα(r)− Γαµβ(r)vβ(r)dxµ2 (4.37b)

with

Γαµβ(r) = Γαµβ(p) +
∂Γαµβ
∂xν

(p)dxµ1 +O((dxµ1 )2) ⇒ (4.37c)

vα(q) = vα(p)− Γαµβv
β(p)dxµ1 − Γαµβv

β(p)dxµ2 + ΓαβνΓβσµv
σ(p)dxν1dx

µ
2 − ∂νΓασµv

σ(p)dxµ1dx
ν
2 . (4.37d)

Similarly the transported vector along ¯psq is

v
′α(q) = vα(p)− Γαµβv

β(p)dxµ1 − Γαµβv
β(p)dxµ2 + ΓαβµΓβσνv

σ(p)dxµ1dx
ν
2 − ∂µΓαβνv

σ(p)dxµ1dx
ν
2 . (4.38)

Note the indexes µ and ν are exchanged in the two expressions and the ΓΓ and ∂Γ contractions are different. Taking
the difference the terms ∝ dx cancel each other but the terms proptodx1dx2 do not because different indexes are
contracted. At second order in dx one obtains

v
′α(q)− vα(q) =

ΓαβµΓβσνv
σ(p)− ΓαβνΓβσµv

σ(p) + ∂νΓαβµv
σ(p)− ∂µΓαβνv

σ(p)︸ ︷︷ ︸
=∂Γ−∂Γ+ΓΓ−ΓΓ

 dxµ1dxν2 (4.39)
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Summary 4.6.1. The Riemann tensor measures the noncommutation of covariant derivatives and determines the
variation of vector fields parallel trasnported along an infiniteismal curve.

• At first order in dx the parallel transport in independent on dx.
• At second order in dx the deviation of a parallel transported vector is determined by the Riemann tensor.
• In flat space: R d

abc ≡ 0.

4.7 Geodesics

Intuitively, geodesics are lines “as straight as possible” or lines of minimal lenght. A more technical definition is

Definition 4.7.1. Geodesic = a curve γ : R 7→ M whose tangent vector ta maintains its direction, i.e. ta∇atb = αtb

.

It is always possible to change the curve parametrization such that the constant α = 0 (affine parametrization, see
below). Using this parametrization the definition of geodesic is equivalent to

Definition 4.7.2. Geodesic = curve whose tagent vector is parallel propagaed along itself, ta∇atb = 0.

In a coordinate basis, the curve is xµ(λ) and the tangent vector components are tµ = ẋµ; the geodesic equation
reads

0 =
dtµ

dλ
+ Γµσνt

σtν =
d2xµ

dλ2
+ Γµσν

dxσ

dλ

dxν

dλ
. (4.40)

The geodesic equation can be also written with index down by using the contracted Christoffel symbols

gασΓαµν =
1

2
gασg

αβ︸ ︷︷ ︸
=δβσ

(∂µgβν + ∂νgβν − ∂µgαβ) =
1

2
(∂µgσν + ∂νgσν − ∂σgµν) , (4.41)

to find

0 = gµν
dtν

dλ
+ gµνΓναβt

αtβ =
dtµ
dλ
− ∂σgµνtσtν + gµνΓναβt

αtβ (4.42a)

=
dtµ
dλ
− ∂σgµνtσtν +

1

2
(∂βgµα + ∂αgµβ − ∂µgαβ)tαtβ (4.42b)

=
dtµ
dλ
−���

��∂σgµνt
σtν +���

���2

2
∂βgµαt

αtβ − 1

2
∂µgαβt

αtβ (4.42c)

=
dtµ
dλ
− 1

2
∂µgαβt

αtβ . (4.42d)

Observations.
• The geodesic equation is a system of ODE of 2nd order whose solution exist locally for a given initial data.

Given a vector ta at point p, exists locally a unique geodesic passing through p with tangent ta.
• Affine parametrization. Consider the curve re-parametrization λ(s), since

d

dλ
=
ds

dλ

d

ds
=: f

d

ds
,
dxν

dλ
= ẋν = f

dxν

ds
= (xµ)′ , (4.43)

one obtains immediately (index are omitted for brevity)

0 = ẍ+ Γẋẋ = x′′ + Γx′x′ +
f ′

f2
x′ . (4.44)

Setting α := −f ′/f2, the parametrization such that α = 0 is the solution of the equation f ′/f2 = 0, i.e.
0 = f ′ = d2s/dλ2 ⇒ s = aλ+ b with a, b ∈ R.

Geodesics extremize the length of the curve between two points. Focusing on n = 4 and using a metric of
signature (−,+,+,+), a geodesic γ is classified according to its tangent vector ta:

γ g(t, t) Invariant spacetime interval s
null = 0 s = ` = 0

timelike < 0 s = τ =
∫ √

gabtatbdλ

spacelike > 0 s = ` =
∫ √
−gabtatbdλ

Observations:
• s is not defined for a geodesic that changes character from spacelike to timelike.
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• Geodesic in a Lorentz manifold cannot change from timelike to other type because, from the definition of
parallel transport, the norm of the tangent vector must be constant:

tc∇c(gabtatb) = 2gab t
c∇ctb︸ ︷︷ ︸

=0

= 0 ⇒ gabt
atb = const . (4.45)

• Proper length or time do not depend on the parametrization.
Take a spacelike geodesic parametrized by λ ∈ [a, b] ∈ R such that the norm of the tangent vector norm is unity.

Calculate the variation of the length under an infinitesimal coordinate transformation xµ 7→ xµ + δxµ assuming the
variation is zero at the boundary δxµ(a) = δxµ(b) = 0:

δ` =

∫ b

a

(gµνt
µtν)−1/2︸ ︷︷ ︸
=1

gαβ ẋα dδxβdλ︸ ︷︷ ︸
b.p.

+
1

2

∂gαβ
∂xσ

δxσẋαẋβ︸ ︷︷ ︸
σ→β;β→ν

 dλ = (4.46a)

=

∫ b

a

d

dλ
(gαβ ẋ

αdδxβ)dλ−
∫ b

a

d

dλ
(gαβ ẋ

α)δxβdλ+
1

2

∫ b

a

∂gαν
∂xβ

δxβ ẋαẋνdλ = (4.46b)

= [gαβ ẋ
αdδxβ ]ba︸ ︷︷ ︸
=0

−
∫ b

a

(
d

dλ
(gαβ ẋ

α)δxβ − 1

2

∫ b

a

∂gαν
∂xβ

δxβ ẋαẋν

)
dλ = (4.46c)

=

∫ b

a

− d

dλ
(gαβ ẋ

α) +
1

2

∂gαν
∂xβ

ẋαẋν︸ ︷︷ ︸
geodesic eq.

 δxβdλ . (4.46d)

The above calculation proves that a geodesic extremizes the length. A similar calculation can be performed for timelike
geodesics. Note that geodesics equations can be derived from the Lagrangian

L2 = gµν ẋ
µẋν . (4.47)

Riemann normal coordinates. The uniqueness of geodesic allows us to define special coordinates at a point p
such that all geodesics passing by p are mapped into straight lines in Rn.

Given v ∈ TpM, exists a unique godesics with tangent vector v such that γv(λ = 0) = p. This implies that one
can associate each point q around p to the vector v that generates the geodesic γv from p to q. Specifically, one uses
the exponential map

Expp : TpM 7→M with Expp(v) := γv(λ = 1) , (4.48)

and the point q is identified as the one connected by “unit time” movement along the geodesic 1.

Definition 4.7.3. The Riemann coordinates of point q (around p) are defined as the components of the vector
ψ(q) = (v1, ..., vn).

Observations:
• The existance of the exponential map is guaranteed only locally as a consequence of local existance of geodesics.

Far from p, two geodesic originating from p can actually cross! In this case the manifold is called geodesically
incomplete.

• It can be proven that the exponential map is locally a one-to-one map.
• Point p has normal coordinates ψ(p) = (0, ..., 0).
• In normal coordinates the curve γv is represented as straight lines in Rn:

γv : xµ = (λv1, ..., λvn) . (4.49)

Because these geodesic are straight lines, they satisfy ẍµ = 0. Comparing with Eq. (4.40), one finds that the
Christoffel symbols in normal coordinates must be zero:

d2xµ

dλ
= 0 ⇒ Γµνρ = 0 at p . (4.50)

In turn, this implies that ∇µ = ∂µ and by metric compatibility the derivatives of the metric components in
normal coordinates must be zero (schematically, omitting indexes):

0 = ∇g = ∂g + Γg = ∂g at p . (4.51)

1Perhaps the simplest explanation of the name is to think of a map between the tangent to the unit circle and the unit circle t 7→ exp(it).
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• The above observation is key in GR: one can always use normal coordinates such that the metric at a point
reduces to the Minkowski:

gµν = ηµν at p , (4.52)

while the expansion of the metric around p differs from Mikowski only by second derivatives (curvature terms):

gµν ' ηµν +
∂2g

∂x∂x
dxdx . (4.53)

4.8 Geodesics deviation

An intuitive effect of curvature is that geodesics focus. On a 2D plane the curvature is zero and straight lines never
meet. On a 2-sphere the curvature is positive κ = 1/R and the meridians focus on the poles. Is this effect described
by the formalism developed so far and captured by the Riemann tensor?

Consider a one-parameter family of geodesics γa(λ) where λ is the affine parameter and σ ∈ R control a smooth
variation from one geodesic to the next. Assume the geodesics do not cross; γσ(λ) is a 2D surface in a n-dimensional
manifold. Define the vector fields

ta := (
∂

∂λ
)a : ta∇atb = 0 Tangent to γ (4.54a)

sa := (
∂

∂σ
)a Deviation vector, infinitesimal displacement from γσ to γσ+dσ . (4.54b)

Properties:
• The two vector commute:

[t, s] = tµ∂µ(sν∂ν)− sµ∂µ(tν∂ν) =
∂xµ

∂λ
∂µ(

∂xν

∂σ
∂ν)− ∂xµ

∂σ
∂µ(

∂xν

∂λ
∂ν) (4.55a)

=��
���

��∂xµ

∂λ

∂xν

∂σ
∂µ∂ν +

∂xµ

∂λ

∂

∂σ
(
∂xν

∂xµ︸︷︷︸
δνµ

)∂ν −���
��

��∂xµ

∂σ

∂xν

∂λ
∂µ∂ν −

∂xµ

∂σ

∂

∂λ
(
∂xν

∂xµ︸︷︷︸
δνµ

)∂ν (4.55b)

=
∂xµ

∂λ

∂

∂σ
(δνµ)︸ ︷︷ ︸

=0

∂ν −
∂xµ

∂s

∂

∂λ
(δνµ)︸ ︷︷ ︸

=0

∂ν = 0 . (4.55c)

• tasa = const along the geodesic. Because the commutator is zero, 0 = [t, s]⇔ ta∇asb = sa∇atb, it is immediate:

tc∇c(tasa) = tc∇cta︸ ︷︷ ︸
=0

sa + tc ta∇csa︸ ︷︷ ︸
=ta∇csa

= tat
c∇csa =

[t,s]=0
tas

c∇cta =
1

2
sc∇c(tata︸︷︷︸

=−1

) = 0 . (4.56a)

• By a suitable parametrization the constant can be chosen zero tasa = 0.

Definition 4.8.1. Geodesic relative velocity = the rate of change of the deviation vector along γσ, V a := tb∇bsa.
Geodesic relative acceleration Aa := tb∇bV a.

The acceleration of the geodesics is governed by the Riemann tensor, as expressed by the geodesic deviation
equation:

Aa = tc∇cV a = tc∇c(tb∇bsa) (4.57a)

= tc∇c(sb∇bta) (⇐ [t, s] = 0) (4.57b)

= tc∇csb︸ ︷︷ ︸
=sb∇ctc

∇bta + tcsb ∇c∇bta︸ ︷︷ ︸
=∇b∇cta−R a

cbd td

(4.57c)

= sb∇ctc∇ata + tcsb∇b∇cta −R a
cbd tdtcsb = sc∇c(tb∇bta︸ ︷︷ ︸

=0

)−R a
cbd td = −R a

cbd tdtcsb . (4.57d)

The Riemann tensor measures how geodesics bends and accelerate toward each other. If the Riemann tensor is zero,
then the acceleration betwee two nearby geodesics is zero.

Note the geodesic deviation equation is sometimes written as

Aa = tc∇c(tb∇bsa) =: ∇2
t s
a = −R a

cbd tcsbtd . (4.58)

Example 4.8.1. Tidal forces in Newtonian gravity. The Newton equations for two test bodies in gravitational potential
φ with nearby trajectories xi(t) and xi(t) + si(t) are (up to O(s2) terms)

ẍi(t) = −(∂iφ)|x(t) and ẍi(t) + s̈i(t) = −(∂iφ)|x(t)+s(t) ≈ −(∂iφ)|x(t) − (∂j∂iφ)|x(t)s
j . (4.59)
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The relative acceleration between the two bodies is thus given by

s̈i(t) = − ∂2φ

∂xi∂xj
|x(t)s

j . (4.60)

The quantity ∂ijφ is known as tidal tensor. The equation above is similar to the geodesic deviation equation and in
fact it is precisely its Newtonian limit Wald (1984), that contains the correpondence

Riemann tensor ↔ Tidal forces . (4.61)

Since the Riemann tensor is not zero in normal coordinates, the above correspondence indicate that the relative
acceleration due to tidal forces cannot be transformed away in GR.

4.9 Gravitational redshift

As an application of the geodesic equation, let us consider the problem of gravitational redshift and its formulation
in terms of geodesics for (i) a static spacetime with small curvature,, and (ii) a cosmological spacetime.

Weak field. Recall that the simplest approach to the problem is to observe that, because of the Einstein’s equivalence
principle (EEP), the classical doppler redshift of photons due to the accelerate motion of the emitting source must
map to the gravitational problem in which the acceleration is given by the gravitational field. Since the same formulas
must apply, the relative difference in wavelength is given by the difference of the gravitational potential between two
points (emitter and receiver) at distance d:

∆λ

λ
' dgN

c2
=

∆φ

c2
, (4.62)

where gN is the Newton grav. acceleration. We give a more rigorous formulation and solution to the problem below.

Problem: A photon is emitted at point p with frequency νp and absorbed at q with frequency νq. Determine the
relation between the frequencies mesured by a stationary observer with 4-velocity ua = (u0, 0).

Let us assume the gravitational field is described by the metric

g = −(1 + 2φ)dt2 + (1− 2φ)(dx2 + dy2 + dz2) , (4.63)

where φ = φ(x, y, z) is time independent and |φ| � 1; we work at first order in φ. The metric above is the metric of a
static and weak gravitational field, as we shall see later. The coordinates reduce to an inertial Cartesin system in SR
for φ = 0. A direct calculation left as exercise shows the Riemann tensor is nonzero and composed of second spatial
derivatives of φ. We will see later that the scalar φ correspond to the Newtonian potential.

Photon trajectories are null geodesics xµ(λ) in the metric g, where λ is an affine parameter. The tangent vector is
the photon 4-momentum pµ = ẋµ. The energy of the photon measured by the observer with 4-velocity u is defined as

E = pµu
µ = gµνp

νuµ . (4.64)

Note that because

− 1 = uµuµ = g00u
0u0 ⇒ u0 = (−g00)−1/2 = (1 + 2φ)−1/2 , (4.65)

the energy expression becomes

E = pµu
µ = p0u

0 = p0(1 + 2φ)−1/2 ' p0(1− φ) . (4.66)

It only remains to compute p0. Take the geodesic equation for “index-down” 4-momentum and see that the component
µ = 0 of the above equation is zero because the metric is static:

dpµ
dλ

=
1

2
∂µgαβp

αpβ ⇒ dp0

dλ
=

1

2
∂0gαβp

αpβ = 0 . (4.67)

Thus p0(p) = p0(q) = const =: p̄0. Finally, the ratio of the frequencies/energies gives the expected result:

νq
νp

=
Eq
Ep

=
pµu

µ(q)

pµuµ(p)
= ��̄
p0u

0(q)

��̄p0u0(p)
' 1− φ(q)

1− φ(p)
' 1− (φ(q)− φ(p)) = 1−∆φ . (4.68)

45



GR notes - S.Bernuzzi Curvature & Connection

Expanding universe in 2D. Let us repeat the above calculation for the cosmological 2D spacetime discussed
previously where the metric is

g = −dt2 + a2(t)dx2 . (4.69)

The µ = 0 component of null geodesics is solved by

dp0

dλ
+
ȧ

a

(
p0
)2

=
dp0

dt
p0 +

ȧ

a

(
p0
)2

= 0 ⇒ p0(t) =
w0

a(t)
, w0 ∈ R . (4.70)

The energy measured by an observer comving with the Universe uµ = (1, 0) is

E = −pµuµ = −gµνpµuµ = −g00p
0 = +

w0

a
. (4.71)

When a = 1 the phothon frequency is E = ~w0. The energy of the phothon emitted at t1 is E1 = E(t1) = w0/a(t1) =
w0/a1, thus

E2

E1
=
a1

a2
⇒ z =

E1 − E2

E2
=
a2

a1
− 1 . (4.72)

If the Universe is expanding a2 > a1, then E2 < E1 and the phton is redshifted (cosmological redshift). In an expanding
Universe the wavelength grows with time. This gives a way to meaure distances: larger redshifts correspond to larger
distances, associating a redshift to a reference distance (standard candle) one can calculate all other distances by
resdhift measurement (e.g. spactral absorption line of galaxies). Note this is a distinct effect from Doppler shift.

46



5. Equivalence Principles

1○
This lecture gives an overview of the equivalence principles and the experimental test of the fundations of GR.

Suggested readings. Will (2014); Di Casola et al. (2015).

5.1 Role of equivalence principles

Roles of equivalence principles (EPs) according to different views:
• Fundation of the theory;
• Euristic principles based on experimental facts;
• “inspirational” principles.

In all cases they
• Help understanding the theory and its equation, proving us with interpretation/intuition;
• Are the basis for designing experimental tests of the theory and its fundations;
• Constitute a common ground to compare gravity theories and formulations.

5.2 Weak equivalence principle (WEP)

WEP or “universality of free fall”. In a gravitational field, test-bodies with negligible self-gravity behave indepen-
dently of their properties.

Definition 5.2.1. Test-body = does not back-react on the gravitational field.

Definition 5.2.2. The self-gravity of a body of mass M and size r is measured by σ = 2GM/(c2r). Negligible
self-gravity means in the limit σ � 1.

Remark 5.2.1. The concept of test-body and negligible self-gravity are two different things. The former depends on
the external gravitational field, the latter only on its mass and size. There exists test-bodies for which the self-gravity
is nonnegligible, and bodies with negligible self-gravity tha cannot be considered test-bodies. Examples:

• Pebble in the Earth grav. field: test-body and σ � 1.
• Moon in the Earth grav. field: σ � 1 , but it cannot be considered a test-body since it affect the Earth grav.field

(tides).
• Micro black hole with mass mBH ∼ mPlanck ≈ 22µg in the Earth grav. field: self-gravity is maximal σBH = 1,

but it can be considered a test-body on Earth.

5.3 Newton equivalence principle (NEP)

NEP. In the Newtonian limit, the inertial and gravitational mass are equal.

Observations
• mg and mi are quantities defined in Newtonian physics only.
• Any theory of relativity must have the same Newtonian limit.
• WEP ⇒ NEP ...
• ... but in general, NEP��⇒ WEP, because the validity of WEP depends on the equations of motions (EOM). If

the EOM are Newton law

~̈x = −mg

mi

GM~x

x3
, (5.1)
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then NEP ⇒ WEP. This remain valid for any EOM that depends on the ratio mg/mi. But if the EOM contain
other combinations of the two masses, then it might not be true.

5.4 Einstein equivalence principle (EEP)

EEP. Fundamental, nongravitational test-particles and fields are locally and at any point of spacetime not affected
by the presence of a gravitational field.

This principle encodes the idea that local frames in presence of a gravitational field are equivalent to local frame
in absence of the gravitational field. Examples:

• A local nonrotating fre-falling frame in a grav. field = a local inertial frame in absence of gravity.
• A local frame in a grav. field = suitably chosen accelerated frame in absence of gravity (e.g. the rocket simulating

the gravitational acceleration).

Meaning of local. Sufficiently small region of spacetime such that a given instrument does not resolve variations
of the grav.field and/or tidal forces. Note, however, that the relative fractional acceleration between two free-falling
bodies is governed by a tidal tensor

s̈i

s
∼ − ∂2φ

∂x∂x
, (5.2)

that does not vanish for si → 0 (inhomogeneous field). Geodesic deviation and “composed systems” violate the EEP, in
general. The locality requirement should then go together with the request that it applied to fundamental particles and fields.
Note there remains a difficulty in the definition of what is fundamental and what is not...

Formulation of EEP for Poincare’ invariant physics. The EEP formulated above is general. We know (or
assume) that fundamental nongravitational physics laws must be invariant under the Poincare’ group (translations
and Lorentz transformations). The EEP can be thus re-formulated more specifically as

1. WEP is valid.
2. Local Lorentz invariance (LLI) is valid.
3. Local position invariance (LLP) is valid.

Definition 5.4.1. LLI = local nongravitational experiments are independent on the velocity of the free-falling frame
in which they are performed.

Definition 5.4.2. LLP = local nongravitational experiments are independent of where and when in the Universe are
performed.

5.5 Strong equivalence principle (SEP)

The EEP does not include gravitational phenomena. An extension to those is the

SEP. All fundamental test physics is locally not affected by the presence of a gravitational field.

SEP includes tests but self-gravitating σ ∼ 1 experiments. Examples:
• Cavedish experiment (1798), mutual attraction between two light bodies.
• Gravitational-wave detections.
• Any experiment in which a background gravitational field can be identified and the latter does not affect the

measure.
An alternative formulations of SEP is
1. WEP is valid for self-gravitating test bodies.
2. Any local test-experiment is independent of the velocity of the fre-falling apparatus.
3. Any local test experiment is independent of when and where in the Universe is perfomed.

5.6 Experimental tests

Experimental tests of WEP. A basic way to test WEP is to define α := mg/mi and observe that the relative
acceleration between 2 bodies is δa = |a1 − a2| ∝ |α1 − α2|. Most of the experiments measure the fractional relative
acceleration between two bodies, as given by the Eötvos parameter

η := 2
|a1 − a2|
|a1 + q2|

= 2
|α1 − α2|
|α1 + α2|

= f(
mg

mi
) . (5.3)

A “null” experiment that verifies f(1) = 0 proves the WEP to a certain accuracy. Examples:
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Figure 5.1: Experimental tests of GR, from Will (2014).

• Newton pendulum, η ∼ 10−2.
• Eötvos torsion balance (1885-1909), η ∼ 10−9.
• MICROSCOPE (2018), η ∼ 10−15.

Experimental tests of LLI. Example of tests of LLI are measurment of light speed, for example,
1. Michelson-Morley experiment (1881-1887).
2. FERMI (2009, High-energy astrophysical photons [GeV gamma-ray burst]) 1

Note these are tests of SR principles and/or quantum gravity. In particular, some quantum gravity theories predict
that there exists a fundamental scale

EPlanck =

√
~c5
~
∼ 1019GeV (5.4)

at which Lorentz invariance could be violated.

Example 5.6.1. Lorentz violting dispersion relation. According to SR E2 = p2c2 and the speed of the photon is the
light speed vγ = ∂E/∂p = c. One couldalternatively postulate phenomenological dispersion relations starting from

E2 = p2c2(1 + corrections) = p2c2 + EPlanckf1|p|c+ f3E
−1
Planckf3|p|3c3 + ... , (5.5)

such that
vγ
c

= 1 + corrections . (5.6)

The corrections to the photon speed could be constrained by measurements at energy sufficiently high energies (ap-
proaching EPlanck). For example, phothons of different energies would arrive at different times.

Experimental tests of LLP. Example of tests of LLI are measurements of doppler effect due to the gravitational
field:

1. Pound-Rebka experiment (1959), measuring the gravitational redshift z = (1 + α)δφ/c. The experiment can
constraint the deviation α.

2. Shift of spectral lines due to the Sun gravitational field.
3. Clocks on satellites.
4. Global Positioning System (GPS), measuring about ≈ 35µs = 49µs− 7µs due to difference of the gravitational

doppler shift (GR) and time dilation (SR).

Experimental tests of SEP.
• Violation of WEP for gravitating bodies inducing orbit perturbations.
• Location and frame-dependent effects in the measurement of G.

Example 5.6.2. Nordvedt effect. The acceleration of a body of grav. mass mg in an external grav. field could be
phenomenologically parametrized as

~̈x = −mg

mi
∇φ = (1− ηN

Eg
mi

)∇φ , (5.7)

where −Eg < 0 is the gravitational self-energy of the body and ηN is a parameter. For laboratory experiments o Earth
Eg/mi . 10−27 so there is no effect (e.g. it is negligible in Eövtos experiments). However, for celestial bodies could
be masurable since

Eg
mi
∼ 10−6 Sun ,

Eg
mi
∼ 10−8 Jupiter ,

Eg
mi
∼ 10−10 Earth,Moon . (5.8)

1https://arxiv.org/abs/0908.1832.
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If ηN 6= 0, then one would for example measure Earth falling towards the Sun with a different acceleration then the
Moon. Lunar laser ranging experiments started with the mission Apollo 11 indicate that ηN < 10−12.

5.7 Consequences of EPs

Let us finally consider the consequences of the above EPs for the development of theories of gravity. We assume that
our theory describes “gravity as geometry” and try to imagine how to translate the EPs into geometrical requirements.

WEP. ⇒ worldlines of test-bodies depend only on the gravitational field, not on their properties. Test-bodies moves
on geodesics: if there is no gravitational field, the geodesics are straight lines like in Newtonian gravity.

EEP. Locally, the physical laws are those of SR. ⇒ The spacetime must be locally Minkowski

g ∼ η and Γ = 0 , (5.9)

that implies that the g must be a Lorenzian metric. Because the solutions of the theory for nongravitational phenomena
must be locally the same as SR, the equations must be in tensorial form.

In particular LLI and LPI suggest that non-gravitational particles and fields all couple in the same to the gravi-
tational field. This universal coupling hints to gravity as a property of the spacetime rather than generate by a field
on it. Gravity must be a metric theory.

In metric theories of gravity only the metric couple to matter and determines the matter motion. However, there
could be other fields (scalar, vectors, etc fields) with the role of determining how matter couple to metric and generate
gravity. Metric theories of gravity differ in the way additional gravitational field are introduces. Generically they
divide into(Will, 2014). (i) purely dynamical theories: metric and additional gravity fields are determined dynamically
by the field equations; (ii) prior geometric: fields or other elements are given a priori.

SEP. ⇒ There exists only one gravitational field represented by the metric g. A gravity theory satisfying SEP is
a pure metric theory. Any nonpure metric theory predicts that the mass-energy of self-gravitating objects acquires a
dependence on the extra gravitational fields. They would produce a force that would make the motion of test bodies
nongeodesic.
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6. Einstein’s Field Equations

3○
These lectures introduce and discuss dynamics of fields on generic manifolds and Einstein’s equations for spacetime.

The Hilbert action formulation of GR and the Cauchy problem in GR are presented. The concept of Killing vector
and Lie derivative are introduced here together with their relation to symmetries and dynamics in GR.

Suggested readings. Chap. 4 of Wald (1984); Chap. 4 of Carroll (1997); Chap. 7-8 of Schutz (1985).

6.1 GR Postulates

GR postulates [Einstein (1915)]
(i) Gravity is a pure metric geometric theory.

(ii) Spacetime is a 4D manifold M equipped with a Lorentzian metric g and Levi-Civita connection ∇.
(iii) In local Lorentz frames the non-gravitational laws of physics are those of SR.
(iv) Test-bodies follow geodesics in M and the equations for matter fields are tensorial equations.
(v) The metric tensor is determined by Einstein’s field equations.

Note the postulates could be reduced and made more coincise.
The EOM for particles and fields can be generalized from SR to GR by the formal identification:

(SR)


R4 spacetime ←→
η metric ←→
∂ connection ←→

M spacetime

g metric

∇ connection

 (GR) (6.1)

The above rule actually works in most of the cases, although it should be used with some care.
Einstein field equations (EFE) equations will be euristically derived as an extension of Poisson equation for the

Newtonian gravitational potential. The equations in vaccum (no matter) will be alternatively derived from the Hilbert
action that is the simplest action that (i) is diffeomorphism invariant and (ii) leads to second order tensorial equations
for the metric. The EFEs were indeed derived before Einstein by Lorentz and Hilbert using this approach. This also
give a natural/generic way to define the stress-energy tensor. However, the treatment of boundary terms in the action
variation is nontrivial and requires discussion.

6.2 Equation of motions (EOMs) for particles

Using the scheme in Eq. (6.1) the EOM for a free particle with worldline xµ(λ) and 4-velocity uµ = ẋµ in GR is:

(SR)
d2xµ

dλ2
= 0 ←→ d2xµ

dλ2
+ Γµσν

dxσ

dλ

dxν

dλ
= 0 or uµ∇µuν = 0 (GR) . (6.2)

In presence of an external force fµ the acceleration particle is nonzero and the EOM is

uµ∇µuν =
fν

m
. (6.3)

The 4-momentum of the particle is pµ = muµ.

Remark 6.2.1. The energy of a particle measured by an observer O defined by its velocity va has, formally, the same
expression as in SR:

E = −pava , (6.4)

and it is given by the projection of the particle’s 4-momentum to the observer worldline with the metric g. However,
there is a key difference. In SR: E is the energy measured at a given point p but also the energy measured by any
other distant inertial observer with the same 4-velocity va because the vectors can be parallel transported anywhere in
a path-independent way. In GR: E is only the local energy measured at point p by O. A distant observer cannot define
the energy at point p. There is no global family of inertial observers.
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EOM of a particle in a weak and static grav.field. Check the Newtonian limit of geodesics in a curve spacetime.
Problem: relate the Newton equation of a particle in a gravitational potential,

d2xi

dt2
= −∂iφ , (6.5)

to the geodesic equation under the hypothesis
(i) Small velocities of the particle, v/c� 1;

(ii) Weak gravitational field φ� 1;
(iii) Static gravitational fields (φ and g are time independent).

(i) Small velocity. Use proper time τ to parametrize the worldline, ẋµ = (dt/dτ, c−1dxi/dτ). For small velocities
the Lorentz factor is about one and the spatial part of the 4-velocity is much smaller than the 0-component:

dt

dτ
= γ ∼ 1 and

1

c

dxi

dτ
� 1 ⇒ dt

dτ
� 1

c

dxi

dτ
. (6.6)

The geodesic equation for small velocity is:

0 =
d2xµ

dτ2
+ Γµ00

dx0

dτ

dx0

dτ
+ 2Γµ0j

dx0

dτ

dxj

dτ︸ ︷︷ ︸
O(1/c)

+Γµij
dxi

dτ

dxj

dτ︸ ︷︷ ︸
O(1/c2)

≈ d2xµ

dτ2
+ Γµ00

(
dx0

dτ

)2

. (6.7)

(ii) Weak field. Take g = η + h where η is the Mikowski metric and h a small perturbation. Problem: g is
not positive defined, How can one quantify “small”? One must assume there exists a global coordinate system that
correspond to the Cartesian coordinate for h = 0 (SR). Then, the requirement is that the components of the tensor
h in these coordinates are much smaller than those of η:

|hµν | � 1 . (6.8)

This way it is possible to proceed linearizing in hµν . Indexes are raised and lowered with the Mikowski metric η.
To calculate the geodesic equation in the small velocity limit Eq. (6.7) one needs only

Γµ00 =
1

2
gµα(∂0g0α︸ ︷︷ ︸

=0

+ ∂0g0α︸ ︷︷ ︸
=0

−∂αg00) = −1

2
gµα∂αg00 = (6.9a)

= −1

2
(ηµα + hµν)∂α( η00︸︷︷︸

=−1

+h00) = −1

2
(ηµα +O(hµν))∂αh00 ≈ −

1

2
ηµα∂αh00 . (6.9b)

where the first line holds because the metric is time independent (iii), and in the second line the weak field limit
is taken (ii). Moreover, the component Γ0

00 = 0 because of (iii): ∂0h00 = 0. The first component of the geodesic
equation is thus trivially solved and gives the coordinate time in terms of a linear combination of the proper time; the
remaining equations are the spatial equations:

0 =
d2x0

dτ2
=
d2t

dτ2
⇒ t = ατ + β α, β ∈ R (6.10a)

0 =
d2xi

dτ2
− 1

2
ηij∂jh00

(
dx0

dτ2

)2

⇒ 0 =
d2xi

dt2
− 1

2
δij∂jh00 . (6.10b)

Direct comparison with Eq. (6.5) identifies the metric component with the Newtonian grav.potential:

h00 = −2φ . (6.11)

6.3 EOMs for fields

Scalar field. The equation
2ηϕ−m2ϕ = 0 , (6.12)

can be easily generalized for Mikowski to generic spacetimes by the substitution

(SR) 2η = ηab∂a∂b ←→ 2g = gab∇a∇b (GR) . (6.13)

Note the generalization is not unique and there are more possibility, e.g. by coupling the field to the curvature by the
Ricci scalar

2gϕ−m2ϕ− αRϕ = 0 . (6.14)

There is no general rule, both equations with and without are valid models for scalar fields on M that have the
correct SR limit. Often, a “minimal coupling” principle is invoked: matter fields do not couple to the Riemann tensor
(curvature) but only to the metric (pure metric theory).
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Electromagnetic field. Maxwell equations in GR are written in terms of the Faraday tensor

∇aF ba = Jb , ∇[aFbc] = 0 . (6.15)

The second equation is the antisymmetric combination of covariant derivatives, and it implies that the Farady tensor
can be written in terms of the potential (Note the Christoffel symbols cancel in the antitsymm. combination):

Fab = ∇[aAb] = ∇aAb −∇bAa = ∂aAb − ∂bAa . (6.16)

It is interesting to study the EOM for the potential. In Lorentz gauge one would guess:

(SR)

{
∂aA

a = 0

2ηAa = −Ja
←→
???

(GR)

{
∇aAa = 0

2gAa = −Ja .
(6.17)

Verify the EOM is correct by substituting into the first Maxwell equation:

−Jb = ∇aFab = ∇a(∇aAb −∇bAa) = ∇a∇aAb −∇a∇bAa = 2gAb −∇a∇bAa = 2gAb −∇a∇bAa = (6.18a)

= 2gAb −∇b∇aAa −RcbAc , (6.18b)

where in the last line the commutator and Riemann tensor have been used. Imposing the Lorentz gauge ∇aAa = 0
does not lead to the GR equation guessed above! Indeed, the right equation is the one derived above,

(SR)

{
∂aA

a = 0

2ηAa = −Ja
←→ (GR)

{
∇aAa = 0

2gAa −RcbAb = −Ja ,
(6.19)

because the latter is the one that guaranteed charge conservation in the form of a divergence on generic spacetime:

∇bJb = 0 . (6.20)

In the following, 3 different proofs of the above equation are given.
1. Using the definition of the Riemann and the antisymmetry of the Faraday tensor,

[∇a,∇b]F ab = ∇a∇bF ab −∇b∇aF ab = ∇a∇bF ab +∇b∇aF ba = 2∇a∇bF ab (6.21a)

= −R a
abc F cb −R b

abc F ac = +R a
bac F cb −R b

abc F ac = +RbcF
cb −RacF ac = (6.21b)

= 2RbcF
cb = −2RcbF

bc = 0 (6.21c)

the scalar made of the contraction between the antisymmetric double covariant derivative is twice the scalar
made of the double covariant derivative contraction (1st line) and it is zero (2nd and 3rd line). This holds for
any antisymmetric tensor.

2. For any vector and for any antisymmetric tensor the covariant derivative can be expressed in terms of partial
derivatives as [exercise]

∇µJµ =
1√
|g|
∂µ

(√
|g|Jµ

)
, ∇νFµν =

1√
|g|
∂ν

(√
|g|Fµν

)
, (6.22)

where |g| = −det g. The Maxwell equation and the current conservation are thus

1√
|g|
∂ν

(√
|g|Fµν

)
= −Jµ , 1√

|g|
∂µ

(√
|g|Jµ

)
= 0 . (6.23)

Multiplying the first equation by |g| and deriving gives the second equation since partial derivatives commute:

− ∂µ(
√
|g|Jµ) = ∂µ∂ν︸ ︷︷ ︸

sym

(
√
|g|Fµν︸ ︷︷ ︸

antisym

) = 0 . (6.24)

3. Write the Maxwell equations in terms of the exterior derivatives of the 2-form F

d(∗F ) = (∗J) , dF = 0 , (6.25)

and note that d2 = 0 ⇒ d(∗J) = 0. The latter equation corresponds to the divergence of Ja = gabJb (Exam-
ple 3.12.1 and discussion around).

Remark 6.3.1. Key properties of symmetric/antisymmetric tensors. Given the (0, 2) tensors Tab (generic), A[ab]

(antisymm.), Sab (symm.), the proofs above show that in general:

SabAab = 0 , [∇a,∇b]T ab = Rab(T
ab − T ba) = Rab2T

[ab] = 0 , 0 = [∇a,∇b]Aab = 2∇a∇bAab , (6.26)

where Rab is the Ricci tensor (symm.).
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Conservation law for the stress-energy tensor. The definition of stress-energy tensor Tab in terms of the energy
and momentum densities of a continuum distribution of matter as measured by an observer O defined by its tangent
vector v carries over to GR.

In SR the requirement of energy and momentum conservation leads to trequire that the 4-divergence of the stress-
energy momentum is zero,

∂µT
µν = 0 (SR) . (6.27)

The above results can be understood as follows. Consider a family of inertial observers with 4-velocities vα (vµvµ = −1)
such that the velocities are all parallel, ∂µv

ν = 0. The energy current density measured by the observers is

Jµ := −Tµνvν = (E,ϕi) , (6.28)

and the EOM above implies that the 4-divergence of the current it zero

∂µJ
µ = −∂µ(Tµνv

ν) = − ∂µTµν︸ ︷︷ ︸
=0

vν − Tµν ∂µvν︸ ︷︷ ︸
=0

= 0 . (6.29)

Integrating over a volume Σ and using Gauss’s theorem gives the energy conservation,

0 =

∫
Σ

∂µJ
µ = −

∫
Σ

∂t(J
0 − ∂iJ i) = − d

dt

∫
Σ

E +

∫
∂Σ

ϕini . (6.30)

In GR, one would generalize the EOM as

∇aT ab = 0 (GR) , (6.31)

and from the definition of stress-energy tensor it is still true that observers with tangent velocity field va measure the
energy-momentum density at point p

Ja := −Tabvb . (6.32)

The difference w.r.t. SR is that in GR ∇aT ab = 0 cannot be interpreted as a conservation law because in general

∇aJa = −∇aTab︸ ︷︷ ︸
=0

vb − Tab∇avb = −Tab∇avb 6= 0 . (6.33)

Energy conservation would be guaranteed for observers such that ∇avb = 0 1, but in general there are no such
global inertial observers (See however Sec. 6.7 below). However, on sufficiently small regions where curvature can
be neglected, R � (curvature)−1, one can still find observers such that ∇avb ≈ 0 and the equation above can be
interprested as a local conservation law.

Example 6.3.1. For a perfect fluid Tab = (ρc2 + p)uaub + pgab the SR’s EOMs are the conservation of mass and
momentum of SR hydrodynamics. Moreover, for dust (perfect fluid with zero pressure, p = 0) the GR EOMs,

0 = ∇aT ab = ∇a(ρua)ub + ρua∇aub . (6.34)

imply the geodesic equation. The contraction with ub gives the continuity equation ∇a(ρua) = 0:

0 = ∇a(ρua)ubu
b︸︷︷︸

−1

+ρuaub∇aub = −∇a(ρua) + ρua
1

2
∇a(ubub︸︷︷︸

=−1

) = −∇a(ρua) + 0 . (6.35)

Plugging the continuity equation into the EOMs gives ua∇aub = 0, that proves dust moves on geodesics.

6.4 Einstein’s field equations (EFE)

The dynamics of the metric must be described by tensorial equations with the correct Newton limit. Let us give an
euristic derivation of Einstein’s equation starting from these two hypotesis. Newton EOMs relate second derivatives
(Laplacian) of the grav.potential to the matter’s mass density distribution ρ:

∆φ = δij∇j∇iφ = 4πGρ . (6.36)

Assuming a weak field metric, we have shown that g00 = −1+2φ, and we know the matter is described by a symmetric
stress-energy tensor. We thus postulate tensorial equations in the form:

“ ∂2gab ” = κGTab , (6.37)

clearly, on the l.h.s. one needs a symmetric tensor built on derivative of the metric, while on the r.h.s. the stress-energy
tensor must satisfies ∇aTab = 0.

Options for the l.h.s.

1An equivalent condition is the symmetrized derivative: Tab∇(avb) = Tab∇(avb) = (Tab∇avb + Tab∇bva)/2 = Tab∇avb.
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(i) 2ggab = gcd∇c∇dgab ≡ 0, not an option :(
(ii) Rab[g], Ricci tensor contains second derivatives, but Bianchi identities are incompatible with the EOM for the

matter:

0 = κG∇aTab = ∇aRab =
1

2
∇bR 6= 0 . (6.38)

Assuming ∇bR ≡ 0 would not help either since that would imply the trace of the stress-energy identically
constant T ≡ const:

R = gabRab = κGgabTab = κGT ⇒ 0 = ∇bR = κG∇aT . (6.39)

The latter is not possible since the spacetime of an isolated star has regions where T 6= 0 (star’s interior) and
vacuum regions T = 0.

(iii) The Einstein tensor is the right choice for all the cases since Bianchi identities implies the EOM for the matter !

Gab[g] = Rab[g]− 1

2
R[g]gab = κGTab[g] . (6.40)

Note that an equivalent expression (called trace-reverse) can be found by taking trace

gab(Rab −
1

2
Rgab) = R− 1

2
R gabg

ab︸ ︷︷ ︸
=Tr(gg−1)=4

= κGgabTab = κGT ⇒ −R = κGT , (6.41)

and re-inserting into the equation

Rab[g] = κG(Tab[g]− 1

2
T [g]gab) . (6.42)

This also shows that the Ricci tensor Rab = 0 are the EFE in vacuum.

Weak field limit and determination of κ. Take the static and weak field limit of the trace rever EFE. Start
from the metric

g = −(1 + 2φ)dt2 + (1− 2φ)(dx2 + dy2 + dz2) , (6.43)

and focus on the 00-component:
g00 = −1 + h00 , g00 = −1− h00 . (6.44)

The l.h.s. is the Ricci tensor:

R00 = Rµ0µ0 = Ri0i0 = ∂jΓ
j
00 = ∂j

1

2
giλ︸︷︷︸

=ηiλ

(∂0gλ0︸ ︷︷ ︸
=0

+ ∂0g0λ︸ ︷︷ ︸
=0

−∂λg00))

 = −1

2
δij∂i∂jh00 = −1

2
∆h00 . (6.45)

The r.h.s. is T00 − 1
2g00T , where

T00 = E ' ρ , (only the small velocity contribution) . (6.46)

and
g00T = (η00 + h00)(gµνTµν) ' η00︸︷︷︸

=−1

( η00︸︷︷︸
=−1

T00 + ηij︸︷︷︸
=δij

Tij) = +T00 − δijTij ' ρ (|T00| � |Tij |) . (6.47)

Putting together things and comparing with Newton law:

−
�
��1

2
∆h00 =

�
��1

2
κGρ ⇒ κ ≡ 8π . (6.48)

The l.h.s. of EFEs has dimension of [Gab] = L−2, the r.h.s. has dimension of energy density [Tab] = ML−1T−2

multiplied by G. Correct dimensions are re-established by introducing the proper c factors: Gκ = 8πGc−4.

Short discussion on EFE structure. When written in some coordinate system EFEs

Gab[g] = Rab[g]− 1

2
R[g]gab =

8πG

c4
Tab[g] , (6.49)

are a system of 10 coupled nonlinear PDEs for the 10 metric components involving 2nd and 1st derivatives of the metric.
As discussed in detail in Sec. 6.6, these are not exactly “10 equations for 10 unknowns”. A coordinate transformation
can always be choosen so to fix 4 out of 10 metric components, thus there are only 6 metric components to be
determined by EFEs. The latter are however not an overdetermined system of equations because the Einstein (Ricci)
tensors must satisfy the 4 Bianchi identities.

As explicitely indicated in the above EFEs, the stress-energy tensor depend in general on the metric. As a
consequence, it is not possible to specify the matter distribution and dynamics and then calculate the metric (Note
the latter is what one would do with currents in electromagnetisms and with the mass distribution for the Newtonian
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grav. potential). Even more interestingly, EFE contain the EOM for the matter as they imply the local conservation
for the stress-energy tensor. Matter fields EOM can be coupled to EFE by specifying appropriate fields in the action
from which a Tab can be obtained (see below). A key result is also that EFE contain also the geodesic hypothesis. It
can be proven that ∇aTab = 0 implies

∇aT ab = 0 ⇒ ua∇aub = 0 , (6.50)

for any body with sufficiently weak self-gravity (See Example 6.3.1 for the special case of a perfect fluid).
The best summary about the interpretation of EFE is the famous quote from J.A.Wheeler:

Summary 6.4.1. Spacetime tells matter how to move; matter tells spacetime how to curve.

6.5 Hilbert action and Lagrangian formulation

EFE can be derived from an action principle. The latter has some advantages
(i) The action is easier to euristically derive and postulate since it is a scalar;

(ii) The EOM automatically satisfies the symmetries of the theory (diffeomorphism invariant, see Remark 3.4.1 and
6.8.1);

(iii) It leads to a general definition of the stress-energy tensor.
However, the action/Lagrangian formulation of GR has some complications/subtle points w.r.t. the “standard scheme”
(Cf. Sec. 2.8):

(a) The integral defining the action is an integral on M thus the measure contains the metric (field to vary). In
turn, the Lagrangian density cannot be a scalar but it is a tensor density 2;

(b) Metric compatibility requires ∇g = 0, but the EOM must be 2nd order in g. This implies that we cannot
vary with respect to the field derivatives and the Lagrangian must contain second derivatives (rather than first
derivatives) of the field;

(c) Also related to the above, the boundary term after the integration by part of the divergence contain ∇g. In
general this does not vanish and one needs to treat it with some care (we willdiscuss two ways).

Let us start addressing (a): How does the formalism of Sec. 2.8 translate for fields on manifolds? The action is given
by

S =

∫
M
L =

∫
M
Lε =

∫
M
L
√
|g|dx1 ∧ ... ∧ dx4 . (6.51)

There are several possible ways to proceed. One way is to re-define the Lagrangian as a 4-form

L 7→ L = L̂ε , (6.52)

but that complicates the functional derivatives w.r.t. to the fields. Another way is to “helding fixed” the volume
element and but write the EOM in terms of the Lagrangian scalar density L̂. Obviously this work for any field φ than
the metric and leads to the Euler EOM in GR:

∂L̂
∂φ
−∇µ

(
∂L̂

∂(∇µφ)

)
= 0 . (6.53)

For the metric, the simplest way to proceed is to perform explicitely the variation of the Lagrangian scalar density in
components, which is done in the following.

To deal with (b) we decide to vary only w.r.t. to the metric (Hilbert action). One then further observes that
L̂ must be a scalar built out of second derivatives of the metric. The Riemann tensor in n = 4 has 20 components
precisely proportional to the metric’s second derivatives. In a local inertial frame one can further perform Lorentz
transformations so to eliminate 6 of the Riemann components. The Lagrangian can be constructed with the curvature
invariants constructed from the contractions of the Riemann; there are 20 − 6 = 14 possible curvature invariants,
but it turns out that only one of those is linear in the second derivatives: the Ricci scalar. For vacuum EFE we thus
postulate the

SH [g] =

∫ √
|g|Rd4x (Hilbert action) . (6.54)

Variations of the Hilbert action. The variation is better performed in the inverse metric. Is it possible? Yes,
stationary points of the action w.r.t. g are stationary points of the action w.r.t. g−1. The two variations are related
by

0 = δ(δµν ) = δ(gµαgνα) = δgµαgνα + gµαδgνα , multiply by gµρ and contract: (6.55a)

0 = gµρgναδg
µα + gµρg

µα︸ ︷︷ ︸
δαρ

δgνα ⇒ δgνρ = −gµρgναδgµα . (6.55b)

2Tensor densities or pseudotensors of weight w are quantities that under coordinate transformation transform as

τ
µ1...µk
ν1...νl = (det

∂xα
′

∂xα
)w

∂xµ1

∂xµ
′
1

...
∂xν

′
l

∂xνl
τ
µ′1...µ

′
k

ν′1...ν
′
l
.
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Perform the action variation by vary separately the three terms:

0 = δSH =

∫
δ(
√
|g|R) =

∫
δ(
√
|g|gµνRµν) (6.56a)

=

∫ √
|g|Rµνδgµν︸ ︷︷ ︸

I.

+

∫
δ(
√
|g|)R︸ ︷︷ ︸

II.

+

∫ √
|g|gµνδRµν︸ ︷︷ ︸

III.

(6.56b)

Term I. is already Ok. Term II makes use of the algebraic identity valid for any symmetric matrix 3

ln(detA) = Tr(lnA) ⇒ 1

detA
δ(detA) = Tr(A−1δA) . (6.57)

The above equation in terms of the metric determinant is (epxressing the variation of the metric with the variation
of its inverse):

δ det g = det g · gµνδgµν = det g · gµν(−gµαgνβδgαβ) = − det g · δνα · gνβδgαβ = −det g · gαβδgαβ . (6.58)

thus

δ
√
|g| = δ

√
−det g =

1

2

1√
|g|

(−δ det g) = −1

2

− det g√
−det g

gαβδg
αβ = −1

2

√
|g|gαβδgαβ . (6.59)

Thus,

II. = −1

2

∫ √
|g|Rgαβδgαβ . (6.60)

The calculation of term III. requires to compute first the variation of the Christoffel symbols and then substitute the
variation of the inverse metric; it is lenghty but straightforward and the result is (Carroll, 1997; Wald, 1984):

δK = gµνδRµν = ∇α
∇β(δgαβ)− gρσ∇α(δgσρ)︸ ︷︷ ︸

=:vα

 . (6.61)

The key point is that the variation of the Ricci can be expressed in terms of a divergence of a vector. When inserted
into the integral, the divergence is a total derivatives and thus produces a boundary term via Stokes theorem∫

M

∇αva =

∫
∂M

vαnα . (6.62)

The latter term is nontrivial: the vector vα contains covariant derivatives of the varied metric, thus it is not zero
(we are varying only the metric, and we are allowed to set to zero only the variation of the fields we are varying).
The term has an interesting interpretation: it represent the variation of the extrinsic curvature of the boundary ∂M.
Note that putting together the three terms,

δSH =

∫ √
|g|
(
Rµν −

1

2
gµνR

)
]δgµν −

∫ √
|g|δK . (6.63)

In order to obtain EFE in vacuum for any metric variation we can take

1√
|g|

δSH
δgµν

, (6.64)

which is the “variation holding the volume element fixed” mentioned at the beginning of the calculation. However,
we need to add one more hypothesis; there are two options:

1. Require δK = 0;
2. Redefine the action: SH =

∫
MR+

∫
∂MK.

Boundary term and Palatini action.
• The proper definition of the boundary term play a relevant role in the Hamiltonian formulation of GR, asymp-

toticallt flat spacetimes, and the definition of mass-energy of the spacetime.
• An alternative variational approach to GR is to consider the Palatini action in which one (i) does not assume

the Levi-Civita connection and (ii) varies the connection together with te metric

SP = SP [g,∇] Palatini action . (6.65)

This is possible because the Ricci tensor can be considered as dependent only on the connection (Cf. expression
in terms of Christoffel symbols) and independent on the metric (no explicit presence of the metric). The variation
of the Palatini action is not difficult but lengthy Wald (1984). Interestingly, it leads to EFE and the metric
compatibility condition for the connection (Levi-Civita) without the need of discussing boundary terms.

3A simple way to prove that is to start from exp(Tr(lnA)), expressing the matrix A in terms of its diagonal A = XΛA−1, use
lnA = X ln(Λ)X−1, use the cyclic property of the trace and the fact that the trace of a diagonal matrix is the sum of the eigenvalues.
These calculations result in exp(Tr(lnA)) = detA.
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Matter terms and Stress-energy tensor. The total action with matter fields φ has the form

S =
1

16πG
SH [g] + SM [g, φ] , (6.66)

where SM is the action for the matter fields. It is immediate from the calculation above the variation of the total
action w.r.t. the metric implies EFE for the following definition of the stress-energy tensor:

1√
|g|

δS

δgµν
= 0 ⇒ EFE , iff Tµν := − 2√

|g|
δSM
δgµν

. (6.67)

This shows how to obtain a symmetric (0, 2) stress-energy tensor given an action for the matter fields. For example,
for the scalar and electromagnetic fields

L = −1

2

√
|g|
(
∇a∇aφ+m2φ2

)
→ Tab = ∇a∇bφ−

1

2
gab
(
∇c∇cφ+m2φ2

)
(6.68a)

L = −1

4

√
|g|F abFab → Tab =

1

4π

(
FacF

c
b −

1

4
gabFdeF

de

)
. (6.68b)

It is left as [exercise] to compute ∇aT ab = 0 for the two cases.

6.6 Cauchy problem in GR

The EFE can be written as a 2nd order PDE system of 10 equations by introducing a coordinate system. For example
in vacuum one obtains

0 = Rµν = −1

2
gαβ∂α∂βgµν + gαβ∂α∂(µgν)β −

1

2
gαβ∂µ∂νgαβ +Qµν [∂g, g] (6.69a)

= −1

2
gαβ∂α∂βgµν − gα(µ∂ν)H

α + Q̃µν [∂g, g] (6.69b)

where Qµν (and Q̃µν) represents the non-principal part (lower derivatives of gµν), and the second line is re-written
introducing the quantity

Hα = ∂µg
αµ +

1

2
gαβgρσ∂βgρσ (6.70)

for later use. The equations Eq. (6.69a) are not 10 independent equations for the components gµν of the metric tensor
because the 4 Bianchi identities,

∇aGab = 0 , (6.71)

are further relations between the metric components.
Questions:

(i) What type of equations are EFE?
(ii) How to formulate the initial value/Cauchy problem?
(iii) Is the latter well-posed?

(i) Since the inverse metric is a rational combination of the metric g and its determinant det g and Qµν is a rational
combination of g, ∂g and det g, the equation Rµν [g] = 0 is a quasilinear 4 system of 10 coupled 2nd-order PDEs for the
metric components. Without further hypothesis EFEs are PDEs of no known type. However, with some physically
plausible hypothesis on the spacetime (solutions) it is possibvle to prove well-posedness of the initial value (Cauchy)
problem.

To answer (ii) and (iii) we look first at the electromagnetic fields.

Remark 6.6.1. A PDE problem is well-posed iff exists a unique solution that depends continuously on the boundary
data (at least locally in time.)

Maxwell field equations. We shall see that weak-field (linearized) EFE are analogous to electromagnetism. Let
us start recalling the Cauchy or initial value problem (IVP) for Maxwell equations in SR,

0 = ∂αFαβ = ∂α(∂αAβ − ∂βAα) . (6.72)

The β = 0 component is

0 = ∂α(∂αA0 − ∂0Aα) = 2A0 − ∂0∂
αAα = −HHH∂2

0A0 + ∂i∂
iA0︸ ︷︷ ︸

∆A0

+HHH∂2
0A0 − ∂0∂

iAi = (6.73)

= ∂i(∂iA0 − ∂0Ai) = ∂iFi0 = ∂iEi =: C (6.74)

4A PDE is quasilinear if it is linear in all the highest order derivatives of the unknown function.
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Note that the electric field can be defined as

Eα = Fα0 = Fαβn
β with nβ = (1,~0) , (6.75)

by introducing the timelike vector nα.
While Eq. (6.72) appears as 4 wave-like equations for the 4 components of Aα, the C = 0 equation (β = 0

component) does not contain 2nd time derivatives. If one tries to take a time derivative of the equation to obtain a
dynamical one, one fails and just find

∂0C = ∂0[∂α(∂αA0 − ∂0Aα)] = ∂i[ ∂α(∂αAi − ∂iAα)︸ ︷︷ ︸
l.h.s. of Maxwell eq. for β=i

]
.
= 0 (6.76)

as a result of the identity

0 ≡ ∂α∂β︸ ︷︷ ︸
sym

Fαβ︸︷︷︸
antisym

= ∂α(∂βFαβ) = ∂α[∂β(∂αAβ − ∂βAα)] = −∂0[∂β(∂0Aβ − ∂βA0)] + ∂i[∂β(∂iAβ − ∂βAi)] (6.77)

that was used in the second passage (The
.
= indicates as usual “on solution”/“on shell”). Hence,

• The equation
C = ∂αE

α = ∂α(∂αA0 − ∂0Aα) = 0 (6.78)

is a constraint.
• If initially satisfied, it is “transported along the dynamics” because ∂0C = 0
• The Maxwell equations are undetermined (3 equations for the 4 components Aα)
• As formulated above, Maxwell equations do not admint a well-posed IVP: given a solution with initial data on

a given spatial surface, Aα(t = 0), ∂0Aα(t = 0), the component A0 can be arbitrarily specified to obtain another
solution.

At this point, one exploits the gauge freedom: two solutions represent the same electric and magnetic fields if they
are related by the transformation

Aα 7→ Aα + ∂αφ . (6.79)

Alternatively, the physical solution is given by the equivalence class of all the Aα related to each other by the gauge
transformation above. To proceed, one must fix a gauge. For example, fix

∂αAα = 0 (Lorentz gauge, LG) , (6.80)

and obtain from Eq. (6.72)

0 = ∂αFαβ = ∂α∂αAβ −XXXX∂β∂
αAα

LG
= ∂α∂αAβ = 2ηAβ . (6.81)

Properties of the Maxwell equations with LG:
• The 4 equations are now dynamical (contain 2nd derivatives)
• The IVP is well posed (4 wave equations)
• For any choice of Aα(t = 0), ∂0Aα(t = 0) that respects the gauge

∂αAα(t = 0) = 0 and ∂0∂
αAα(t = 0) = 0 , (6.82)

The LG is satisfied for all times because

0
.
= ∂β(2Aβ) = 2(∂βA

β) (6.83)

• The constraint C = 0 (β = 0 eq. before gauge fixing) is sastified along the dynamics

C = 2Aα − ∂α∂0Aα = 2Aα − ∂0∂
αAα

LG.
= 0 . (6.84)

Summary 6.6.1. Maxwell equations for Aα (Eq. (6.72)) admit a well-posed IVP if one works in an appropriate
gauge (e.g. Eq. (6.80)) and if initial data satisfy the constraint Eq. (6.78).

EFE: constraints and evolution equations The structure of EFEs is similar to Maxwell equations. Let us
assume the spacetime possess a timelike vector field na that defines a foliation of 3D spatial hypersurfaces. With
this hypotesis we restrict ourselves to consider, of all the possibile spacetimes, only those called globally hyperbolic
spacetimes (see below). In vacuum, the projections of EFE along nb is

0
.
= Gabn

b =: Ca[∂2
i g, ∂g, g] (6.85)

and do not depend on 2nd time derivatives: they are 4 constraints. The Bianchi identities (Eq. (6.71)) play the role
of the identity in Eq. (6.77) and guarantee that the constraints are transported along the dynamics.
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A direct way to see this is to pick coordinates such that 0 = Cµ = G0µ, and because

∇αGαµ = 0 ⇒ ∂0G
0µ = −∂kGkµ − ΓµαβG

αβ − ΓααρG
µρ︸ ︷︷ ︸

this r.h.s contains at most ∂2
0g

, (6.86)

the l.h.s. ∂0G
0µ contains at most ∂2

0g, and thus Cµ = G0µ contains at most first time derivatives. Moreover, if
Cµ(t = 0) = 0 then from the equation above ∂0C

µ = ∂0G
0µ = 0 because Gµν

.
= 0 for all times; the constraints are

zero all times.
Similarly to Maxwell eqs, one is interested to the EFE solution given by the equivalence class of all the metric gαβ

related to each other by coordinate transformation (diffeomorphism invariance). A way to obtain a well-posed IVP
for Eq. (6.69a) is to choose coordinates such that Rµν ∼ 2gµν , i.e.

Hα ≡ 0 (Harmonic gauge) , (6.87)

and initial data for gµν that satisfy the constraints. The name of this coordinate condition follows from:

0 = 2xµ = gαβ∇α∇βxµ = gαβ∇α(∂βx
µ) = gαβ [∂α(∂βx

µ︸ ︷︷ ︸
δµβ

)− ∂γxµ︸ ︷︷ ︸
δµγ

Γγαβ ] = 0− gαβΓµαβ = −Hµ . (6.88)

Causality and globally hyperbolic spacetime. Above, when separating the EFE in constraints and evolution
equations, we have implicitly assumed the existance of a global notion of time that determines past and future of each
event. In SR the causal structure is simple and given by the light cones: an event can be connected by spacelike,
timelike, null curves to other events, and that determines in an absolute sense its future and its past. In the language
of hyperbolic PDE, the light cone determines the domain of dependence and the domain of influence of the solution
of the wave equation, 2ηφ = 0.

In GR the global causal structure of the spacetime is more complex. One can consider a closed set of causally-
connected events: it is impossible to say which event of the set happened before or after another one. The situation
corresponds to the existance of closed timelike curves; an example is given by the Gödel cosmology that satisfies
EFE with the cosmological constant. Other examples are discussed in e.g. Chap. 2 of Carroll (1997). One considers
“physically realistic” a spacetime in which “causality is well-behaved”, i.e. where it is possible to continuously
distinguish between past and future as the event p moves in M. Such manifolds are called time-orientable.

Some definitions:
• Achronal set S ⊂M: subset of events that are not connected by timelike curves
• Future domain of dependence of S D+(S): the set of events such that every causal curve intersect S in the past
• Future Cauchy horizon of S H+(S): the boundary of D+(S)

All the definitions repeat substituting + 7→ − and “past”7→ “future”. The domain of dependence is D(S) = D+(S)∪
D−(S). Finally, a Cauchy surface is a spacelike hypersurface Σ ⊂ M whose domain of dependence is the entire
manifold D(Σ) =M (H(Σ) = 0). Every causal (timelike or null) curve without end-point intersect Σ only once. In
other terms, given Σ one can predict past and future. Note Σ are not unique.

Definition 6.6.1. M is said globally hyperbolic spacetime iff admits a Cauchy surface.

Many spacetimes of astrophysical and cosmological interest are assumed to be globally hyperbolic. For example,
it should be clear that weak-field spacetimes or the spacetime outside a star are of such type.

Remark 6.6.2. The IVP for the wave equation 2gφ = 0 is well posed in a globally hyp. spacetime. See e.g. (Baer
et al., 2008).

6.7 Killing vectors (KVs)

When discussing the local conservation law for the stress-energy tensor it was pointed out that observer such that
∇(avb) = 0 allowed the definition of energy conservation. Indeed vectors satifies that equation play a special role in
GR and are associated with conserved currents.

Definition 6.7.1. Killing vector: ka vector field solution of the Killing equation ∇(akb) = 0.

Theorem 6.7.1. The matter current associated to a KV Jak := Tabk
b is conserved ∇aJak = 0.

Proof (See Eq. (6.33) and discussion around there):

∇aJak = ∇aT ab︸ ︷︷ ︸
=0

kb + T ab∇akb = T ab∇akb =
1

2
T ab∇(akb) = 0 , (6.89)

where one uses the KV definition in the last equality, the equation

T ab∇(avb) = T ab∇(avb) =
1

2
(T ab∇avb + T ab︸︷︷︸

=T ba

∇bva) = T ab∇avb , (6.90)
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that is valid for every symmetric tensor Tab, and the EOM for the stress energy tensor.
In physics, Nöther theorem says that conserved quantities are associated to symmetries. In GR, symmetries are

precisely associated to KV. Technically, one says that KV are infinitesimal generators of isometries because the metric
remains invariant along their integral curve (see also below discussion on Lie derivatives).

Imagine the spacetime has some symmetry (stationary, spherical symmetry, etc). Then there must exists some
coordinates adapted to the symmetry in which the metric component are independent on certain coordinates. For
example, the metric

g = dx2 + f(y)dy2 (6.91)

is invariant under translations in the x direction and its components do not depend on x; or the metric

g = A(r)dr2 +B(r)dΩ2 (6.92)

is a spherically symetric and its components do not dependend on the angle φ. In general, given a symmetry there
exists a specific coordinate xσ∗ (σ∗ is fixed!) such that

∂σ∗gµν = 0 ∀µ, ν . (6.93)

In this coordinate system the KV is simply given by

kµ = (∂σ∗)
µ = δµσ∗ . (6.94)

Geodesics in presence of symmetries. KV are associated to conserved quantities in along geodesics.
Take the geodesic equation for the tangent velocity uµ = ẋµ with index down in coordinate adapted to the

symmetry:

uα∇αuµ = 0 ⇔ duµ
dλ

=
1

2
∂µgναu

νuα . (6.95)

For the special coordinate µ = σ∗, there exists a conserved quantity:

µ = σ∗ ⇒ ∂σ∗gνα = 0 ⇒ duσ∗
dλ

= 0 . (6.96)

Interestingly the conserved quantity can be written in a invariant way as the contraction between the tangent vector
and the KV:

uσ∗ = uµδ
µ
σ∗ = uµkµ = uµk

µ . (6.97)

Going back to the geodesic equation, one sees immediately that this implies that (note the last passage the use of
symmetry properies discussed in Remark 6.3.1)

duσ∗
dλ

= 0 ⇒ 0 = uα∇α(uµkµ) = uα∇αuµ︸ ︷︷ ︸
=0

kµ + uαuµ∇αkµ = uαuµ∇(αkµ) . (6.98)

The Killing equation (and the related antisymmetry of ∇νkµ) implies the existance of conserved quantities along the
geodesics.

Killing vectors and Riemann tensor. The intuitive idea developed so far is that geometry does not change along
the direction identified by a KV. Indeed this is the content of the following

Theorem 6.7.2. The directional derivative of the Ricci scalar along the KV is zero: ka∇aR = 0.

Proof (sketch). The proof uses the antisymmetry of the tensor ∇akb (implied by the Killing equation) and the
Bianchi identities. The main steps are:

• Show the derivatives of the KV are actually related to the Riemann tensor by

∇a∇bkc = R c
bad kd , and ∇a∇bka = Rbdk

d . (6.99)

• Start from contracting the Bianchi identities

0 = ∇aGabkb = (∇aRab −
1

2
gab∇aR)kb = (∇aRab −

1

2
∇bR)kb ⇒ 2kb∇aRab = kb∇bR . (6.100)

• Show that the l.h.s. of the last equation is zero using the symmetry properties discussed in Rem. 6.3.1 and the
relation between the derivative of the KV and Ricci tensor:

kb∇aRab = ∇a(kbRab)− Rab︸︷︷︸
sym

∇akb︸ ︷︷ ︸
antisym

= ∇a(kbRab) + 0 = ∇a∇c∇akc = [∇a,∇c] ∇akc︸ ︷︷ ︸
antisym

= 0 . (6.101)
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6.8 Lie derivative

Derivative operators studied so far:
• d Exterior derivative

– specific for p-forms
– no metric required
– key relevance: Stokes’ theorem.

• ∇ Convariant derivative
– for any tensor
– Levi-Civita connection compatible with the metric
– key relevance: parallel transport, curvature.

Let us introduce
• L Lie derivative along u

– for any tensor
– directional derivative along ua

– key relevance: symmetries.

Definition 6.8.1. Consider two manifolds M and N , the function f : N 7→ R and the map φ :M 7→ N .
The pushback of the function f by φ is the function φ∗f = f ◦ φ :M 7→ R.
The pullforward of a vector v ∈ TpM is the vector φ∗v(f) = v(φ∗f) = v(f ◦ φ) ∈ Tφ(p)N .
The pushback of a 1-form ω ∈ T ∗pN is the 1-form φ∗ω(v) = ω(φ∗v) ∈ T ∗pM.

Note these are “one-way” maps: functions cannot be pulled forward, vectors cannot be pushed back, 1-forms
cannot be pulled forward etc. The pushback/pullforward operations extended to (0, l) and (k, 0) tensors respectively.

Pushback/pullforward operations are general transformations connecting points and vectors/duals between mani-
folds. Given a natural basis ofM {∂µ = ∂/∂xµ (µ = 1...m)} and of N {∂α = ∂/∂yα (α = 1...n)} (note the dimensions
can be different), the pushback/pullforward operations are

φ∗v(f) = (φ∗v)α∂αf = vµ∂µ(φ∗f) = vµ∂µ(f ◦ φ) = vµ∂µ(f(φ)) = vµ
∂yα

∂xµ
∂f

∂yα
= vµ

∂yα

∂xµ
∂αf (6.102a)

φ∗ω(v) = (φ∗ω)µdxµ(v) = ωαdyα(φ∗v) = ωαv
ν ∂y

β

∂xν
dyα(∂β)︸ ︷︷ ︸

=δαβ

= ωαv
ν ∂y

α

∂xν
=

= ωαv
ν ∂y

α

∂xµ
δµν = ωαv

ν ∂y
α

∂xµ
dxµ(∂ν) = ωα

∂yα

∂xµ
dxµ(v) (6.102b)

where the underlined expressions in the same line highlight the components of the pushback/pullforward operation in
terms of those of the argument. In terms of components, one can think about the action as a transformation matrix,
but should note that the transformation in general is not invertible.

Pushback/pullforward operations are useful in the context of
• Submanifolds and calculation of induced metric, Example 6.8.1;
• Re-interpret coordinate transformation on a manifold as diffeomorphisms (active coordinate transformations),

Remark 6.8.1

Example 6.8.1. Consider the unit 2-sphere S2 with coordinate xµ = (θ, ϕ) immerse in R3 with coordinate yα =
(x, y, z) and the map

φ : S2 7→ R3 : φ(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ) . (6.103)

The pushforward of the Euclidean metric

gαβ = diag(1, 1, 1) (6.104)

is given by the transformation
∂yα

∂xµ
=

[
cos θ cosϕ cos θ sinϕ − sin θ
− sin θ sinϕ sin θ cosϕ 0

]
(6.105)

and results is the induced metric on S2

gµν =
∂yα

∂xµ
∂yβ

∂xν
gαβ =

[
1 0
0 sin2 θ

]
(6.106)

Remark 6.8.1. Coordinate transformations can be interpreted as diffeomorphisms on the manifold. The the dif-
feomorphism φ : M 7→ M (smooth and invertible). Instead of changing from xµ : M 7→ Rn to new functions
xµ
′

: M 7→ Rn (remapping the manifold), one can think of changing the points on the manifold using φ and then
evaluate the coordinates on the new points using the pullback: (φ∗x)µ :M 7→ R3. This new point of view gives another
way to compare tensors at different points on M. (See Remark 3.4.1.)
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Consider a vector field ua, the associated field lines φλ (integral curves ẋµ(λ) = uµ) constitute a 1-parameter
family of diffeomorphisms. Take another vector va and ask: What is the variation of v along the u? Clearly, vectors
need to be compare at the same point p;

Definition 6.8.2. Lie derivative along u of v at point p is a vector given by pullback the vector v in a neighbor point
along the integral curves of u:

Luv := lim
λ→0

φ∗λv − v
λ

. (6.107)

Introduce a coordinate system yµ adapted to the vector u, i.e. such that uµ = (1, 0, 0, ..., 0). The integral curves
close to point p in these coordinates give immediately a coordinate expression for the Lie derivative is

φλ(p) = (y1 + λ, y2, ..., yn) , ⇒ Luvµ =
∂vµ

∂y0
. (6.108)

The expression above is not covariant, but observing that in the same coordinate the commutator between u and v
has the same expression

[u, v]µ = uν∂νv
µ − vν∂νuµ =

∂vµ

∂y0
, (6.109)

should convince that the general expression is:
Luv = [u, v] . (6.110)

Properties.
• Luv = −Lvu
• The Lie derivative generalizes to any tensor

LuT a1...anb1...bn
= uc∇cT a1...anb1...bn

−
∑
j

∇cuajT a1...c...anb1...bn
+
∑
i

∇biucT
a1...an
b1...c...bn

. (6.111)

Relation to KV and symmetries. The Lie derivative of the metric along u is the symmetrized covariant derivative
of u:

Lugab = uc∇cgab︸ ︷︷ ︸
=0

+∇aucgab +∇bucgab = ∇(aub) . (6.112)

This implies that the Lie derivative of the metric is zero along a KV:

∇(akb) ⇔ Lkgab , (6.113)

i.e. the metric is constant along the integral lines of k. More in general,for any tensor that is invariant with respect
the diffeomorphism generated by a vector u, the Lie derivative along u fo the tensor is zero.
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7. Weak field and waves

4○
These lectures present the weak field limit of GR and the EFE linearized arounf Mikowski spacetime. The

equations apply for the description of light deflection, gravitoeletric/magnetic phenomena and gravitational waves.
Gravitational-wave propagation properties, their effect on test masses, and the quadrupole formula are discussed. A
discussion on the concept of gravitational-wave energy and energy in GR is started here.

Suggested readings. Chap. 4 of Wald (1984); Chap. 4 of Carroll (1997); Chap. 7-8 of Schutz (1985); Book of Mag-
giore (2007).

7.1 Weak field GR

In the regime of weak gravity one assumes that there exists a global inertial Cartesian frame in which the metric can
be written as

gµν = ηµν + hµν with |hµν | � |ηµν | ∼ 1 . (7.1)

Since the component of the perturbation of Mikowski spacetime are “small” (in the sense above), the GR equations
can be linearized at linear order in h. Linearized equations apply, for example, to the Solar system where

|hµν | ∼
φ

c2
.
GM�
c2R�

∼ 10−6 , (7.2)

and in general describe
• Newtonian gravity;
• Gravitoelectric and gravitomagnetic phenomena;
• Propagation of gravitational waves.

Formally, the linearized theory can be regarded as a field theory in which
• ηµν is a background metric;
• The grav.field generated by the matter does not backreact on the source;
• hµν is the main field and transforms as a tensor on flat spacetime under Lorentz transformation (Lorentz

covariance). Consider a Lorentz transformation of coordinates (ΛTηΛ = η):

xµ = Λµν(x′)ν =
∂xµ

∂xν′
xν
′
⇒ gµ′ν′ =

∂xµ

∂xµ′
∂xν

∂xν′
gµν = Λµµ′Λ

ν
ν′gµν = Λµµ′Λ

ν
ν′(ηµν + hµν) (7.3a)

= Λµµ′Λ
ν
ν′ηµν︸ ︷︷ ︸

=ηµ′ν′

+Λµµ′Λ
ν
ν′hµν = ηµν + Λµµ′Λ

ν
ν′hµν (7.3b)

⇒ hµν → hµ′ν′ = Λµµ′Λ
ν
ν′hµν . (7.3c)

7.2 Infinitesimal diffeomorphism invariance

Symmetry of linearized GR. Consider an infinitesimal coordinate transformation:

xµ 7→ xµ
′

= xµ + ξµ(xα) with |∂βξα| ∼ |hµν | � 1 (7.4a)

∂xµ
′

∂xµ
= δµ

′

µ + ∂µξ
µ′ (7.4b)

∂xµ

∂xµ′
= δµµ′ − ∂µ′ξ

µ +O(|∂ξ|2) (7.4c)

where one uses the Taylor expansion for the inverse (1+δA)−1 ≈ 1−δA. Note prime indexes refer to tensor components
in primed coordinates x′, while the unprimed indexes refer to tensor component in unprime coordinates x; indexes on
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r.h.s. and l.h.s. take the same values (although they do not “match” on the two side of the equation). For example,
gµ′ν′ = ηµν + hµν = ηµ′ν′ + hµν really means gµν(x′) = ηµν + hµν(x). Using this notation is useful to keep formulas
compact. To linear order in h and in ∂ξ the metric change is:

gµ′ν′ =
∂xµ

∂xµ′
∂xν

∂xν′
gµν = (δµµ′ − ∂µ′ξ

µ)(δνν′ − ∂ν′ξν)(ηµν + hµν) (7.5a)

= (δµµ′δ
ν
ν′ − ∂µ′ξµδνν′ − ∂ν′ξνδ

µ
µ′ + ∂µ′ξ

µ∂ν′ξ
ν)(ηµν + hµν) (7.5b)

= δµµ′δ
ν
ν′ηµν︸ ︷︷ ︸

=ηµ′ν′

− ∂µ′ξµδνν′ηµν︸ ︷︷ ︸
=∂µ′ξν′

−∂ν′ξνδµµ′ηµν + δµµ′δ
ν
ν′hµν︸ ︷︷ ︸

hµ′ν′

− ∂µ′ξµδνν′hµν − ∂ν′ξνδ
µ
µ′hµν + ∂µ′ξ

µ∂ν′ξ
νhµν︸ ︷︷ ︸

=O(h2)

(7.5c)

= ηµ′ν′ + hµ′ν′ − 2∂(µ′ξν′) (7.5d)

= ηµν + hµ′ν′ − 2∂(µ′ξν′) (7.5e)

Any infinitesimal coordinate transformation that maps the perturbed metric field into

hµν 7→ hµ′ν′ = hµν + 2∂(µξν) , (7.6)

leaves the metric invariant. The weak metric is represented by the equivalence classes of metrics linked by the infinites-
imal coordinate transformations above. Note the linearized Einstein tensor is invariant w.r.t the above transformation
[exercise].

Observations.

• If one considers ξα as the components of a vector, then the transformation can be written in terms of the Lie
derivatives, and the infinitesimal coordinate transformation is then interpreted as an infinitesimal diffeomorphism
generated by ξ:

2∂(µξν) = Lξηµν ⇒ hµν 7→ hµν + Lξηµν . (7.7)

Hence, weak field GR is invariant under infinitesimal diffeomorphisms.
• The above transformation is the analogous of gauge transformation for the potentials in electromagnetism:

Aα 7→ Aα + ∂αχ . (7.8)

7.3 Weak field equations

Calculation of the Einstein tensor linearized in h. Indexes are raised on lowered with the flat metric η; for example
the trace of the perturbation is h := hαα = ηαβhαβ . It is left as [exercise] to show:

gµν = ηµν + hµν +O(h2) (7.9a)

Γµαβ =
1

2
ηµλ (∂αhλβ + ∂βhλα − ∂λhαβ) +O(h2) (7.9b)

Rµν = ∂Γ− ∂Γ + ΓΓ− ΓΓ︸ ︷︷ ︸
O(h2)

= ∂αΓαµν − ∂µΓααν +O(h2) ≈ ∂α∂(µhν)α −
1

2
∂λ∂

λhµν −
1

2
∂µ∂νh (7.9c)

R = ηµνRµν =
1

2
(ηµν∂α∂µhνα + ηµν∂α∂νhµα)− 1

2
∂λ∂

λ(ηµνhµν︸ ︷︷ ︸
=h

)− 1

2
ηµν∂µ∂ν︸ ︷︷ ︸
∂λ∂λ

h =
1

�2
�2∂

α∂νhνα − ∂λ∂λh (7.9d)

Gµν = Rµν −
1

2
ηµνR = ∂α∂(µhν)α −

1

2
∂λ∂

λhµν −
1

2
∂µ∂νh−

1

2
ηµν(∂α∂βhαβ − ∂λ∂λh) . (7.9e)

The linearized Einstein tensor

Gµν = ∂α∂(µhν)α︸ ︷︷ ︸
I.

− 1

2
∂λ∂

λhµν︸ ︷︷ ︸
II.

− 1

2
∂µ∂νh︸ ︷︷ ︸
III.

− 1

2
ηµν∂

α∂βhαβ︸ ︷︷ ︸
IV.

+
1

2
ηµν∂λ∂

λh︸ ︷︷ ︸
V.

, (7.10)

can be written in a simpler form considering the trace reverse metric

h̄µν := hµν −
1

2
ηµνh . (7.11)

Note that

h̄ = ηµν h̄µν = ηµνhµν︸ ︷︷ ︸
=h

−1

2
ηµνηµν︸ ︷︷ ︸

=4

h = −h . (7.12)
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Calculate each term:

I = ∂α∂(µh̄ν)α +
1

4
∂α∂µ(ηναh) +

1

4
∂α∂ν(ηµαh) = ∂α∂(µh̄ν)α︸ ︷︷ ︸

Ia

+
1

2
∂(µ∂ν)h︸ ︷︷ ︸

Ib

(7.13a)

II = − 1

2
ηαβ∂

α∂βh̄µν︸ ︷︷ ︸
IIa

− 1

4
ηµνηαβ∂

α∂βh︸ ︷︷ ︸
IIb

(7.13b)

IV = −1

2
ηµν∂

α∂β(h̄αβ +
1

2
ηαβh) = − 1

2
ηµν∂

α∂βh̄αβ︸ ︷︷ ︸
IVa

− 1

4
ηµνηαβ∂

α∂βh︸ ︷︷ ︸
IVb

(7.13c)

0 = V + IIb + IVb (7.13d)

0 = III + Ib (7.13e)

Gµν = IIa + Ia + IVa = −1

2
ηαβ∂

α∂βh̄µν + ∂α∂(µh̄ν)α −
1

2
ηµν∂

α∂βh̄αβ (7.13f)

From the above expression one sees that the last two terms contain the divergence of the metric. Imposing the Hilbert
gauge (or Lorentz)

∂αh̄µα = 0 , (Hilbert gauge) (7.14)

leads to the following equations for linearized GR:

2ηh̄µν = −16πG

c4
Tµν . (7.15)

Observations
• By making an infinitesimal coordinate transformation, it is always possible to reduce to Hilbert gauge. The set of

4 functions ξ is given by the solution of 4 inhomogeneous wave equations (Cf. Lorentz gauge in electrodynamics):

hµν 7→ hµν + 2∂(µξν) (7.16a)

h 7→ h+ ηαβ∂αξβ + ηαβ∂βξα = h+ 2∂µξ
µ (7.16b)

h̄µν 7→ h̄µν + 2∂(µξν) − ηµν∂αξα (7.16c)

∂αh̄µα 7→ ∂αh̄µα + 2ξν +��
��∂µ∂νξµ −����∂ν∂λξ

λ ⇒ 2ξν = −∂αh̄να =: Vν 6= 0 (7.16d)

• Eq. (7.15) is a linear wave equation for the components of h. At linear order in h, the stress energy tensor does
not depend on h, so in linear GR one can specify the matter source and solve for the metric. For example, it is
possible to calculate solutions using Green functions as in electrodynamics (see below).

• The Bianchi identity in the weak field simplifies, and involves the partial derivative of the Einstein tensor (since
∂ is the connection associated to η). Hence, the weak field equations imply the conservation of the stress-energy
tensor on flat background, and that matter does not backreact on the curvature:

∂νG
µν = 0 ⇒ ∂νT

µν = 0 . (7.17)

• In vacuum, linearized EFEs are the equations for a massless spin-2 field propagating in flat spacetime (Chap. 13
Wald (1984)).

7.4 Weak field solutions

Formal solutions of Eq. (7.15) for static and stationary matter distributions.

7.4.1 Static source

A static matter distribution is modeled by a time-independent stress-energy tensor in the form

Tµν = ρtµtν i.e. T00 = c2ρ(xi) , T0i = Tij = 0 , (7.18)

where tµ = (∂t)
µ is the vector along the time direction of the global inertial coordinates. With this prescription, the

r.h.s. of Eq. (7.15) is time-independent, thus also the grav. field must be time independent

∂th̄µν = 0 , (7.19)

and the linearized EFE reduce to Poisson equations for the components of the metric field:{
∆h̄µν = −16πρ , µ = ν = 0

∆h̄µν = 0 , otherwise .
(7.20)
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The solution is immediately given in terms of the Newton grav. potential (formally compare the equations above to
Newton’s ∆φ = 4πρ): {

h̄µν = −4φ , µ = ν = 0

h̄µν = 0 , otherwise
⇒ h̄µν = −4φtµtν . (7.21)

Reversing the trace:

h̄ = ηµν h̄µν = η00h̄00 = +4φ (7.22a)

hµν = h̄µν −
1

2
ηµν h̄ = −4φtµtν −

1

2
ηµν(4φ) (7.22b)

gµν = ηµν + hµν = ηµν + h̄µν −
1

2
ηµν h̄ = ηµν(1− h̄

2
) + h̄µν = ηµν(1− 2φ)− 4φtµtν (7.22c)

or (reintroducing c):

g = −c2
(

1 + 2
φ

c2

)
dt2 +

(
1− 2φ

c2

)
δijdx

idxj . (7.23)

Note that far from a source of mass M the multipolar expansion of the grav. potential starts with φ ≈ −Mr +O(1/r2),
so the distant metric is fully specified by the source mass and reduces to Mikowski at r →∞ if M 6= 0, or everywhere
if M = 0. Recalling the discussion in Chap. 4, it is remarkable that this metric describes the motion of particles
(geodesic motion) in both Newtonian gravity and SR (using the appropriate limits). Note, however, a subtle point:
the geodesic equations on the weak metric (weak gravity field) imply

d2xi

dt2
= −∂iφ , (weak gravity) (7.24)

but they are not consistent with the equation ∂µT
µν = 0, that imply instead geodesics on flat metric (Mikowksi

spacetime, unaccelerated motion, no gravity)

d2xi

dt2
= 0 , (no gravity) . (7.25)

This illustrates some of the difficulties/inconsistencies in predicting the EOM of matter from linearized EFE as an
expansion on η. Eq. (7.25) is the EOM of the matter that determines curvature, Eq. (7.24) is the EOM of matter in
the resulting slightly curved spacetime.

Example 7.4.1. Deflection of light (Einstein’s 1915 calculation). Consider a photon moving in a weak and static
gravitational field generated by a mass M . The weak metric is fully defined by Eq. (7.23) and the grav. potential φ =
GM/rc2. The photon moves in the z = 0 plane in direction x with impact parameter y = b. Setting d`2 = δijdx

idxj

and interpreting the d as differential, the coordinate speed of the photon can be quckly computed from the condition
g = 0,

v =
d`

dt
= c

(
1− 2φ

1 + 2φ

)1/2

≈ c(1− 2φ) = c

(
1− 2GM

c2r

)
, (7.26)

where the square root was expanded in φ� 1. The speed of light measured in these non-inertial coordinates decreases
the closer the photon approach to the mass. This is analogous to a wave front passing through a medium in which
the speed of the wave varies with position. Hence, a beam of light rays is bent towards the mass the closer is to the
mass. The deflection can be calculated using Huygen’s principle in analogous way to the refraction angle of waves in
a medium,

dθ

dx
=

1

c

dv

dy
=

2GM

c2
y

(x2 + y2)3/2
⇒ θ =

2GM

c2

∫
bdx

(x2 + b2)3/2
=

4GM

c2b
. (7.27)

Details and calculations are left as [exercise]. The same solution can be found considering null geodesics, e.g. (Carroll,
1997), and also by starting from the Schwazrschild metric in isotropic coordinates. Note that one can also perform a
calculation using Newton gravity (the acceleration does not depend on the photon mass...) and find that GR result is
twice the Newtonian prediction.

Observations conducted by Eddington in 1916 and others later, indicate that the Sun deflects photons of an angle
θd ≈ 8.5 × 10−6radians (1.75 arcsec) in agreement with the GR formula above (M� = 1.98847 × 1033 g and R� =
6.960×1010 cm). Accurate measurements of light deflection are also available from the 60s using radio interferometers
and astrophysical sources called blazars [Cf. gravitational lensing].

7.4.2 No-stresses source

A matter distribution with mass-energy density current vector Jµ and no stresses is modeled by a stress-energy tensor
in the form

Tµν = 2J(µtν) − 2ρtµtν i.e. T0µ = cJµ , Tij = 0 . (7.28)
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Note that Jµ = ρ(W,Wc−1vi), thus the static case considered above is equivalent to consider the slow velocity limit
v/c � 1 for the (nonrelativistic) source. Similarly, taking Tij = 0 is equivalent to neglect velocity terms O(1/c2) in
the source motion.

The linearized equations read {
2h̄0µ = −16πT0µ , µ = 0, ..., 4

2h̄ij = 0 , i, j = 1, ..., 3 .
(7.29)

If the spatial component of the metric are assumed time-indpendent, then they are solution of the boundary value
problem with the Poisson equation and boundary values h̄ij |r→∞ = 0. This implies they are zero:

∂th̄ij = 0 ⇒

{
∆h̄ij = 0

h̄ij |r→∞ = 0
⇒ h̄ij = 0 . (7.30)

The linearized equations reduce to those for h̄0µ, that are formally the Maxwell equations in Lorentz gauge for the
field

Aµ := −1

4
h̄0µ = −1

4
h̄µνt

ν . (7.31)

Once a solution is found, the metric is given by [exercise]

g00 = −1 + 2A0 , g0i = 4Ai , gij = 1 + 2A0δij , (7.32)

If one further assumes that h̄0µ is time-independent a formal solution can be obtained with the usual Green function
method for the Poisson equation

∂th̄0µ = 0 ⇒

A0 = −φ

Ai =
∫
d3x′

T0i(x
′)

|~x− ~x′ |
.

(7.33)

The above expression indicate that A0 = O(1/c2) and Ai = O(1/c). Reintroducing the factors c, the metric reads

g = −c2
(

1 + 2
φ

c2

)
dt2 + 4cAidx

idt+

(
1− 2φ

c2

)
δijdx

idxj . (7.34)

Using the same formulas as in electrodynamics, one then defines from Aµ the gravitoelectric and gravitomagnetic fields
and the geodesics EOM reduce to those of a particle subject to the (gravitational) Lorentz force in the small velocity
limit. Consider the Lagrangian for a particle in the weak metric Eq. (7.34) and expand in v/c 1 :

L == −mc
√
−gµν

dxµ

dt

dxν

dt
= −mc

√
c2(1− 2A0)− 2 · 4cAivi − (1 + 2A0)δijvivj (7.35a)

= −mc2
√

1− 2A0 − 8Ai
vi

c
− vjvj

c2
+ 2A0

vjvj
c2

= −mc2
√√√√√1 +

2φ

c2
− 8Ai

vi

c
− vjvj

c2︸ ︷︷ ︸
O(1/c2)

+
2φvjvj
c4

(7.35b)

≈ −mc2 +
m

2
v2 −mφ+ 4mcAiv

i . (7.35c)

The above equation implies an EOM with the (gravitational) Lorentz force,

~̈x = ~E + 4~v × ~B . (7.36)

The difference w.r.t. the EOM for a charge particle are that (i) there is no charge; (ii) there is a factor “4” in front
of the gravitomagnetic field.

Example 7.4.2. Lense-Thirring effect. The spacetime of a “weaky” gravitating planet or star in slow rotation is
described by the metric of Eq. (7.32). The grav. field is stationary and the motion of a test body in such field is
precisely described by the gravitoeletric/magnetic equations. For example, the precession motion of a gyroscope due to
the gravitomagnetic field of the rotating object is precisely given by the spin-precession formula of electromagnetism

d~s

dt
= ~µ× ~B =

q

2m
~s× ~B = ~s× ~Ω , (7.37)

where ~Ω = −q/m~B, q is the particle charge and ~µ the magnetic moment. The formal substitution

q 7→ m , ~B 7→ 4 ~Bg , (7.38)

1Recall that x0 = ct and vi = dxi/dt.
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maps the eletrogmagnetic problem top the gravitomagnetic one. The precession frequency in the latter is thus Ωg =
−2Bg. In the grav. field of Earth one obtains that a free-falling body at distance r acquires an angular velocity

Ω = ϕ̇ ∼ 0.22′′/yr

(
R⊕
r

)3

. (7.39)

This effect is called also frame dragging, and it has been measured by the satellite mission Gravity Probe B in 2004
with 20% confidence.

An extreme frame dragging phenomenon happens around rotating black holes (But it is not weak field, Eq. (7.32)
do not apply). Particles close to the black hole horizon are dragged around at a speed comparable to the hole’s rotation
Ω ∼ ΩBH. The Lense-Thirring effect in strong field play an important role to understand high-energy particle emission
from matter accreting onto black holes.

7.5 Gravitational waves (GWs) propagation

The linearized EFE in vacuum are homogeneous wave equations for each component of the metric,

0 = 2ηh̄µν = ηαβ∂α∂βh̄µν . (7.40)

Solutions to the above equation can be constructed by superposition of plane waves with (constant) wave vector

kµ = (ω,~k) 2 and amplitudes Aµν :

h̄µν = Aµν exp (ikµx
µ) = Aµν exp [i(−k0x

0 + ~k · ~x)] = Aµν exp [i(−ωt+ ~k · ~x)] (7.41a)

∂µh̄αβ = Aαβ∂µ(exp (ikρx
ρ)) = h̄αβ∂µ(ikρx

ρ) = ih̄αβkρδ
ρ
µ (7.41b)

Substituting the plane-wave ansatz into the wave equations, one finds immediately that the the wave vector is null
(Mikowski metric):

0 = 2h̄αβ
p.w.
= −ηµνkµkν h̄αβ ⇒ ηµνkµkν = kµk

µ = 0 ⇒ ω2 = |~k|2c2 . (7.42)

The last equation is the dispersion relation for GWs and indicates GWs propagate at the speed of light. Another
way to see this is to consider the worldline of a photon moving along kµ, and observe that it moves in phase with the
wave’s phase ϕ = kµx

µ:

xµ(λ) = kµλ+ xµ(0) ⇒ kµx
µ(λ) = kµk

µ︸ ︷︷ ︸
=0

λ+ kµx
µ(0) = kµx

µ(0) = const . (7.43)

Transverse-traceless (TT) gauge and physical degrees of freedom. Linearized EFE in vacuum are 10 equa-
tions. Imposing the Hilbert gauge (4 equations) reduces the problem to 10 − 4 = 6 equations, but there remains
freedom in the choice. Looking at Eq. (7.16), it is immediate to see that the Hilbert gauge is defined up to 4 harmonic
functions ξµ: any infinitesimal transformation such that 2ξν = 0 maintains −∂αh̄µα = 0. Let us further fix this gauge
choice.

The Hilbert gauge Eq. (7.14) translates into the 4 equations that imply the waves are transverse to the direction
of propagation:

0 = −∂αh̄µα = ikµAµν exp [i(kρx
ρ)] = ikµh̄µα ⇒ kµAµν = 0 . (7.44)

The additional gauge freedom can be fixed by
(i) writing the harmonic function as (note this clearly solves 2ξν = 0)

ξµ = Bµ exp [i(kρx
ρ)] , (7.45)

such that the transformation of the trace reverse metric translates into the following transformation of the
plane-wave amplitude,

h̄µν 7→ h̄µν + 2∂(µξν) − ηµν∂αξα ⇒ Aµν 7→ Aµν − i2k(µBν) + iηµνkρB
ρ . (7.46)

(ii) and then fixing the functions Bµ requiring the additional 4 conditions{
h̄ = 0 = Aµµ Traceless condition

h̄0µ = 0 = A0µ Transverse condition .
(7.47)

The above conditions give a linear algebraic system for Bµ, which can be inverted to find the solution. The
gauge above is called traceless & transverse (TT) gauge. The remaining degrees of freedom are 10− 4− 4 = 2,
that represent the two physical states of gravity waves.

2Note that in general the wave frequency measured by an observer of 4-velocity uµ is ω = kµuµ.
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Let us explicitely consider a wave propagating along the ẑ-direction,

kµ = (ω, 0, 0, k3) . (7.48)

Then

1. Null condition, kµk
µ = 0 ⇒ −k3 = ω;

2. Phase, kρx
ρ = ω(t− z);

3. Hilbert gauge, kµAµν = 0 ⇒ k0A0ν + k3A3ν = ωA0ν − ωA3ν = 0 or A0ν = A3ν ;
4. Transverse condition, A0µ = 0 ⇒ A3ν = 0;
5. Traceless condition, −A00 +A11 +A22 +A33 = 0;

Putting things together (1.-3.) one gets the first and last rows/cols of the amplitude matrix components are zero
(Note it is symmetric)

Aµν =


0 0 0 0
0 A11 A12 0
0 A12 A22 0
0 0 0 0

 (7.49)

The trace condition then is A22 = −A11 =: A+. Setting A+ := A11 and A× := A12, the plane-wave solution in TT
gauge can be written

hTT
µν =


0 0 0 0
0 A+ A× 0
0 A× −A+ 0
0 0 0 0

 exp
[
iω
(
t− z

c

)]
. (7.50)

The two polarization of the GW are indicated as “+” and “×”

h+(t− z/c) = A+ exp [iω (t− z/c)] , h×(t− z/c) = A× exp [iω (t− z/c)] . (7.51)

Observations.

• The TT gauge can defined only in vacuum, because in case matter is present 2h̄µν 6= 0 and, while there is
still the freedom to rescale the h̄µν with an infinitesimal coordinate transformation generated by four harmonic
functions, we cannot set to zero the components h̄µν inside the source.

• In the TT gauge hµν = h̄µν .
• The metric in the TT gauge reads

g = −dt2 + dz2(1 + h+)dx2 + (1− h+)dy2 + 2h×dxdy (7.52)

= −dt2 + (δij + hTT
ij )dxidxj , (7.53)

where the first expression holds for a GW along the ẑ-direction and the second is general.
• Given a wave solution h̄µν in Hilbert gauge propagating in direction n̂, it is possible to obtain the solution in

TT outside the source by means of the following projection operator (below summation on repeated indexes is
understood but they are not raised)

h̄TT
µν = Λµν,αβh̄αβ (7.54a)

Λµν,αβ(n̂) := PµαPνβ −
1

2
PµνPαβ (7.54b)

Pµν(n̂) := δµν − nµnν . (7.54c)

The following properties also hold [exercise]
1. Pµν is symmetric;
2. Pµν is transverse, niPµν = 0;
3. Pµν is a projector, PµαPαν = Pµν ;
4. Pµν has trace Pµµ = 2;
5. Λµν,αβ is a projector, Λµν,αβΛαβ,mn = Λµν,mn;
6. Λµν,αβ is transverse in al indexes;
7. Λµν,αβ is traceless in µν and αβ,Λµµ,αβ = 0 = Λµν,αα;
8. Λµν,αβ is symmetric in µν − αβ, Λµν,αβ = 0 = Λαβ,µν .

• More in general, for any symmetric tensor Sµν one can obtain a symmetric, transverse and tracefree (STF) tensor
using the Λµν,αβ projector. STF tensors are a powerful tool to develop multipolar expansions of tensor satisfying
wave equations, thus generalizing the multipolar expansion of the Newtonian and electrostatic potentials and
scalar wave equations (Thorne, 1980; Maggiore, 2007).
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7.6 Effect of GWs on test masses

A simple argument to understand the effect of GW on test masses is given by the following

Example 7.6.1. Distance measurement with the radar method. Consider two masses p, q at rest and at distance L0

in absence of GW. Their distance L can be measured by a time measurement by sending a light pulse from p to q,
then back from q to p; the clock at p will measure

L =
1

2
c(tp 2 − tp 1) . (7.55)

Let’s take xip = (0, 0, 0) and xiq = L0n
i (ηijn

inj = 1, direction between the masses) so that L0 = δijx
i
qx
j
q. Calculate

the variation of the distance measured at a time tp = tq when q receives the light ray in the case a GW is present:

L2 = gµν(xµq − xµp )(xνq − xνp)
tp=tq

= gij(x
i
q − xip)(xjq − xjp)

xip=0
= gijx

i
qx
j
q = (δij + hTT

ij )L2
0n
inj (7.56a)

⇒ δL

L0
=

L

L0
− 1 =

√
1 + hTT

ij n
inj − 1 ≈ 1

2
hTT
ij n

inj . (7.56b)

The distance’s relative variation due to the GW is proportional to the GW amplitude.

A more formal study the effect of GW on test masses employs the geodesic deviation equation

uµ∇µ(uν∇νsα) = Rανρσu
νuρsσ , (7.57)

where u is the tangent to the particles worldline and s is is the displacement vector between worldlines. Here, one
considers the “relative motion” of nearby particles at the passage of the GW using tensorial equations.

In linearized GR, the Riemann tensor is proportional to hµν and a particle initially at rest (in the global inertial
reference system of the backround metric) acquires a velocity due to the perturbation

dx0

dτ
= 1 +O(h) ,

dxi

dτ
= O(h) ⇒ uµ = c

dxµ

dτ
' (1, 0, 0, 0) +O(h) . (7.58)

Using this velocity and coordinate time instead of proper time, the geodesic equation at lowest order and in TT gauge
reduces to

d2sα

dt2
= Rα00µs

µ , with Rµ00ν =
1

2

∂2hTT

∂t2
. (7.59)

The formula above shows that the two degrees of freedom of the GW are physical: they cannot be gauged away.
Restricting to the spatial indexes and calling si0 = si(t = 0) the deviation vector before the GW arrives, the formula
above reduces to

d2δsi

dt2
=

1

2
ḧTT
ij s

j
0 +O(h2) , (7.60)

where terms ∝ ḧTT
ij s

i(t) can be discarded if one works at leading order in the perturbation. Because the particle are

initially at rest, ṡi(0) = 0, the solution for the deviation vector is simply

si(t) = (δij +
1

2
hTT
ij )sj0 . (7.61)

Specify for a GW propagating in ẑ-direction and setting si0 = (x0, y0, z0), one gets
δx(t) = x0 + 1

2 (h+(t)x0 + h×(t)y0)

δy(t) = y0 + 1
2 (−h+(t)y0 + h×(t)x0)

δz(t) = z0 .

(7.62)

The test masses oscillates in the x-y plane, transverse to the direction of propagation of the GW. The effect of the
two polarization is clearly visualized by considering a ring of test masses places in the plane, Fig. (7.1). If initially
(x0, y0) = r0(cosφ, sinφ), the effect of the plus polarization is{

δx(t) = x0 + 1
2h+(t)x0 = r0(1 + h+(t)) cosφ

δy(t) = y0 − 1
2h+(t)y0 = r0(1− h+(t)) sinφ .

(7.63)

Take the square of the equations and sum them up:

1 = cosφ2 + sinφ =
δx(t)2

r2
0(1 + h+(t))2

+
δy(t)2

r2
0(1− h+(t))2

, (7.64)

this is an ellipsis of semi-axes a± := r0(1 ± h+), and because h+(t) is an oscillating function with period T = 2π/ω,
one axis gets shorter and the other longer with the period T .
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Figure 7.1: Effect on a ring of test masses on the x− y plane at the passage of a GW in perpendiculr direction.

Similarly, for the cross polarization {
δx(t) = x0 + 1

2h×(t)y0

δy(t) = y0 + 1
2h×(t)x0 ,

(7.65)

one can proceed by diagonalizing the r.h.s. matrix with a rotation of π/4[
1 h×/2

h×/2 1

]
⇒ λ± = ±1

2
h× , R =

1√
2

[
1 1
−1 1

]
=

[
cosα sinα
− sinα cosα

]∣∣∣∣
α=π/4

. (7.66)

In the rotated frame, the equations are identical to Eq. (7.63). Thus, the cross polarization moves the ring in the
same way as the plus but for a phase of π/4.

7.7 Sources of GWs

A formal solution of the linearized EFE
2h̄µν = −16πTµν , (7.67)

is given in terms of the Green functions with retarded time tR := t− |~x− ~x′|/c (See e.g. Jackson (1975))

h̄µν(t, ~x) = −16π

∫
GR(xµ − xµ

′
)Tµνd

4x′ = 4

∫
Tµν(tR, ~x

′)

|~x− ~x′|
d3x′ , (7.68)

where G is the retaded time solution of

2(x)G(xµ, xµ
′
) = δ(4)(xµ − xµ

′
) ⇒ GR(xµ, xµ

′
) = − 1

4π

1

|~x− ~x′|
δ(tR − t) . (7.69)

The physics picture is that the solution at point p (time t and location xi) is determined by the events in the
past lightcone. Note that since these are weak field equations, they apply to a source with negligible selfgravity

σ = 2GM/(c2R)� 1, where M,R are the typical mass and size of the source.

7.7.1 Quadrupole formula

Let us specify the above formula under the conditions
(i) Large distance from a compact source r = |~x| =

√
δijxixj � R;

(ii) Slow velocity, the source motion is slow v ∼ |T0i|/|T00| � c and T00 ≈ ρc2.
The hypothesis (i) implies that

|~x− ~x′| = r|n̂− ~x′

r
| = r

√
(n̂− ~x′

r
) · (n̂− ~x′

r
) = r

√
1− 2n̂ · ~x

′

r
+

(
~x′

r

)2

≈ r − n̂ · ~x′ , (7.70)

and restricting to the spatial indexes (those relevant in the TT gauge) Eq. (7.68) becomes

h̄ij(t, ~x) ≈ 4

r

∫
Tij(t−

r

c
+
n̂ · ~x′

c
, ~x′)d3x′ , (7.71)

where one retains only the leading-order term at the denominator 1/|~x− ~x′| ∼ 1/r.
The hypothesis (ii) allows one to expand the stress-energy tensor in n̂ · ~x′/c:

Tkl(t−
r

c
+
n̂ · ~x′

c
, ~x′) = Tkl(t−

r

c
, ~x′) +

nix
′i

c
∂tTkl(u, ~x

′) +
nix

′injx
′j

c2
∂ttTkl(u, ~x

′) + ... , (7.72)
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where u := t− r/c. A simple way to justify the above expansion from the hypothesis (ii) is to look at the expression
of Tkl in terms of its Fourier transform,

Tkl(t−
r

c
+
n̂ · ~x′

c
, ~x′) =

∫
d4kT̃kl(ω,~k)e−iω(t− rc+ n̂·~x′

c )+i~k·~x , (7.73)

and realize that the integral of Tkl is dominated by the slow characteristic frequencies of the source (v ∼ ΩR)

ω
|~x′|
c
∼ Ω

R

c
� 1 . (7.74)

Hence, the exponential in the Fourier transform can be expanded

e−iω(t− rc+ n̂·~x′
c ) ' e−iωu

(
1− i

ω

c
x
′ini −

1

2
i2
ω2

c2
x
′inix

′jnj + ...

)
, (7.75)

and the above expansion is equivalent to Eq. (7.72). The latter equation is a multipolar expansion of the of Tkl in
Cartesian coordinates. Truncating the expansion at leading order one gets:

h̄ij(t, ~x) ≈ 4

r

∫
Tij(t−

r

c
, ~x′)d3x′ . (7.76)

Focus now on the matter distribution and derive an equation for the integral of the spatial components Tij by
using the conservation law on flat background,

0 = ∂µTµα = ηµν∂νTαµ =

{
−∂tT00 + ∂iT0i α = 0

−∂tT0k + ∂iTki α = k .
(7.77a)

Derive the α = 0 equation in time ∂t and substitute the α = k equation to obtain

0 = −∂ttT00 + ∂t∂kT0k = −∂ttT00 + ∂l∂lTkl . (7.77b)

Multiply the above equations by xixj and integrate:

d2

dt2

∫
T00x

ixjd3x =

∫
∂k∂lTklx

ixjd3x (7.77c)

=

∫
∂k
(
∂lTklx

ixj
)
d3x−

∫
∂lTkl∂k(xixj)d3x (7.77d)

=

∮
∂lTkly

iyjnkd2y︸ ︷︷ ︸
=0

−
∫
∂lTkl(δ

i
kx

j + δjkx
i)d3x (7.77e)

= −
∫

(∂lTilx
j + ∂lTklx

i)d3x = −
∫

(∂l(Tilx
j)− Til ∂lxj︸︷︷︸

=δjl

+∂l(Tklx
i)− Tkl ∂lxi︸︷︷︸

=δil

)d3x (7.77f)

= −
∮
Tilx

jnld2y︸ ︷︷ ︸
=0

−
∮
Tklx

inld2y︸ ︷︷ ︸
=0

+2

∫
Tijd

3x (7.77g)

The surface integrals in the third and fifth lines are zero since the matter distribution is compact and there is no
matter outside a sphere of radius r > R. The integral of the spatial components of the stress-energy tensor is thus
related to the moment of inertia tensor of the matter distirbution ρ

2

∫
Tijd

3x =
1

c2
d2

dt2

∫
T00x

ixjd3x =
d2

dt2

∫
ρxixjd3x =:

d2

dt2
Iij . (7.77h)

Putting together Eq. (7.76) and Eq. (7.77c), one obtains

h̄ij(t, ~x) =
2G

c4r
Ïij(t−

r

c
) . (7.78)

Far from the source, the solution can be projected to the TT gauge to obtain the quadrupole formula

h̄TT
ij (t, ~x) =

2G

c4r
ΛijklQ̈kl(t−

r

c
) , (7.79)

where the moment of inertia can be substituted by its traceless version, the quadrupole moment :

Qij = Iij −
1

3
(δklIkl︸ ︷︷ ︸

=I

)δij =

∫
ρ(xixj − 1

3
~x · ~xδij)d3x . (7.80)
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The quadrupole formula gives the leading order contribution to the GW from a (spatially) compact, slowly moving
and nonselfgravitating source. The expansion starts at the quadrupolar order (` = 2) because of mass and momentum
conservation. Indeed, integrating T00 and using the conservation law for Tµν one finds immediately Ṁ = 0 and

similarly integrating T00x
i gives momentum conservation Ṗ i = 0. Note that a generic source is decomposed in a

infinite series of multipoles.

Remark 7.7.1. The quadrupole momentum is the tensor that appears in the multipolar expansion of the Newtonian
potential

φ(t, ~x) = −GM
r

+
3GQij(t)n

inj

2r3
+ ... . (7.81)

The dipolar term (multipole with “one index”) is just the center of mass vector that can be removed by using the center
of mass frame. The quadrupole is the lowest multipole described by a tensor with 2 indexes. A similar expansion hold
for the electrostatic potential, but in that case the dipole cannot be removed and represents the next-to-leading order
approximation of the charge distribution.

Using dimensional analysis, [Q̈] = ML2T−2 and one immediately finds that the GW observed at distance D from
the source is

h ∼
(

G

c4D

)(
Mv2

)
=

(
R

D

)(
GM

c2R

)(v
c

)2

. (7.82)

The formula above indicates thet GW are produced by physical objects that are
• very compact;
• strongly gravitating;
• rapidly moving.

Note that the quadrupole formula does not apply for those objects!

Example 7.7.1. Quadrupole formula for a binary star system. Consider two masses m1 and m2 separated by
~r = ~x1−~x2 in Newtonian gravity. The mass density is ρ = m1δ(~x−~x1)+m2δ(~x−~x2), the total mass is m = m1 +m2

and the reduced mass is µ = m1m2/m. The moment of inertia reads

Iij =

∫
ρxixjd3x = m1x

i
1x
j
1 +m2x

i
2x
j
2 = mxicmx

j
cm + µrirj (7.83)

where xicm = (m1~x1 + m2~x2)/m is the center of mass coordinate. In the center of mass frame Iij = µrirj and the
trace is I = µδijr

irj = µr2. The quadrupole of the 2-body system is thus

Qij = Iij − 1

3
Iδij = µ(rirj − 1

3
r2δij) . (7.84)

Specialize now for a circular orbit in the z = 0 plane, for which ~r = (x, y, 0) = R(cos (Ωt+ π/2), sin (Ωt+ π/2), 0)
(the pi/2 phase factors are there for later convenient) and

Ω =
2π

T
=

(
Gm

R3

)1/2

(7.85)

is the orbital frequency as given by Kepler law 3. The inertial moment for circular orbits is immediately calculated,
the nonzero components are

I11 = µR2 cos2 (Ωt+ π/2) = µR2 1+cos2 (2Ωt+π)
2 = µR2 1−cos2 (2Ωt)

2

I22 = µR2 sin2 (Ωt+ π/2) = µR2 1−cos2 (2Ωt+π)
2 = µR2 1+cos2 (2Ωt)

2

I12 = µR2 cos (Ωt+ π/2) sin (Ωt+ π/2) = µR2 1
2 (sin (2Ωt+ π) + sin (0)) = −µR2 sin (2Ωt) .

(7.86)

Taking the derivatives 
Ï11 = 2µR2Ω2 cos (2Ωt)

Ï21 = 2µR2Ω2 sin (2Ωt)

Ï22 = −Ï11 .

(7.87)

From the quadrupole formula one concludes that GW are emitted at frequency Ωgw = 2Ω. Note this comes from the
term xixj ∼ cos2 (Ωt), hence any monocromatic source emits at 2Ω as a consequence of the quadrupole nature of the
GW. Performing the TT projection (first expressions omits constants) one gets (Maggiore, 2007){

h+ = 1
r (Ï11 − Ï22) = G

rc2 4µR2Ω2 1+cos2 θ
2 cos (2ΩtR + ϕ)

h× = 2
r Ï12 = G

rc2 4µR2Ω2 cos θ sin (2ΩtR + ϕ),
(7.88)

where (θ, ϕ) are the sky location of the source (related to the direction n̂ in the STF projector).

3Kepler law can be derived from dimensional analysis of the quantities Ω, Gm,R or equating the grav.force to the centripetal force.
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Figure 7.2: Representation of the notion of global energy of a spacelike hypersurface and of energy carried by the GW
in asymptotically flat spacetime.

7.8 Energy of GWs

The physical reality of GW has been investigated by Einstein already in 1916 and was finally established in the 60s
with the fundamental work of Bondi, Goldberg, Newmann, Penrose, Pirani, Robison, Sachs, Trautman and many
others. Note this was theoretical work aiming at clarifying GWs are not coordinate effects and can transport energy 4

Experimental evidence for GWs came afterwards with the Taylor & Hlse pulsar observation starting 1974.

Remark 7.8.1. The GR definition of energy of the grav. field and energy of the GW is rather complex.

• In general, there is no local definition of energy (density) for the gravitational field since the metric describes
the whole spacetime and cannot be decomposed into a background component (to be used as “reference”) and a
dynamical component (actually “carrying the energy”).

• However a notion of total energy of the spacetime can be constructed for a class of spacetimes called asymp-
totically flat, and describing the spacetime of isolated systems. This is an advanced topic [Chap. 11 of (Wald,
1984)], but one might suspect a total energy-momentum could be defined for isolated systems as far away from
them there is a natural background spacetime that can be usedm, see Fig. (7.2).

• Indeed, the Hamiltonian formulation of GR by Arnowitt, Deser e Misner (ADM, 1959) gives a notion of energy
for asymptotically flat spacetimes. The ADM energy-momentum can be thought as the energy of a spacelike
hypersurface at a given “time” and associated to time translation and boost about spatial infinity ( Spi group).
An example of such energy is provided by the mass of the Schwarzschild spacetime (Chap. 8.)

• Similarly, a notion of energy-momentum of GW can be given considering asymptotic null hypersurfaces at a given
“retarded time”. This energy-momentum is the one carried by the gravitational radiation and it is associated to
the symmetries of null infinity in asymptotically flat spacetimes ( Bondi-Metzner-Sachs (BMS) group).

The following discusses how this notions of energy can be defined in linearized gravity, where a flat background
metric is present. Considering an isolated system such that asymptotically g ∼ η, one expects

• The energy to be quadratic in the perturbation, so one must consider 2nd order perturbations;
• Any form of energy must generate curvature throughout a stress-energy tensor;
• An energy definition must be gauge invariant.

We thus look for an effective stress-energy tensor that is quadratic in the perturbation and leads to a gauge invariant
energy definition. Focus is on vacuum GR. Push the Minkowski expansion to second order:

g = η + h(1) +O(2) (7.89a)

g = η + h(1) + h(2) +O(3) , (7.89b)

where the notation h(n) indicates that in the global inertial coordinate system the tensor components are

|h(1)
µν | ≈ ε|ηµν | ≈ ε� 1 , |h(2)

µν | ≈ ε2 , etc. (7.89c)

4The famous conference Chapel Hill in 1957 where this topic was debated triggered the Weber experimental work and also led to a
famous thought experiment https://en.wikipedia.org/wiki/Sticky_bead_argument.
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The Ricci tensor admits a similar expansion

Rµν = R(0)
µν +R(1)

µν +R(2)
µν +O(3) where (7.90a)

R(0)
µν = (Ric[η])µν ∼ η∂

2η (7.90b)

R(1)
µν =

(
Ric(1)[h(1)]

)
µν
∼ η∂2h(1) (7.90c)

R(2)
µν =

(
Ric(1)[h(2)]

)
µν

+
(

Ric(2)[h(1)]
)
µν
∼ η∂2h(2) + h(1)∂2h(1) , (7.90d)

where Ric[.] indicates the full expression of the Ricci applied to its argument, Ric(1)[.] indicates the expression of

the Ricci linearized in the metric perturbation applied to its argument, Ric(2)[.] indicates the expression of the Ricci

quadratic in the metric perturbation applied to its argument, etc. For example, the expression for Ric(1) is given by
Eq. (7.9c), while

R(2)
µν =

1

2
hρσ∂µ∂νhρσ −hρσ∂ρ∂(µhν)σ + ∂σhρν∂[σ]hρ]µ +

1

2
∂σ(hρσ∂ρhµν)− 1

4
∂ρhµν∂

ρh− (∂σh
ρσ − 1

2
∂ρh)∂(µhν)ρ (7.91)

The O(2) term is clearly composed of a term coming from the linearized Ricci applied to the second order metric
perturbation h(2) plus a term coming from the second order Ricci applied to the linear perturbation h(1). The EFE
in vacuum,

0 = Rµν = R(0)
µν +R(1)

µν +R(2)
µν +O(3) (7.92a)

could now be solved hierarchically order-by-order as follows

0 = R(0)
µν = (Ric[η])µν ⇒ Trivially satisfied by η (7.92b)

0 = R(1)
µν = (Ric(1)[h(1)])µν ⇒ h(1) (up to gauge) (7.92c)

0 = R(2)
µν = (Ric(1)[h(2)] + Ric(2)[h(1)])µν ⇒ h(2) (up to gauge)

etc. (7.92d)

The last equation above can be written as a Einstein equation for the second-order metric as

G(1)
µν [h(2)] :=

(
Ric(1)[h(2)]− 1

2
R(1)[h(2)]η

)
µν

= 8πτµν := 8π(−G(2)
µν [h(1)]) = −8π

(
Ric(2)[h(1)]− 1

2
R(2)[h(1)]η

)
µν

,

(7.93)
where a quadratic-in-h stress-energy tensor constructed from the linear perturbation metric is defined. Note that τµν
is

+ Symmetric;
+ Conserved on flat backrground ∂µτµν = 0 (Bianchi identities);
+ Quadratic in h, O(2);
- Not gauge invariant;
- Note unique, as τµν is defined up to a term ∂α∂βUµναβ with Uµναβ = O(2) such that Uµναβ = Uµα[νβ] =
U[µα]νβ = Uνβµα.

For an asymptotically flat metric satisfying the conditions

h(1) ∼ O(1/r) , ∂h(1) ∼ O(1/r2) , ∂∂h(1) ∼ O(1/r3) for r →∞ , (7.94)

it can be proven that the quantity

E :=

∫
Σ

d3xt00 (7.95)

is gauge invariant under infinitesimal transformations preserving the asymptotically flat conditions,

E[h(1)
µν ] = E[h(1)

µν + 2∂(µξν)] . (7.96)

It is also unique in the sense that it does not change if a term ∂α∂βUµναβ is added to the definition of τ00. Note Σ
is the 3D spatial hypersurface defined by t = const, Fig. (7.2), and that the asymptotic flat conditions guarantee the
existance of the integral. Hence, the quantity E can be taken as the total energy associated to the linearly perturbed
metric.

In order to define the radiated energy one proceed similarly but considering a situation in which the spacetime
is initially time-independent, then go through a time-dependent phase, say between t1 < t < t2, and then is again
time-independent. In the stationary phases t < t1 and t > t2 one takes two 3D surfaces that are asymptotically null
and call them N1 and N2. If the radiation is measured on N1 but not on N2, then it escaped at null infinity. Hence,
the energy radiated between the two stationary regime is defined considering the integral of the “density flux” −τ0µ
over the asymptotically timelike surface S between N1 and N2 Fig. (7.2)

∆E := −
∫
S

τa0n
ad2y . (7.97)

The asymptoticaly flat conditions Eq. (7.94) are now required on these null hypersurfaces 5. They guarantee that the

5For example, one can think of using the retarded time coordinate u = t− r and taking r →∞.
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Figure 7.3: Observations of GWs. Left: The decay of the orbital period of the binary system observed in PSR
B1913+16; Right: The binary black hole merger waveform GW150914 observed by LIGO in 2015.

integral exists and that the definition is meaningful. Note that the asymptotically flat condition cannot be imposed
in the nonstationary phase because a wave behaves as ∼ h(t− r)/r and its derivative is ∂ih ∼ O(1/r). The integrand
on the r.h.s. of the above equation gives the power (luminosity) for the GW since ∆E =

∫
Ėdt (see below).

7.9 GW observations

Observational evidence for GW was found starting 1974 with the measurements of radio signals from the pulsar PSR
B1913+16. The source is a binary system in our galaxy at 21000 light years (6400 pc) made of two neutron stars in
which one of them is a pulsar emitting period radio pulses. The variation in the time arrival of the pulses allows the
identification of the source as a binary system and a precise measurement of the period (∼ 7.75 hrs) and the masses.
The observations performed during the decades have proven that the period of the orbit decay as predicted by GR due
to the emission of GWs Fig. (7.3). Several of these systems have been identified to date and they provide stringent
tests of the prediction of GR.

Direct measurements of GW have been possible starting 2015 using gravitational-wave interferometric techniques.
The first detection of a GW propagating through the Earth was obtained by the LIGO experiment on 14th September
2015. The source has been identified as a collision (merger) of black holes in circular orbits as predicted by GR and
as calculated by means of numerical relativity simulations. The binary was a distance of ∼440 Mpc (redshift 0.09)
and the two masses of ∼35 + 30 M� formed a black hole of ∼62 M� emitting in GW an energy of ∼3 M�c

2. Several
detections of GW from mergers of black hole and one neutron star binary merger have been reported since then by
the LIGO-Virgo experiments.

7.10 Short-wavelength approximation

The definition of GW energy via τµν is based on the idea that the GW generate curvature. This approach has a
conceptual problem if one desires to push the expansion beyond linear order as the Mikowski background has zero
curvature.

The above concepts of wave propagations on metric background and the definition of τµν can be generalized
to an arbitrary background metric. In particular, one could be interested in defining perturbations or GWs on a
background which is curved and dynamical. While in general it is not possible to split background from perturbation
metric, in practise, many problems have a clear separation of scales and admit such decomposition. Consider a metric
that, in some coordinate, has a typical spatial scale of variation L, then any small amplitude perturbations with
wavelength λ̄ � L could be clearly distinguished and separated from the background. Similarly, if the background
has a temporal variation up to frequency F , then a small amplitude perturbation with frequencies f � F could be
clearly distinguished/separated.

Remark 7.10.1. While the frequency and wavelength of a wave are related by λ = c/f , the temporal and spatial scales
of variation of the background metric are not necessarily related. For example, consider a GW with f ∼ 102 = 103 Hz,
λ̄ ∼ 500−50 km and |h| ∼ 10−21 in the grav. field of Earth φ⊕ ∼ GM⊕/R⊕c2 ∼ 10−6. φ⊕ is not smooth at lengthscales
λ̄ because it has variations of amplitudes ∼ 10−9 � |h| due to e.g. mountains; moreover the length of the laboratory
apparatus to detect GW is � λ. It is not possible to separate the length scales of the Earth’s grav. field and the GW!
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However, φ⊕ is static with frequency � f . In this sense the grav. field of Earth can be separated from the GW. [GW
experiments on Earth measure temporal, not lenght variations]

Let us address the problem of defining the propagation of the short-wavelength perturbation on the background
and the generalization of the GW effective stress-energy tensor. Note there are two perturbation parameters:

• the small amplitude ε� 1
• the wavelength λ̄� L, or wavenumber k = 1/λ̄� 1/L, of the perturbation.

Starting from the trace reverse EFE

Rµν = 8π(Tµν −
1

2
Tgµν) =: 8πT̄µν , (7.98)

one can repeat the formal expansion in ε of the Ricci tensor,

Rµν = R(0)
µν +R(1)

µν +R(2)
µν +O(3) , (7.99a)

where now the background metric η is to be considered a generic one. The power counting is now something like

η ∼ O(ε0) , h(n) ∼ O(εn) = O(n) , ∂η ∼ O(1/L) , ∂h(1) ∼ O(ε1k) , ∂2η ∼ O(1/L2) , ∂2h(1) ∼ O(ε1k2) , (7.99b)

and thus

R(0)
µν ∼ η∂2η ∼ O(1/L2) Long wavelength (low freq.) (7.99c)

R(1)
µν ∼ η∂2h(1) ∼ O(εk2) Short wavelength (high freq.) (7.99d)

R(2)
µν ∼ η∂2h(2) + h(1)∂2h(1) ∼ O(ε2k2) Long/Short wavelengths , (7.99e)

where the second-order Ricci can contain both long and short wavelenght contributions because the short wavelength
combinations ∼ hαβhµν can result in a long wavelength mode if the two wavenumbers are comparable but have
opposite signs. Hence, the expanded equations can be formally separated into a low/high frequency parts:

R(0)
µν = −

[
R(2)
µν

]long

+ 8π
[
T̄µν
]long

(7.99f)

R(1)
µν = −

[
R(2)
µν

]short

+ 8π
[
T̄µν
]short

(7.99g)

Based on the results of linearized theory discussed above, one expects
• the long wavelengths equation to correspond to lead to describe the effet of GW on the background curvature

(thus leading to the definition of the effective stress-energy tensor for GW), and
• the short wave equation to the propagation of the perturbation on the curved background.

Let us comment on the validity of the above equations. The latter equate terms with different powers of ε; to be
consistent these powers must be compensated by the other expansion parameter λ̄/L. Considering the long wavelength
equation in vaccum T̄µν = 0 or equivalently in a situation where the curvature is dominated by GW, the power counting
gives

1

L2
∼ ε2k2 =

ε2

λ2
⇒ ε ∼ λ

L
. (7.100)

In the opposite case, where the T̄µν dominates over R
(2)
µν , one must have

1

L2
∼ ε2k2 + (matter)� ε2k2 ⇒ ε� λ

L
. (7.101)

Remark 7.10.2. Breakdown of expansion on Mikowski and of scales separation. Eq. (7.100) indicates that the metric
expansion on Mikowski cannot be pushed beyond linear order. If the background metric is Minkoski, then 1/L = 0
(stricly zero), and no GW of finite amplitude can exist. In other terms, the expansion in powers of ε has no domain
of validity. More in general, Eq. (7.101) indicates that if the GW amplitude becomes too large, then the hypothesis of
scale separation breaks and it is not possible to define wave-like perturbation on a background. [Note the smallness of
the amplitude was assumed above but not really justified.]

Long wavelengths equation & Isaacson stress-energy tensor. How to actually implement the separation of
scales? The idea is to integrate on lengths that are longer that the perturbation wavelength but shorter than the
background variation length, λ̄ < ` < L. The specific average operator was introduced by Brill&Hartle and Isaacson
in 1968 and for a (0, 2) tensor reads

〈Sµν〉 :=

∫
d4x ηµ

′

α (x, x′)ην
′

β (x, x′)Sµν(x′)f(x, x′)
√
|η(x′)| , (7.102)

where η is the generic background metric, ηµ
′

µ (x, x′) is called the bivector of geodesic parallel displacement and is an

operator that transports a tensor Sµν(x′) in a neighbourg of x′. ηµ
′

µ (x, x′) transforms as tensor in x′ in the index µ′

and as a tensor in x in the index µ. The function f(x, x′) is a weighting function that goes rapidly to zero if the
two points x and x′ are separated by many wevelengths λ̄. [See Misner et al. (1973) §35.14 and Isaacson PhD thesis
appendix for more details.] Operatively, the average operator can be used in calculations with the following rules:
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• Covariant derivatives inside the average commute up to O(λ̄2/L2), 〈h∇α∇αhµν〉 = 〈h∇α∇βhµν〉;
• Gradients are zero up to O(λ̄/L), 〈∇αhµν〉 = 0;
• One can integrate by parts, 〈h∇α∇βhµν〉 = 〈−∇βh∇αhµν〉;
• Diverge terms average to zero, 〈∇ρhρµν〉 = 0.
The long wavelength average of the stress-energy tensor and of the second order Ricci tensor is obtained applying

the operator above. In particular the average of the Ricci is calculated from an expression for R
(2)
µν similar to Eq. (7.91)

in which several terms are in the form of (or can be cast in, integrating by parts) divergences, and thus average to
zero. The result specified for a flat background and in TT gauge (far from an isolated source) is[

R(2)
µν

]long

:= 〈R(2)
µν 〉 = −1

4
〈∂µhTT

ij ∂νh
TT ij〉 . (7.103)

The Isaacson tensor is the effective stress-energy tensor for GW:

τµν :=
c4

32πG
〈∂µhTT

ij ∂νh
TT ij〉 . (7.104)

Properties:
• The Isaacson tensor is gauge invariant under infinitesimal diffeomorphisms;
• It should be used to generalize the expressions given above for the GW energy/flux.

The long wavelength (“coarse grained”) are finally

R(0)
µν = 8π〈T̄µν〉+ 8πτµν , (7.105)

and the Bianchi identies implies local conservation of the r.h.s. with respect to the covariant derivative of the
background. Far away from the source ∂µτµν = 0. A calculation similar to the one for the quadrupole formula leads
to the GW luminosity.

0 =

∫
d3x (∂0τ

00 + ∂iτ
0i) = −Ė +

∫
d3x ∂iτ

0i = −Ė +

∮
d2y niτ

0i = −Ė + r2

∮
d2y nrτ

0r (7.106a)

= −Ė + r2

∮
d2y 〈∂0hij∂rh

ij〉 = −Ė + r2

∮
d2y 〈∂thij∂thij〉 , (7.106b)

where in the surface integrals one takes a spherical surface of radius r and then uses the fact that for a wave h(t−r/c)/r
the spatial derivative can be written as ∂rh(t − r/c) = −∂th(t − r)/(rc) = +∂0h(t − r)/(rc). The GW luminosity is
then given by

dE

dt
=

c3

32πG
r2

∫
dΩ〈∂thTT

ij ∂th
TT ij〉 =

c3

16πG
〈ḣ2

+ + ḣ2
×〉 =

G

5c5
〈

...
Q ij

...
Q
ij〉. (7.107)

Remark 7.10.3. The two faces of GW luminosity. The dimension analysis of the luminosity formula starts from

[Q] = aML2 , [
...
Q ] = aML2T−3 ∼ aΩ3ML2 , [G/c5] = TE−1 , (7.108)

where a dimensionless factor a and an angular frequency Ω are intorduced for later convenience. From the above one
notices that the numerically small factor G/c5 ∼ in front of the formula is the inverse of a power; if

...
Q has typical

values of laboratory experiments the GW luminosity generated in these experiments is ridiculously small. However,
Weber (an optimist) suggested to re-express the formula in terms of

c5/G ∼ 1052 W (7.109)

which is an enormous luminosity factor. We use, as usual, R as the typical size of the sources, σ = GM/c2R as a
measure of the source’s self-gravity, M = c2Rσ/G the mass of the source, v = ΩR the source’s velocity. One gets 6

Ė ∼ G

c5
a2Ω6M2R4 = a2G

c5

(v
c

)6 ( c
R

)6 c4R2σ2

G2
R4 = a2 c

5

G

(v
c

)6

σ2 = a2 c
5

G

(v
c

)6
(
GM

c2R

)
. (7.110)

The last formula above shows that a source with strong self-gravity σ ∼ 1 and high-velocity v ∼ c can generate GWs
corresponding to the most luminous radiation in the Universe.

GW Propagation in curved background. Let us examine the short-wavelength equation considering fist the
vacuum case and then the matter dominated case.

In vacuum Eq. (7.100) implies that there exist only one scale since O(ε) ∼ O(λ̄/L) and one can use only ε.

Inspection of the orders reveals immediately that R
(2)
µν can be neglected and the equation reduces to the 1/ε part of

R
(1)
µν : {

R
(1)
µν ∼ η∂2h(1) ∼ O(εk2) = O( 1

ε )

R
(2)
µν ∼ η∂2h(2) + h(1)∂h(1) ∼ O(ε2k2) = O(1)

. (7.111)

6Note that for a binary system of reduced mass M , orbital separation R and orbital frequency Ω, the first formula for E with a2 = 32/5
is exactly the result of the quadrupole calculation.
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The 1/epsilon (leading order) part is obtained by substituing the background metric with the flat metric and the
background covariant derivatives with the partial derivatives in the flat metric. Hence, this equation reduces exactly
to the wave equation in flat background once the Hilbert gauge is imposed

0 '
[
R(1)
µν

]
1/ε

H.G.
= 2h̄µν . (7.112)

If matter dominate the curvature, the two expansion parameters are not equivalent and from Eq. (7.101) one has
ε� λ̄/L� 1. Hence one can keep only terms linear in ε and expand in λ̄/L keeping leading order and next-to-leading

order terms. The short wavelength part of R
(2)
µν is negligible w.r.t. R

(1)
µν because it contains one more power of ε. The

short wavelength part of Tµν must contain a short wavelength term O(ε) because the stress-energy tensor depends
in general on the metric. The trace part will have a short wavelength terms O(ε) given by the multiplication of the
(high-frequency) T with the background metric and by the multiplication of the (low frequency) T with the metric
perturbation TODO expand. Hence,

R
(1)
µν ∼ η∂2h(1) ∼ O(εk2)[
R

(2)
µν

]short

∼ η∂2h(2) + h(1)∂h(1) ∼ O(ε2k2)[
T̄µν
]short

=
[
Tµν − 1

2 (ηµν + hµν)T
]short ∼ O( ε

L2 ) ∼ O(εk2 λ̄2

L2 )

. (7.113)

Both the curvature and matter contributions can be discarded and the equation reduces to the linear Ricci on the
curved background metric. A Hilbert gauge can be introduced demanding the covariant divergence of h̄(1) to be zero.
The result is that to O(εk2) the perturbation propagates following the wave equation on the curve background:

0 ' R(1)
µν

H.G.
= 2ηh̄µν . (7.114)
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8. Schwarzschild solution

3○
These lectures introduce the solution of GR in vacuum and spherical symmetry found by Schwarzschild 1915.

Suggested readings. Chap. 5 of Wald (1984); Chap. 5 of Carroll (1997); Chap. 11 of Schutz (1985)

8.1 Schwarzschild spacetime

Exact solution of GR for a spacetime
(i) Vacuum;

(ii) Spherically symmetric;
(iii) Static.

The last hypothesis is actually not necessary: Birkhoff theorem (Sec. 8.3) says that any spacetime for which (i) and
(ii) hold is static. The solution describes the spacetime outside a spherically symmetric mass distribution and, more in
general, the vacuum spacetime far away from an isolated source. Asymptotically, the spacetime is flat and reproduces
the weak field solution and Minkoswki.

The Schwarzschild metric provides us with the basis for key GR calculations like
• Mercury perihelion precession;
• Light bending;
• Gravitational redshift;
• Shapiro time-delay.

These predictions can be tested in the weak field regime of the Solar system. Moreover, the Schwarzschild metric
provides us with some of the unexpected and key predictions/phenomena of GR in the strong field regime

• Black holes;
• Mass limit for compact stars (when combined with the proper interior solution for spherically symmetric mass

distribution);
• Gravitational collapse.

8.2 Derivation of the solution

Spherically symmetric and static metric.

Definition 8.2.1. A metric is stationary iff exists a timelike Killing vector field (KV) T a = (∂t)
a.

In the coordinate adapted to the KV, the metric components are “time-independent”

∂tgαβ = 0 ⇒ g = −g00(xi)dt2 + 2g0i(x
i)dtdxi + gij(x

i)dxidxj . (8.1)

Definition 8.2.2. A metric is static iff it is stationary and invariant under time-reversal t→ −t.

Observe that
• Stationary = invariance w.r.t. time translations;
• Static = invariance w.r.t. time translations and reflections.

Since the only term that violates time reversal in the expression above is dtdx, the components g0i must be zero and
one can write the metric as

g = −g00dt2 + gijdx
idxj = −N2dt2 + γ , (8.2)

where N(xi) is a smooth function of the spatial coordinates called lapse function and γ is a 3D Riemannian metric
at t = const (with signature (+,+,+).) The form above suggests that the manifold can be written as

M = R× Σt , (8.3)
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where Σt are spacelike hypersurfaces defined as those orthogonal to the timelike KV T a and parametrized by the time
coordinate and equipped with the metric γ. The surface t = const has normal

nµ = −N(dt)µ = (−N, 0, 0, 0) or nµ = (
1

N
, 0, 0, 0) , (8.4)

implying that any vector on Σ is orthogonal to nµ.

Remark 8.2.1. Recalling the discussion in Example 6.8.1 and Remark 6.8.1, one says that Σ0 is a submanifold of
M formally identified by the map φ : Σ 7→ M. The latter map is called an embedding. The metric on Σ is given by
the pullback of the 4D metric γ = φ∗g, and it is called the induced metric.

Definition 8.2.3. A metric is spherically symmetric iff there exist three spacelike KV Ra(i) i = 1, 2, 3 satisfying the

algebra of SO(3),

[R(i), R(j)] = εijkR(k) (8.5)

whose orbits are two dimensional spheres. The induced metric in the orbits is the standard metric in S2, up to
rescalings.

There is an equivalent, simpler and more practical definition

Definition 8.2.4. A metric is spherically symmetric iff there exist a coordinate system xµ = (t, r, θ, φ) such that
(i) the surfaces t = const, r = const are two-spheres with line usual element dΩ2 = dθ2 + sin(θ)dφ2 (up to a

rescaling of the radius);
(ii) the metric can be written

g = −e2α(t,r)dt2 + e2β(t,r)dr2 + e2γ(t,r)r2dΩ2 . (8.6)

Note the metric form with the exponentials guarantee that the metric signature is (−,+,+,+). The agreement of
the two definition can be checked by verifying that the above metric admit the three KV

R(3) := ∂φ , R(2) := − sin θ∂θ − cot θ cosφ∂φ , R(1) := cos θ∂θ + cot θ sinφ∂φ , (8.7)

corresponding to rotations about the three Cartesian axes [exercise].

Schwarzschild radial coordinate. Restrict the metric to t = t̄ and r = r̄ such that the 2-sphere element is
ds2 = e(2γ(t̄,r̄))r̄2dΩ2. The Schwarzschild radial coordinate r is by definition the coordinate such that the area of the
2-spheres is given by A = 4πr2. For this reason it is also called areal radius. Given the generic form of the metric
(with a generic radial coordinate), it can be computed by performing the coordinate transformation:

A = 4πe2γ(t̄,r̄)r̄2 ⇒ r2 = e2γ(t̄,r̄)r̄2 . (8.8)

Remark 8.2.2. It is important to realize that r does not represent the “distance from the center to the surface of
2-sphere”. The areal radius is defined only by the property of the surface (its area); the center is not a point of the
2-sphere and, in general, might not belong to the manifold (Cf. the whormhole solution below).

Putting together spherical symmetry and static hypothesis and setting N = e(α) one gets

g = −e2α(r)dt2 + e2β(r)dr2 + r2dΩ2 . (8.9)

Physical interpretation of the lapse. Consider a photon of 4-momentum pµ moving on null geodesics of g. An
observer with 4-velocity uµ = (u0, ui) = (u0, 0, 0, 0) = (N, 0, 0, 0) 1 measures the photon energy

E = −uµpµ = −u0p0 = −Np0 . (8.10)

But because the metric has the KV Tµ = (1, 0, 0, 0), the quantity Tµpµ = T 0p0 = p̄ is a constant of motion (same in
every point) and the ratio of the photon’s energies measured by the observer at two different radial coordinates is

E(r1)

E(r2)
=
N(r1)p̄

N(r2)p̄
=
N(r1)

N(r2)
=
eα(r1)

eα(r2)
⇒ z =

N(r1)

N(r2)
= eα(r1)−α(r2) − 1 . (8.11)

The lapse function (and the coefficient α) is thus directly related to the redshift of photons as measured at different
locations. We shall see below that the metric is asymptotically flat and that at large coordinate radii it reduces to
the Minkowski one. Thus, N(r2) ≈ 1 for r2 → ∞ and the lapse gives the redshift of photon measured by a distance
observer.

1The u0 component is simply calculated from the normalization −1 = uµuµ = g00u0u0.
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Determination of α, β. The metric coefficients are determined by EFE in vaccum, Rµν = 0 2 Combine the rr and
tt equations gives {

Rtt = 0

Rrr = 0
⇒ 0 = e2(β−α)Rtt +Rrr =

2

r
(∂rα∂rβ) ⇒ α = −β + const . (8.12)

The constant can be neglected/reabsorbed in a scaling of the time coordinate

eα = e−βec ⇒ e2αdt2 = e−2βe2cdt2 = e−2βd(ect)2 . (8.13)

Consider now the θθ equation

Rθθ = 0 ⇒ 1 = e2α(2r∂rα+ 1) = ∂r(re
2α) ⇒ e2α = 1− RS

r
, (8.14)

where RS is also a constant with dimension of a length. One can verify that with the above choices of α, β all the
other EFE in vacuum are identically satisfied.

The metric takes the form

g = −
(

1− RS
r

)
dt2 +

(
1− RS

r

)−1

dr2 + r2dΩ2 . (8.15)

The constant R can be fixed assuming that the metric describes an isolated system.

• If the isolated system has zero mass, then g must match Minkoswki. One sees immediately the condition R = 0
reproduces Mikowski in spherical coordinates.

• If the isolated system has mass M , then the g00 and grr components of the metric above must reduce those of
the weak field metric at distances far away from the source. For r →∞ one must have

g00 = −
(

1− RS
r

)
≈ − (1 + 2φ) , grr = +

(
1− RS

r

)−1

≈
(

1 +
RS
r

)
≈ + (1− 2φ) . (8.16)

Hence, the Schwarzschild radius RS is defined by:

− RS
r
≈ 2φ ≈ −2

GM

c2 − r
⇒ RS := 2M =

2GM

c2
. (8.17)

Observations.

• g = η for M = 0;
• g → gweak field for r →∞;
• Metric coefficients are singular for r = 0 and r = 2M .

Q: How should we interpret these singularities? Are they physical or related to the coordinates choice?

A sufficient condition to verify that a singularity is physical is to find a scalar of the curvature that diverges at
that point. The Ricci scalar is of no use here, but one can compute the Kretschmann scalar

RαβγδRαβγδ = 12M2r−6 , (8.18)

that indicates that r = 0 is a physical singularity of the metric. Note that r = 0 is not part of the manifold/spacetime
because the metric is not defined there.

On the other hand none of the curvature scalars that one can construct diverges at r = RS suggesting the latter
is a coordinate singularity... We will study the behaviour of the metric around r ∼ RS in Sec. 8.5. For the moment it
is sufficient to observe that the character of the KV changes below the Schwarzschild radius,

g(∂t, ∂t) = gttdt(∂t)dt(∂t) + 0 = gtt = −
(

1− RS
r

)
≥ 0 for r ≤ Rs ⇒ ∂t is null/spacelike for r ≤ Rs . (8.19)

Hence, the Schwarzschild metric is valid only for r > Rs. Moreover, note that for the Sun R� ∼ 106M� � RS�:
the Schwarzschild radius of the Sun is located in the interior of the Sun where the Schwarzschild is not valid because
there it is not vacuum. This implies that Schwarzschild metric and coordinates can be safely used for the exterior of
the Sun and Solar system.

2Explicit expressions for the Ricci tensor require trivial but lenghty calculations. The result is, for example, tabulated in the additional
material available at http://sbernuzzi.gitpages.tpi.uni-jena.de/gr/
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8.3 Birkhoff theorem

Theorem 8.3.1. Birkhoff (1923). The Schwarzschild metric is the unique vacuum solution in spherical symmetry.

Note the statement above does not mention the word “static” ... but before commenting let us sketch the main
steps of the proof:

1. Use the definition of spherically symmetric spacetime based on the existance of the three spacelike rotational
KV and show that any spherically symmetric spacetime can be foliated in 2-spheres.

2. The most general form of the metric is

g = −e2α(t,r)dt2 + e2β(t,r)dr2 + r2dΩ2 . (8.20)

3. Use EFE in vacuum for the metric above and show that the “time-dependence” in α, β can be removed. Specif-
ically, one finds

Rtr = 0 ⇒ ∂tβ = 0 , (8.21a){
∂tRθθ = 0

Rtr = 0
⇒ ∂t∂rα = 0 ⇒ α(t, r) = β(r) + c(t) , (8.21b)

and the term c(t) can be reabsorbed in the definition of the coordinate time exactly as the constant c above.
The last step proves that the Schwarzschild metric derived above is the most general vacuum and spherically symmetric
solution, and shows that the that

Theorem 8.3.2. Any spherically symmetric vacuum spacetime is static.

The theorem applies for any vacuum spherically symmetric solution. For example the exterior of a spherically
symmetric body that is contracting under the (attractive) gravitational forces (gravitational collapse) is static. Phys-
ically, the staticity result can be understood with the absence of gravitational monopole radiation (analogous to the
fact that the Coulomb solution is the only spherically symmetric solution of Maxwell equations in vacuum).

Remark 8.3.1. Note that the coordinate system of Eq. (8.15) breaks down at points in which T a = 0 = ∇ar (or T a

and ∇ar are collinear). Hence, the specific form of the metric cannot be used in those conditions and the Birkhoff
does not apply.

8.4 Geodesics

The EOM for particles and light can be found following the general procedure of minimizing the Lagrangian and
solving the resulting system of 2nd order coupled ODEs for ẍµ, schematically (calculations are left as [exercise])

L = gµν
dxµ

dλ

dxν

dλ
→ dt2

dλ2
= ... ,

dr2

dλ2
= ... ,

dθ2

dλ2
= ... ,

dφ2

dλ2
= ... .

Solutions for the geodesic equations can be more easily found using the conserved quantities associated to the metric’s
symmetries. For each KV one has a constant of motion, and additionally the Lagrangian is constant along the
geodesics. Schematically,

kµ
dxµ

dλ
= const for each KV and (8.22a)

−s := gµν
dxµ

dλ

dxν

dλ
=

{
+1 timelike geodesics, particles (taking λ as proper time)

0 null geodesics, photons
. (8.22b)

There is a third property (beside KV and Lagrangian) that allows one to simplify the solution: exactly as in the
2-body problem in Newtonian gravity, the motion is on a plane. This can be shown by considering the θ̈ geodesic

θ̈ +
2

r
θ̇ṙ − sin θ cos θφ̇2 = 0 , (8.23)

and observing that if the motion is initially in the plane, θ(0) = π/2 and θ̇(0) = 0, it remains in the plane (θ(0) = π/2
and θ̇(0) = 0 satisfy the equation at all times).

Let us calculate the constants of motion associated to the time-symmetry and φ-rotational KV. Setting A :=
(1− RS

r ),

Tµ = (1, 0, 0, 0) , Tµ = (−A, 0, 0, 0) ; Rµφ = (0, 0, 0, 1) , Rφµ = (0, 0, 0, r2 sin2 θ) , (8.24)

direct calculation/inspection indicates that

e := −Tµ
dxµ

dλ
= +A

dt

dλ
; ` := Rµ

dxµ

dλ
= r2 dφ

dλ
|θ=π/2 . (8.25)

are respectively, a first integral of the geodesic ẗ and a first integral of the φ̈ equatorial geodesic.
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Figure 8.1: Effective potential of photons and particles in units c = G = M = 1.

Meaning of integrals of motion.
• For a particle of mass m the quantity e is interpreted as the the total energy (including grav. potential) per

unit mass relative to a static observer at infinity. In other terms, e is the energy required by such observer to
put the unit-mass particle into the orbit with energy e. The key point here is that e is different from the energy
−pµUµ measured by any observer with 4-velocity UµU

µ = −1 because Uµ is not a KV. This holds also for a
stationary observer (U i = 0) and it is mathematically a consequence of the 4-velocity normalization. Physically,
the observer Uµ measures as −pµUµ only the kinetic energy of the fre-falling particle. The total energy is the
one conserved and can be defined only in presence of a KV (in general it cannot be defined). Obviously, for a
photon ~e is the total energy of the photon.

• For a particle of mass m the quantity ` is interpreted as the angular momentum per unit mass and, similarly,
~` is the angular momentum of a photon. Note that the expression ` = r2φ̇ = r2Ω generalizes Kepler 2nd law.

Exercise 8.4.1. Consider again the gravitational redshift of photons with momentum pµ moving from r1 to r2 and
as measured by an observer with 4-velocity uµ = (u0, 0, 0, 0) with u0 = N = A1/2 and u0 = −A−1/2. The photon’s
energy measured by the observer is

E = ~ω = −u0p
0 = −u0

dt

dλ
= +A1/2u0

dt

dλ
= A1/2(A−1e) = A−1/2e =

(
1− RS

r

)−1/2

e . (8.26)

From the above expression one sees immediately that the photon energy measured by uµ does not correspond to the
total photon energy e. Taking the ratio of the energy at two radii, e cancels and one finds immediately the general
formula and the correct Newtonian limit for r �M :

E(r1)

E(r2)
=
ω(r1)

ω(r2)
=

(
A(r1)

A(r2)

)1/2

=

(
(r1 − 2M)r2

r1(r2 − 2M)

)1/2

≈ 1− M

r1
+
M

r2
= 1 + ∆φ , (8.27)

Schwarzschild potential. Consider the Lagrangian equation −s = ... restricted to the equatorial plane and mul-
tiply by A:

−As = −A2ṫ2︸︷︷︸
=e2

+AA−1ṙ2 +A r2φ̇2︸︷︷︸
=`2/r2

⇒ ṙ2 +A(
`2

r2
+ s) = e2 . (8.28)

The above equation can be written as the Newtonian EOM of a unit-mass particle with energy e2/2 moving in a
central potential by introducing the Schwarzschild potential :

V
(s)
` (r) =

1

2
A(r)(

`2

r2
+ s) =

s

2
− sM

r
+

`2

2r2
− M`2

r3
⇒ 1

2
ṙ2 + V

(s)
` (r) =

e2

2
. (8.29)

This equation is exact in GR and s = 1(0) for timelike(null) geodesics. For timelike geodesics, the potential has a
“1/r” structure very similar to the Newtonian case

V (s) ∼ const + 1/r Newton potential of a mass M + 1/r2 centrifugal potential + 1/r3 GR term ;

because the GR term vanishes faster than all the others for r �M , the EOM have the correct weak field limit. Note
the potential is always postive for r > Rs = 2M and is zero at the Schwarzschild radius and goes to zero (s = 0) or
to one (s = 1) for r → ∞. For r → 0 (r < 2M) the potential goes to V → −∞ while the Newtonian potential goes
to V → +∞. Fig. (8.1) shows examples of particle and photon potential.
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Discussion on orbits. Several qualitative features of the orbits on Schwarzschild can be discussed by investigating

the potential V
(s)
` . In what follows it is convenient to simplify the radial equation by multiplying by 2, and redefine

the potential by omitting the factor 1/2 in front. We will focus on orbits at radii r ≥ RS where the potential is
postive. Labels s and ` are also omitted.

The radial EOM implies that the potential of the orbit must be always smaller than the total energy (simply
because the square velocity is nonnegative)

ṙ2 = e2 − V (r) ≥ 0 ⇒ V (r) < e2 . (8.30)

In turn, this implies that (given the total energy) the motion is restricted to the radii where V (r) < e2 is verified. For
example, a particle “moving in” from large radii can continue up to a radius r∗ such that V (r∗) = e2; at this point
its velocity is zero and its acceleration is positive since (dr < 0, turning point)

r̈2 = −dV (r)

dr
, (8.31)

hence it turns and “moves out” again to infinity. The main features of the orbits are determined by the extrema of
the potential, i.e. by the equations

0 =
dV (r)

dr
= sMr2 − `2r + 3M`2 ,

d2V (r)

dr2
= 2sMr − `2 . (8.32)

Let us look at some of these features.

For photons (s = 0) the potential is zero at r = 2M and goes to zero for r → ∞. The potential has a maximum
at r = 3M (from Eq. (8.32) with s = 0) which is independent on ` > 0 and corresponds to an energy or impact
parameter:

e2
c := V (3M) =

`2

(3M)2
− 2M`2

(3M)3
=

`2

27M2
or b2c :=

`2

e2
c

= 27M2 . (8.33)

Following the general discussion above,
• Photons with energy e > ec moving-in from large radii continue moving to r = 2M [and further to r → 0 3]

(plunge orbits).
• Photons with e < ec moving-in from large radii hit a turning point at a minimum radius r∗ and then move back

to large radii (hyperbolic orbits).
• Photons with energy e = ec have no radial acceleration, i.e. they are on a circular orbit at rc = 3M called

light ring. Such orbit exists for every ` > 0 and is unstable since the r = 3M correspond to a maximum of the
potential (a small perturbation around the maximum destroys the orbit.)

For particles (s = 1) , the potential is zero at r = 2M and goes to one for r →∞. The extrema of the potential
are, from Eq. (8.32) with s = 1, at radii

r± =
`2 ±

√
`2(`2 − 12M2)

2M
. (8.34)

• For `2 < 12M2 there are no extrema.
• For `2 = 12M2 there is a single extremum at rc = r+ = r− = 6M , corresponding to a point of inflection of the

potential.
• For `2 > 12M2 there are two extrema, corresponding to a maximum (r−) and a minimum (r+) of the potential.

Note that for large angular momenta, `2 � 12M2, their limiting values are (r−, r+) ≈ (3M, `2/M) corresponding
to the light ring and the Newtonian value (Kepler law).

Indicating with e2
± = V (r±) the energies corresponding to the extrema, one can characterize the orbits as above for

a given ` FIG.
• Particles moving-in with e > e− continue to move to r = 2M and r → 0 (plunge orbits).
• Particles moving-in with e < e+ follow hyperbolic orbits.
• Particles with e = e− = e+ move on a stable circular orbit called last stable orbit (LSO) or innermost stable

circular orbit (ISCO) with angular frequency (squared)

Ω2 =
`2

r4
+

∣∣∣∣
r+=6M

=
M

r2
+(r+ − 3M)

∣∣∣∣
r+=6M

= 2−23−3M−2 , (8.35)

where ` can be eliminated using V ′ = 0, i.e. `2 = Mr2/(r − 3M). The energy of the LSO is

e2 = V (6M) =
r+ − 2M

r
1/2
+ (r+ − 3M)

∣∣∣∣∣
r+=6M

=
√

8/9 . (8.36)

3In other terms, photons with impact parameter b < bc are “captured” and move down to r → 0; the capture cross section of the black
hole can be defined as σ = πb2c = 27M2π.
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• Particles with e = e± move on circular orbits at r±; the inner circular orbit at r− is unstable, the outer circular
orbit at r+ is stable. In other terms, circular orbits with r+ ≥ 6M are stable, and those with 3M < r− < 6M
are unstable.

• Particles with e+ < e < e− move on bound orbits between r± (not circular). Among these orbits it is interesting
to consider those close to circular the orbits r+ and perform a perturbative analysis:

r̈+ + δ̈r = − dV

dr

∣∣∣∣
r++δr

≈ − dV

dr

∣∣∣∣
r+

− d2V

dr2

∣∣∣∣
r+

δr ⇒ δ̈r = − d2V

dr2

∣∣∣∣
r+

δr . (8.37)

The perturbed orbit oscillates around the circular one at a frequency

ω2 =
d2V

dr2

∣∣∣∣
r+

=
M(r+ − 6M)

r3
+(r+ − 3M)

=
(r+ − 6M)

r+

M

r2
+(r+ − 3M)

=
(r+ − 6M)

r+
Ω2 , (8.38)

where the angular momentum is again eliminated using V ′ = 0, i.e. `2 = Mr2/(r − 3M) and where the last
expression highlights the relation to the angular frequency of the circular orbit. From the above expression one
can verify that ω2 ≈ Ω2 for r � 6M : the orbit is closed, and the particle returns to the same radius after one
period. This is consistent with the fact that Newtonian bound orbit are closed ellipsis. However, in general, GR
predicts that bound orbits are not closed. Rather, they precess at a frequency

ωp = Ω− ω =

[
1−

(
1− 6M

r+

)1/2
]

Ω ≈ 3M3/2r
−5/2
+ . (8.39)

The last expression above is the leading-order term for r � M that is responsible for Mercury perihelion
precession.

Exercise 8.4.2. Mercury perihelion. A more complete calculation for precessing bound orbits in GR should account
of eccentricity. Starting from the radial geodesic and (i) restricting to equatorial plane, (ii) including the constant of
motions, (iii) multiplying by (φ̇)−2, (iv) changing variable to u = 1/r, one obtains [exercise]

d2u

dφ2
+ u =

M

`2
+ 3Mu2︸ ︷︷ ︸

GR term

. (8.40)

The above equation is again similar to the Newtonian equations for elliptic orbits but includes a GR term. Without
the GR term one has

uN = M`2(1 + ε cosφ) , (8.41)

where the eccentricity ε is fixed by the initial condition. The GR term can be treated as perturbation when compared
to the Newtonian term at the r.h.s. because Mercury’s the tangential velocity is

3Mu2

M`−2
= 3u2`2 = 3r−2(r2φ̇)2 ' 3(r

dφ

dt
)2 = 3(

v⊥
c

)2 ≈ 10−7 . (8.42)

Let u = uN + v and find a linear equation in v:

d2uN
dφ2

+ uN −
M

`2︸ ︷︷ ︸
=0

+
d2v

dφ2
+ v = 3M(u2

N + 2uNv + v2) ≈ 3Mu2
N . (8.43)

This is an equation for a forced oscillator, the solution is given by the general solution of the homogeneous equations
plus a particular solution of the complete equation. A particular solution is given by

v = 3M2`−4[1 + εφ sinφ︸ ︷︷ ︸
secular term

+ε2(
1

2
− 1

6
cos(2φ))] , (8.44)

which is the combination of a constant term, a secular term ∝ φ and an oscillating term. An approximate solution to
the perturbation problem is obtained by just picking the secular term,

u ≈ uN + vsecular = M`−2(1 + ε cosφ) + 3M2`−4εφ sinφ 'M`−2
(
1 + ε cos(φ− 3M2`−2φ)

)
, (8.45)

where 3M2`−2φ ∼ sin(3M2`−2φ) for small arguments of the sin(.) and trigonometric identities were used. The
approximate solution above shows that if ε 6= 0, then the orbit is not periodic of 2π and it is not an ellipses. For a
revolution of φ = 2π, the perihelion shift is

2π(1− 3M2`−2) = 2π − 6M2`−2 ⇒ ∆φ = 6π3M2`−2 . (8.46)
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The angular momentum in the formula above is difficult to measure from astronomical observations and it is best to
substitute it with the semi-major axis a. This is done by comparing uN (φ) to the generic equation for an ellipsis u(φ):
ua(1− ε2) = (1 + ε cosφ), which implies M`2 = a(1− ε2). Plugging in the angular momentum expression in terms of
the semi-major axis, the final result for the perihelion shift is

∆φ =
6πM

a(1− ε2)
=

6πGM

a(1− ε2)c2
. (8.47)

Mercury data are GM�/c
2 ' 1.48 · 105 cm, a ' 5.79 · 1012 cm, ε ' 0.20, T ' 88 days, resulting in ∆φ ' 0.103′′/ orbit

' 43′′/100 yrs. This number fills the discrepancy w.r.t. the Newtonian calculation and the measured value. Note that
PSR 1913+16 has a precession of ∆φ ∼ 4.2◦/100 yrs, which is ∼ 270× the one of Mercury and indicate the extreme
gravity of that binary system 4

Exercise 8.4.3. Light bending. A similar calculation as above but for photons gives the trajectory equation

d2u

dφ2
+ u = 3Mu2 , (8.48)

where again the ∝ u2 term is small in the Solar system

3Mu2

u
=

3Rs
2r
≤ RS
R�
∼ 10−6 . (8.49)

Neglecting this term gives a straight trajectory for light

uN = b−1 sinφ , or ∆φ = 2 arcsin

(
b

r

)
= π . (8.50)

where b is the impact parameter. Note that the total deflection angle is is twice ∆φ. Inserting the leading order order
solution, and solving for the first-order perturbation one finds

d2v

dφ2
+ v = 3Mu2

N ⇒ u = uN + v = b−1 sinφ+
3M

2b2
(1 +

1

3
cos(2φ)) . (8.51)

In the limit of large radii u → 0, the deflection angle φ → 0, π and because sinφ ≈ φ cosφ ≈ 1, one obtains
∆φ ≈ 4GM/(bc2) = 2RS/b.

Exercise 8.4.4. Radially infalling particle. Consider a particle of mass m infalling from large radii on a radial orbit
(` = 0). How long it takes to reach r = Rs = 2M? We are interested in computing both the proper time and the
coordinate time.

Consider first proper time; from the radial equation with ` = 0

ṙ2 = e2 − 1 +
Rs
r
≥ 0 ⇒ dτ = − dr√

e2 − 1 +Rs/r
, (8.52)

where the minus sign is taken because of the infalling orbit (dr < 0). The integral of the r.h.s. is finite for any value
of e2, implying that the particle reaches Rs in a finite proper time.

Consider coordinate time; from the definition of the energy,

dt

dτ
= A−1e = (1− RS

r
)−1e ⇒ dt =

e dτ

A(r)
= − e dr

(1−RS/r)
√
e2 − 1 +Rs/r

. (8.53)

Let ξ = r −RS = r − 2M , then

dt = − (ξ +RS)3/2 dξ

ξ
√
ξ(e2 − 1) + e2RS

, (8.54)

and one sees that for ξ → 0 (r → RS) the integral is divergent. Take for example e2 ∼ 1 and see that
∫
dξ/ξ ∼ ln ξ. It

should be clear that the divergent term is A−1 ∼ 1/ξ and it does not depend on e. Hence, the coordinate time diverges
for r → Rs. This example further show that the metric singularity is not physical but an effect of coordinates.

8.5 Coordinates, light cones, and extensions

Let us investigate the coordinate singularity in r = RS .

4Differently from Mercury, PSR 1913+16 cannot be used this way to verify GR from measured precession because the masses of PSR
are not known. The measurement is in fact used to estimate the masses.
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Remark 8.5.1. Q: What is a coordinate singularity? A: Intuitively, coordinate singularities are points in the manifold
where the specific coordinates (chart) fail and do not describe properly the geometry. Examples are the points θ = 0, π
of the 2-sphere when the usual (θ, φ) coordinates are employed. Imagine you do not have an idea of the 2-sphere but
you have only a metric expression for the usual line element dΩ2(θ, φ): the north pole is a point for which θ = 0 but
the value of φ is undefined. A possible way to discover that the chart is bad is to calculate gauge invariant quantities.
In the 2-sphere case, one could consider the circumference of circles at θ = θ̄ = const and find out that the distance
between the points on these circles (θ̄, φ) tends to zero for θ̄ → 0. Because the metric is Riemannian two points should
be identified as the same point if the distance between them is zero. Thus, the points at (0, φ) are the same point
and it is the coordinate choice that is misleading. In GR the metric is not positive definite and the situation is more
complicated, but one possibility to find out about bad coordinates is to study the causal structure of the spacetime.

Study the Schwarzschild metric slightly below r = RS = 2M . Start by changing variable to ξ := RS − r > 0,

g =
ξ

RS − ξ
dt2 − RS − ξ

ξ
dξ2 , (8.55)

where we do not write from now on the metric on the sphere since we know for any fixed time and radial coordinate
the metric is a 2-sphere. Inside the Schwarzschild radius (Rs − ξ > 0)

r < RS ⇒ ξ > 0 ⇒

{
gtt > 0

gξξ < 0
⇒

{
∂ξ and ∂r are timelike vectors

∂t is spacetime vector
⇒

{
ξ and r are timelike coordinates

t is spacetime coordinates

(8.56)
If the above is not clear remember that

dt(∂ξ) = 0 , g(∂ξ, ∂ξ) = gξξ < 0 , (8.57)

and similarly for the ∂t vector.
Because particles follow timelike paths, and below the Schwarzschild radius the timelike paths are those in the ∂ξ

direction, particle inside RS must reach the point r = 0

ξ increases ⇒ r decreases ⇒ particle reaches r → 0 . (8.58)

Moreover, a photon emitted by a infalling particle that just passed r ∼ RS must move “forward in time” according
to the observer with the particle. This indicates that also photons in r < RS must move to r → 0. All the worldline
crossing the Schwarzschild radius move to the singularity. However, this is all speculative, since we already know that
the metric in Schwarzschild should not be used for r < RS .

Light cones. Calculate radial null curves (by taking a shortcut, repeat the proper calculation as [exercise])

0 = g(u, u) , g = −A(r)dt2 +A−1(r)dr2 ⇒ dt

dr
= ±A−1/2(r) = ±

√
1− RS

r
. (8.59)

A shown in FIG the light cones “close up” when moving from large radii (g ∼ η) towards r → RS . At r = RS the
cone is infinitely thin and the coordinate time t → ∞ (See Exercise 8.4.4). Even considering “valid” radii r > Rs
away from the coordinate singularity, “something physical” is happening. Consider an observer falling towards RS
and sending signals (light pulses) to another observer at large radii (FIG). If the falling body sends the pulses at its
fixed proper time intervals, the observer far away gets the pulses at increasing intervals as measured by its clocks.
(The formal calculation isa simple [exercise] by now.) In particular, the observer far away will never receive the signal
sent when the infalling observer reaches RS .

The radial null curves equation above is solved by

t = ±r∗ + const , with r∗ := r +RS ln(
r

RS
− 1) (Tortoise coordinate) . (8.60)

The tortoise coordinates r∗(r) : [2M,∞) 7→ (−∞,∞), maps the exterior spacetime into R. The metric is

g = A (r(r∗)) (−dt2 + dr2
∗) , (8.61)

and clearly the cones do not close up by approaching r∗ → −∞ (r = RS) but stay at 45◦ in the spacetime diagram
(t, r∗). Since the tortoise coordinates are valid only in the exterior, (t, r∗) remain always timelike and spacelike
respectively. The light cones can be easily characterized by introducing the null coordinates{

u := t− r∗ , outgoing

v := t+ r∗ , ingoing
(Null coordinates) , (8.62)

also defined in the exerior r > RS and in which

g = −1

2
A(r(u, v))(dudu+ dvdu) , (8.63)
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where r(u, v) is given by the inverse of

1

2
(v − u) = r∗ = r +RS ln(

r

RS
− 1) , for r > RS . (8.64)

Note the metric is singular at RS . Because du(∂v)dv(∂v) = 0 · 1 = 0 and similarly for the ∂u, the vectors (∂u, ∂v) are
null. Thus,

• Ingoing radial null geodesics are given by v = const;
• Outgoing radial null geodesics are given by u = const.

Both tortoise and null coordinates are defined in the exterior, so they do not bring new information about the
spacetime. However, they are the basis to define new coordinates that allows us to describe together both exterior
and interior.

Eddington-Finkelstein (EF, 1923-1958) coordinates, metric extension & the “null membrane”. Con-
sider the coordinate transformation from Schwarzschild coordinates to the a system of coordinate made of the ingoing
null coordinate and the Schwarzschild radius,

(t, r) 7→ (v, r) (Ingoing EF coordinates) ⇒ g = −A(r)dv2 + dvdr + drdv . (8.65)

Note that gvv(Rs) = 0 but the metric is invertible at RS . In the ingoing EF coordinates the metric is regular at
RS and, while they are formally defined in the exterior for r ∈ [2M,∞), the metric expression can be analytically
continued (extended) to the interior 5. This is a big step beyond. The radial null geodesics are now given by

0 = g = −A(r)

(
dv

dr

)2

+ 2
dv

dr
= −dv

dr

(
A(r)

dv

dr
− 2

)
⇒ dv

dr
=

0 ingoing null radial geodesics

2A−1 =
2r

r −RS
outgoing null radial geodesics

(8.66)
Light cones are shown in Fig. (8.2). The future direction at a given spatial point is given by increasing values of
v = t+ r∗. One observes immediately two interesting facts,

1. Light cones remain well-behaved at r = RS , and timelike/null geodesics can be calculate and can cross RS . This
wass expected from RS being only a coordinate singularity.

2. Light cones “tilt” over for r < RS and all the future directed paths are in the direction of the r = 0 singularity.
This show that the spacetime has something special at RS : the causal structure is such that the 2-sphere r = RS
functions as a “one-way membrane” that shed the interior form the exterior and things can only “flow in” and
not out. The surface r = RS is called an event horizon (EH).

Remark 8.5.2. The EH is a null surface. Take the surfaces r = const defined by the 1-form nµ = (dr)µ = ∂µr =
(0, 1, 0, 0). Note the inverse metric is (only the 2× 2 relevant block is shown)

gµν =

[
−A 1
1 0

]
⇒ gµν =

[
0 1
1 A

]
. (8.67)

The normal vector is the vector ∂a associated to the 1-form:

nµ = gµν∂µr = gvr∂rr + grr∂rr = (1, A(r), 0, 0) (8.68)

Hence, the norm of the normal vector is

nµn
µ = gµνnµnν = gµν∂µr∂νr = grr = A(r) . (8.69)

The above expressions show that, among all the r = const surfaces, the only one that is null (nµn
µ = 0) is the s-sphere

at r = RS for which A(RS) = 0. The normal vector to the EH is n = ∂v. Note that normals to null surface cannot
be normalized.

Remark 8.5.3. The extended metric in ingoing EF coordinates admit the KV ∂v, whose relation with the timelike
KV is immediately found by the coordinate transformation, xµ = (v, r) = (t+ r∗(r), r),

∂t =
∂xµ

∂t
∂µ = ∂v . (8.70)

However, the KV’s norm is g(∂v, ∂v) = gvv = −A(r) which is timelike in the exterior, null at the EH and spacelike in
the interior.

5Since the metric components are real analytical functions of the coordinates, they can be expanded as convergent functions about a
point. Since they satisfies EFE in some open set then also the extended metric is a solution of the vacuum EFE.
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Figure 8.2: Light-cones and radial null geodesics in Eddington-Finkelstein coordinates.

Consider now the tranformation

(t, r) 7→ (u, r) (Outgoing EF coordinates) ⇒ g = −A(r)du2 − dudr − drdu . (8.71)

It is immediate to repeat all the calculations done for the ingoing EF. But because of the minus sign in the metric
above, the outgoing radial null geodesics are those given by du/dr = 0 while the ingoing radial null geodesics are
those given by du/dr = 2A−1. The future directed paths in these coordinates are again those at increasing u = t− r∗,
but the cones are tilted of 90◦. This means that now the one-way membrane can be crossed only moving back in the
past: things can “flow out” and not in! Clearly the extension performed with the outgoing EF coordinates does not
represent the same spacetime (physics) as the extension performed with the ingoing EF coordinates.

Isotropic radial coordinate & the spatial isometry. There is a last step to take that will add information
about this spacetime. Consider the radial transformation to isotropic coordinate x defined by

r = x

(
1 +

M

2x

)2

=: xΨ2(x) ⇒ x =
1

2

(
r − M

2
+
√
r(r −Rs)

)
for r ≥ RS . (8.72)
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The Schwarzschild metric in isotropic coordinates (t, x) is

g = −
(

1− M

2x

)2

Ψ2(x)dt2 + Ψ4(x)
(
dx2 + x2dΩ2

)
, (8.73)

and it is defined for x ∈ [M/2,+∞), with the horizon corresponding to M/2 and the asymptotic flat end to x→∞.
The function Ψ(x) is called conformal factor and in the weak field limit Ψ ≈ 1 − φ/2. Note the spatial part of the
isotropic metric is the Euclidean 3D diagonal metric multiplied by the conformal factor.

Take now slices t = const and focus on the spatial part of the metric. The spatial metric can be extended to
x ∈ (0,+∞). The points x = 0 do not correspond to the r = 0 singularity, because we have first mapped the
Schwarzschild exterior and then extended the result. The points correspond to another asymptotically flat-end. To
see this, take the transformation

x 7→ y =
M2

4x
, (8.74)

and observe that:
• It leaves invariant the 2-sphere of the horizon, x = y = M/2;
• It leaves the metric in the same form g = Ψ(x)(dx2 + x2dΩ2) = Ψ(y)(dy2 + y2dΩ2);
• It maps x = 0 to y →∞ and reflects all the points with respect to M/2.

The map is an isometry of the metric that leaves invariant the horizon. The region around x = M/2 is called the
Einstein-Rosen bridge. The extension is a spatial slice of Schwarzschild spacetime that connects two asymptotically
flat regions without entering below the event horizon.

Remark 8.5.4. The Schwarzschild metric in isotropic coordinates is usually visualized taking t = const and θ = const
and plotting the resulting 2D metric as embedded in R3. The extension is then visualized by “gluing” a reflected copy
at the Einstein-Roseon bridge.

Summary 8.5.1. Let us summarize the results so far:
• Schwarzschild coordinates are not appropriate to describe the interior r < RS = 2M ;
• Schwarzschild radius RS is a coordinate singularity but appear to hide a new physical property of the spacetime;
• EF coordinates allows one the analytic continuation of the metric to r ∈ (0,∞) and remove the coordinate

singularity at RS;
• r = RS marks a null 2-sphere that characterizes the spacetime with a peculiar causal structure;
• In the extension with ingoing EF, r = RS is a EH from which no particles or photons can escape. All the

future-oriented timelike or null curves that start from r < RS stay inside the horizon.
• In the extension with outgoing EF, r = RS has a similar property, but time reversed. All the future-oriented

timelike or null curves go out from the null surface.
• There exist a spatial extension in isotropic coordinates that connects two aymptotically flat ends through the

Einstein-Rosen bridge.

8.6 Kruskall-Szekeres (1960) maximal extension

The EF coordinate metric extension suggests that the two pairs of coordinates explore two different regions of a
spacetime larger than the initial Schwarzschild exterior r > RS .
Problem: Is is possible to find coordinates that describe the whole spherically symmetric spacetime?

Starting from null coordinates (defined only for r > Rs) define new null coordinates{
ū := −eu/2RS = −( r

Rs
− 1)1/2e(r−t)/2RS

v̄ := +ev/2RS = +( r
Rs
− 1)1/2e(r+t)/2RS

⇒ g = −16M3

r
er/RS (dūdv̄ + dv̄dū) . (8.75)

Note that for r = RS one has ū = v̄ = 0 and in the metric r = r(ū, v̄). The metric above is regular for r < RS and
can be extended to r ∈ R+. The Kruskall-Szekeres coordinates are constructed from (ū, v̄) by introducing{

T := 1
2 (v̄ + ū)

R := 1
2 (v̄ − ū)

(Kruskall-Szekeres coordinates) ⇒ g = −16M3

r
er/RS (−dT 2 + dR2) , (8.76)

where r = r(T,R), T 2 −R2 = (1− r/RS)er/RS , T/R = tanh(t/2RS).

Spacetime diagram. See FIG
• Radial null curves are straight lines:

g = 0 ⇒
(
dT

dR

)2

= 0 ⇒ T = ±R+ const . (8.77)
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Figure 8.3: Kruskall maximal extension.

• r = const surfaces are hyperbolae,

r = const ⇒ const = (1− r/RS)er/RS = T 2 −R2 . (8.78)

• The r = RS is the special “hyperbola” 0 = T 2 − R2 ⇒ T = ±R, that clear coincides with a radial null curve.
Here vectors T and ∇r are collinear.

• The singularity r = 0 correspond to the hyperbola T 2 −R2 = 1 and the spacetime r ∈ (0,∞) is mapped to the
region T 2 −R2 > 1.

• t = const surfaces are stright lines:

t = const ⇒ const = tanh(t/2RS) =
T

R
. (8.79)

• Light cones are at 45◦ everywhere in the spacetime.

Black hole, white hole and worm hole. Let us explore the Kruskall-Szekeres diagram. There are four regions:

(I) Schwarzschild exterior solution, where (t, r) coordinates are well behaved. Asymptotically flat region for r →∞.
Following future-directed (t > 0) null rays one goes from (I) to (II). Following past-directed null rays one goes
from (I) to (III).

(II) BLACK HOLE. Particles and light can move in, but not out. Once they enter the event horizon at r = RS they
reach the singularity r = 0. This is the region explored with the ingoing EF coordinates extension.

(III) WHITE HOLE. Time reversal of (II). Things can only move out from the past singularity and cross the past
horizon towards the future.

(IV) WORM HOLE. Events in this region are spacelike to event in (I); (IV) is causally disconnected from (I). (IV)
is a “copy” of (I) and has another asymptotically flat end, the two regions are connected at an istant of time
through the Einstein-Rosen bridge but there is no way to cross it without violating

Remark 8.6.1. The Kruskall-Szekeres spacetime is a valid solution of EFE in vacuum an spherical symetry, but does
not necessarily correspond to a region of our Universe, i.e. it is not necessarily physical reality. Indeed, to obtain such
a solution a region of the Universe should be initially formed with two asymptotically flat ends I and IV connected by
a singularity in III. These would be very special conditions. Physical intuition and astrophysical observations indicate
that the most extreme and plausible phenomeon to produce a black hole is the gravitational collapse of massive stars.
In this case the initial spacetime is Schwarzschild only in the exterior (after the surface of the collapsing object) while
in the interior a regular metric (with no funny causal structure) is determined by the nonvacuum solution of EFE
(see Sec. 8.8). Thus, the initial condition is just region (I) glued to an interior nonvacuum spacetime. If the matter
collapses under its own gravity and the last surface crosses RS, then an event horizon can form and the black hole
spacetime will be formed by region (I) and (II) of the Kruskall-Szekeres spacetime. There is no clear way to produce
white holes or worm holes, that are instead considered unphysical.
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8.7 Conformal infinity & diagrams

Some fundamental questions in GR like the definition of energy and radiated energy and the definition of asymptotical
flatness require a precise definition of the spatial and null infinity and a precise procedure to write tensorial equation in
those “limiting points”. This notion is implemented in the concept of conformal infinity : the asymptotic structure of
the manifold can be studied by considering a suitable conformal metric (related to physical metric) with the property
that it can be extended to infinities and the tensor fields can be evaluated at those points.

A related, more practical, question to start with and motivated by the Kruskall-Szekeres analysis above is the
following: Is it possible to describe the spacetime, including infinities, with coordinates with compact support?

Mikowski. Start in standard coordinates (t, r) ∈ (−∞,∞)× [0,∞) and in null coordinates (u, v) = (t− r, t+ r) ∈
(−∞,∞)× (−∞,∞) with u ≤ v; the metric is

η = −dt2 + dr2 = −1

2
(dudv + dvdu) . (8.80)

The null coordinates can be easily compactified using the arctan (.) functions,{
U = arctan (u)

V = arctan (v)
(U, V ) ∈ (−π/2, π/2)2 , U ≤ V (8.81a)

η = −2ω−2(dUdV + dV dU) , ω(U, V ) := 2 cosU cosV . (8.81b)

The ω(U, V ) function is called the conformal factor. From the expression above one sees that the conformal factor is
zero for ±π/2 that corresponds to the null infinities u, v ±∞. However, the conformal metric

η̃ := ω2η , (8.82)

is well defined at ±π/2 and can be extended in those points. Compactified time/spacelike coordinates can be now
obtained: {

T = V + U

R = V − U
0 ≤ R < π , |T |+R ≤ π (8.83a)

η = ω−2(−dT 2 + dR2) , ω(T,R) := cosT + cosR . (8.83b)

Again, while the the ranges for Mikoski spacetime are indicated above, the conformal metric

η̃ = ω2η = −dT 2 + dR2 , (8.84)

can be extended beyond those ranges. The conformal metric is indeed valid for

T ∈ (−∞,∞) , R ∈ [0, π] , (8.85)

and represent a cylinder M = R× S1. One observers that the extension include, in particular, the points R = 0 and
T = ±π that represents the infinities of Minkoski. Thus, working with tensor fields on the the conformal metric allows
one to evaluate them at the inifinities. Note that had we kept the full coordinates the conformal metric would have
been

η̃ = −dT 2 + dR2 + sin2RdΩ2 , (8.86)

that represents the manifold R× S3 and corresponds to Einstein’s static universe (Chap. X). Note this manifold has
curvature while Minkowski space does not. The conformal infinity of Minkowski can be technically defined as the
boundary of the Einstein’s static universe.

Returning to the 2D conformal metric, one can visualize the constrution by drawing the cylinder with axis T
and identifying the portion of the cylinder corresponding to Minkowski, i.e. the portion delimited by the range of
coordinate conditions

0 ≤ R < π , |T |+R ≤ π . (8.87)

By cutting the cylinder along T and unfolding it, the Minskowki spacetime can be visualized as the interior plus R = 0
of a triangle whose other boundaries correspond to infinities (now compactified) Fig. (8.4):

• i+ Future timelike infinity, (T,R) = (π, 0).
• i0 Spatial intinifty, (T,R) = (0, π).
• i− Past timelike infinity, (T,R) = (−π, 0).
• S+ Future null infinity, T = π −R, 0 < R < π.
• S− Past null infinity, T = −π +R, 0 < R < π.

The i inifinities are points correspondings to the poles of S3 (R = 0, π), while S are null surfaces with topology R×S2.
The diagram summarizes the causal structure of Mikowski:

• Radial null geodesics are lines at ±45◦.
• All null geodesics begins at S− and terminate to S+.
• All timelike geodesics begins at i− and terminate to i+.
• All spacelike geodesics begins and end at i0.
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Figure 8.4: Construction of conformal diagram of Minkowski.

Figure 8.5: Conformal diagram for Schwazrschild.

Schwarzschild. Conformal diagram can be constructed also for Schwarzschild spacetime. The construction proceed
similarly, starting from the Kruskall-Szekeres null coordinates{

U = arctan (ū/
√

2M)

V = arctan (v̄/
√

2M)
(U, V ) ∈ (−π/2, π/2)2 , −π/2 < U + V < +π/2 , (8.88)

and finding that at constant angular coordinates the metric is conformally related to the Minkoski metric. The
diagram is shown in Fig. (8.5), where the symbols have the same meaning as in the Mikowski conformal diagram.
Note in particular that

• Radial null geodesics are lines at ±45◦.
• i± are distinct from r = 0.
• Conformal infinity is the same as in Mikwoski because Schwarzschild is asymptotically flat.

8.8 Interior nonvacuum solutions: spherical stars

The simplest models of star solutions in GR are usually obtained assuming perfect fluid stress-energy tensor

Tab = (ρ+ p)uaub + pgab . (8.89)

In spherical symmetry the exterior solution is the Schwzraschild metric but the interior must be determined by EFE
with matter terms. For a static fluid, the fluid’s 4-velocity is assumed to be in the same direction as the timelike KV.
In particular one takes for consistency with the metric ua = (dt)a. The equations for stellar equilibrium can be found
combining EFE and the EOM for the stress-energy tensor. For a perfect fluid, these equations are not sufficient to
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determine the matter and metric configuration and an equation of state (EOS) in the form

p = p(ρ) (8.90)

must be assumed to close the system. The metric reads

g = −e−2α(r)dt2 +

(
1− 2m(r)

r

)−1

dr2 , (8.91)

and the metric coefficients and matter fields are determined by the Tolmann-Oppenheimer-Volkoff (TOV) equations

dm

dr
= 4πρr2 (8.92a)

dα

dr
=
m+ 4πr3p

r(r − 2m)
≈ m

r2
(8.92b)

dP

dr
= −(p+ ρ)

m+ 4πr3p

r(r − 2m)
≈ −ρm

r2
. (8.92c)

The above equations are a system of coupled ODE that must be integrated from r = 0 to the matter surface R by
specifying a central pressure (or density) P (r = 0) = Pc, m(0) = 0 and an arbitrary constant α(0) = α0. The matter
surface is defined by the condition of vanishing pressure P (R) = 0. It is immediate to note that if p ≥ 0 and dp/dρ ≥ 0,
then the pressure solution of the TOV equation is a monotonically descreasing function The arbitrary constant α0 is
fixed afterwards by demading that α(R) matches with to the Schwarzschild metric (continuity of metric functions).
Note that the m(R) = M , which is the mass then appearing in the exterior metric.

The meaning of the TOV equations should be clear from their Newtonian limit that are also shown in the r.h.s.
of the above equations. The integral expression for the mass function

M = m(R) = 4π

∫ R

0

ρr2dr , (8.93)

is formally identical to the Newtonian equation. However, in GR the proper volume on the spatial hypersurfaces is
not 4πr2dr but 4π

√
grrr

2dr. Thus the quantity

Mp = 4π

∫ R

0

ρr2

(
1− 2m(r)

r

)−1/2

dr =: M + Eb , (8.94)

represents the proper mass and the difference Eb = Mp −M > 0 is often interpreted as the gravitational binnding
energy. The equation for α is the generalization of the Poisson equation for the Newtonian potential in spherical
symmetry. The equation for the pressure describes the hydrostatic equilibrium. Notably, the r.h.s. of the GR
equation is has always larger magnitude than the respective Newtonian equation, indicating that for a given density
the GR pressure is always larger.

In general, the TOV equations must be solved numerically for a given EOS. A simple example of numerical
integration is linked at the course webpage. However, there are example of analytical solutions, the simplest being
for an idealized constant density star and also due to Schwarschild (1916). A simple calculation imposing ρ(r) ≡ ρc
leads to [exercise]

p(r) = ρ

[
(1− 2M/R)1/2 − (1− 2Mr/R3)1/2

(1− 2Mr2/R3)1/2 − 3(1− 2M/R)1/2

]
⇒ pc = ρ0

[
1− (1− 2M/R)1/2

3(1− 2M/R)1/2

]
≈ (

π

6
)1/3M2/3ρ

4/3
0 , (8.95)

where again the Newtonian limit (r � M) for the central pressure is indicated. The GR equation for pc however,
shows that the denominator becomes infinite for radii R = 9M/4. No uniform star can exist with such a radius (mass)
given the mass (radius). This result is actually valid for a generic star with EOS such that ρ ≥ 0, p ≥ 0 and dp/dρ ≥ 0
and known as Buchdahl limit. There exist a maximum star mass for a given radius set by

M ≤ 4

9
R , (8.96)

which is independent on the EOS (provided the latter satisfies reasonable consitions).
TOV equations are typically employed for determining the equilibrium startcture of compact stars, i.e. stars with

significant self gravity. A primary application is the calculation of mass radius of neutron stars that are stars of masses
M ∼ M� and size R ∼ 10 km. The self-gravity of neutron stars is thus σ = 2GM/Rc2 ∼ 0.2. Thus, these systems
are the most compact stars that exists and are close to black holes (vacuum) in terms of gravity. Neutron stars were
predicted by Landau and Baade and Zwicky in 1933 as a product of the gravitational collapse of massive stars. Their
density is comparable of higher than those of nuclei ρ ∼ M/R3 ∼ 1015 g/ccm and their composition is unknown
since no first-principle calculations can be performed for the matter in those density regime. The esistance of neutron
star has been confirmed by many and different astrophysical observations, from pulsars to gravitational waves. The
mass-radius diagram for neutron stars is shown in Fig. (8.6). Note all the different models have a maximum mass.
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Figure 8.6: Mass-radius diagram for neutron stars with different EOS.
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9. Cosmology

3○
What spacetime GR predicts for the Universe? These lectures give the basic answer discussing the Robertson-

Friedmann-Walker metric and the Big bang.

Suggested readings. Chap. 5 of Wald (1984); Chap. 8 of Carroll (1997); Chap. 12 of Schutz (1985)

9.1 Cosmological scales

GR applies to the description of system with mass M and size R such that

σ =
2GM

Rc2
∼ 1 . (9.1)

The above condition is met for
1. Isolated systems made of compact objects like black holes and neutron stars, eventually in binaries and moving

toward each other (M ∼ const and R rapidly decreasing);
2. Homogeneous systems at sufficiently large distances, since if the matter density is constant, then M ∼ ρR3 ⇒
M/R ∼ ρR2.

Schutz (1985) defines these two situations as: R becomes smaller faster then M , and M becomes large faster than R.
The second case clearly applies to the Universe: at sufficiently large scales one expects that GR should be needed for
its description. But, at what scales?

In CGS units: G ' 6.674× 10−8, c ' 2.998× 1010 and M� ' 1.989× 1033 that imply GM�/c
2 ' 1.477 km. Since

1pc ' 3.086× 1018 cm one gets the handy formulas

σ ≈ 2× 1.477

(
M

1 M�

)(
1 km

R

)
, σ ≈ 10−13

(
M

1 M�

)(
1 pc

R

)
. (9.2)

• Galaxy: R ∼ 15 kpc = 104 pc and M ∼ 1012 M�, σ ∼ 10−5. A galaxy is as relativistic as the Solar system.
• Galaxies cluster: R ∼ Mpc = 106 pc with 103 galaxies, σ ∼ 10−4. At these distances one either assumes

(cosmological principle) or start to observe homogeneity. Hence, the interesting scales for GR are
• Cosmological distances: R & Gpc = 109 pc.

9.2 Observations

The key observation for modern cosmology is Hubble’s 1929 measurement (and later ones) of the Universe’s expansion.
The velocity of galaxies is proportional to their distance from Earth and it is larger the farther the galaxies are
(Fig. (9.1)), i.e. galaxies are moving far away from each other and the Universe is expanding,

v = H0d. (9.3)

The recession velocity was measured from the redshift of light from Cepheid variables z ≈ v/c, while the distance is
derived from the intrinsic luminosity of standard candles (supernovae). Note that the GR prediction of an expanding
Universe is due to Alexander Friedmann 1922 and independently to Georges Lemaˆitre in 1927 that also predicted
the proportionaly between velocity and distance. The currently most precise measurements of H0 areprovided by
the Hubble’s SH0ES (Supernovae H0 for the Equation of State) experiment based on observations of Cepheids in six
reliable hosts of Type Ia supernovae, and by the Planck experiment on CMB (see below). The measured values are
in 5σ disagreement

H0 ∼ 73.5± 1.4 km/s/Mpc (Hubble SH0ES) , H0 ∼ 67.4± 0.5 km/s/Mpc (CMB) . (9.4)

Note these are very different measurements: one refers to the Universe expansion rate today, the other is based on
the early Universe expansion.
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Figure 9.1: Hubble’s observation (1929)

Figure 9.2: Left: cosmic microwave background (CMB) observations form various experiments (1989-2001-2013).
Right: Temperature power spectrum measured by Planck.

A second key observation is the discovery of cosmic microwave background (CMB) by Arno Penzias and Robert
Wilson (1964), the oldest radiation electromagnetic radiation in the Universe with a temperature of T ∼ 2.74 K and
a black body spectrum. This is considered generated in a early epoch when electrons and protons formed neutral
hydrogen atoms (“recombination”) in an excited state, the electron decayed to the ground state and the photon
escaped. The process of photons escaping from these new nuclei is called radiation decoupling. The CMB was
predicted in 1948 da George Gamow, Ralph Alpher and Robert Herman and it is considered key evidence for the Big
Bang model 1. The CMB is studied by looking at the power spectrum of the multipoles |c`m| of the temperature
fluctuation,

∆T

T
(θ, φ) =

∑
`m

c`mY
`m(θ, φ) . (9.5)

It is found that the radiation is isotropic in one part over 100, 000, temperature fluctuations are of the order ∼ µK. The
temperature fluctuations correlate to density variations in the Universe at 370,000 years old, which in turn relate to
the structure of galaxies and galaxy clusters today (13.8 billion years later). Temperature fluctuations can have various
origins and can be very well predicted using the ΛCDM (Λ-Cold Dark Matter) model and studying perturbations of
the homogeneous background cosmological spacetime (the FRW spacetime discussed below), Fig. (9.2).

9.3 Homogeneity & Isotropy

The concept of homogeneity and isotropy can be made formal by considering the symmetries of the metric. Recalling
previous discussions on symmetries and diffeomorphisms, the following definition should not sound new or complicated:

Definition 9.3.1. A diffeomorsphim φ : M 7→ M is called an isometry iff φ∗gab = gab, i.e. the metric does not
change under the active coordinate transformations implemented by φ.

Focusing on the spatial section of the manifold Σt ⊂M, the manifold is

1The Big Bang nucleosynthesis was proposed by Alpher, Bethe and Gamov. The story of the paper is interesting: https://en.

wikipedia.org/wiki/Alpher-Bethe-Gamow_paper.
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Definition 9.3.2. Spatially homogeneous iff every point p ∈ Σt can be connected by an isometry φ,

∀ p, q ∈ Σ ∃ isometry φ : q = φ(p). (9.6)

Definition 9.3.3. Spatially isotropic at each point iff there exists an isometry that
(i) leaves any point p ∈ Σ invariant;
(ii) given a family (congruence) of timelike curves with tangent vector ua, leaves ua invariant; and
(iii) transforms/connects/rotates the vectors orthogonal to ua one into another.
The vector field ua defines the worldline of isotropic observers.

Observations.
• At one point there is a unique observer that sees the Universe as isotropic.
• Homogeneous+isotropic ⇒ a unique Σt must be perperdicular to the isotropic observers. If Σt is unique and

not perpendicular to ua, then the projection of ua on Σt identifies a preferred direction.
• Because of the isometry it is impossible to construct a preferred direction on the Σt.
• A metric can be homogeneous but nowhere isotropic. Example: Σ = R× S2.
• A metric can be isotropic around a point, but not homogeneous. Example: the cone.
• A metric isotropic everywhere is homogeneous.
• A metric isotropic around a point and homogeneous is everywhere isotropic.

9.4 Robertson-Walker metric

An homogeneous+isotropic spacetime must have structure M = R× Σt and metric

gab = uaub + γab(t) , (9.7)

where ua define the isotropic observers and γ is the spatial metric on the Σt.

Spatial metric. The hypotesis of homogeneity+isotropy further constraint the metric γ. One can prove that

Theorem 9.4.1. Σt is a maximally symmetric manifold where the Riemann tensor can be written as

(3)Rijkl = κγk[iγj]l , (9.8)

and κ is a constant with dimension [κ] = L−2 proportional to the Ricci scalar. Indeed, from the equation above it
follows immediately that

(3)Rij = γik(3)Rijkl = (3)Rkjkl = 2κγjl ,
(3)R = γij(3)Rij = 6κ . (9.9)

Maximally symmetric metrics are determined by the value of κ but there are only three relevant cases
κ = 0 Σ = R3 3-Euclidean space

κ > 0 Σ = S3 3-sphere

κ < 0 Σ = H3 3-hyperboloid .

(9.10)

Since one can always normalize the constant to one (see below) the cases correspond to κ = 0,±1. The κ = 0 case is
trivial. The metric for the two non trivial cases can be found by immersion in R4 with the following trick. Start from
the 4D Euclidean metric where the 4th coordinate u is constrained on a 3-sphere or 3-hyperboloid

γ = dx2 + dy2 + dz2 ± du2 with ± 1 = x2 + y2 + z2 ± u2 = δijx
ixj ± u2 , (9.11)

differentiate the surface

0 = 2xdx+ 2ydy + 2zdz ± 2udu = 2δijx
idxj ± 2udu , (9.12)

and write

± du2 = ± (udu)2

u2
= ± (δijx

idxj)2

1∓ δijxixj
. (9.13)

Substitute the above expression in the metric and write it terms of κ

γ =
∑
i

dx2
i +

κ

1− κx2
(δijx

idxj) . (9.14)

where x2 = δijx
ixj . Note the expression is valid also for κ = 0.
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Remark 9.4.1. The definition of maximally symmetry spacetime extend to arbitrary dimension by extending appro-
priately the formulas for the Riemann. Expression for the metrics of the n-sphere and n-hyperboloid can be found
by immersion in n + 1 Euclidean space with an analogous trick to the one above. Maximally symmetric spacetime
with positive curvature (κ = 1) are called de Sitter spacetimes, those with negative curvature are called anti de Sitter
spacetime.

Changing coordinates improves the feeling with this metric. Take first spherical coordinates:∑
i

dx2
i = dr2 + r2dΩ2 , δijx

idxj = rdr , (9.15a)

and substitute them inside the metric

γ =
∑
i

dx2
i +

κ

1− κx2
(δijx

idxj) (9.15b)

= dr2 + r2dΩ2 +
κ

1− κr2
r2dr2 =

dr2

1− κr2
+ r2dΩ2 . (9.15c)

Perform now the coordinate transformation

dχ2 =
dr2

1− κr2
⇒ r = Sκ(χ) =


sin(χ) κ = 1

χ κ = 0

sinh(χ) κ = −1

(9.16)

to obtain the final form
γ = dχ2 + Sκ(χ)2dΩ2 . (9.17)

Note that
• for κ = 0 this is the Euclidean metric in spherical coordinates;
• for κ = 1 one should not think of χ as a “radial coordinate”: χ is the third angle on S3.
• for κ = −1 the situation is similar: χ is the hyperboloidal coordinate.

Full metric. The full metric can be constructed as follows
• For a given t, choose γ in the above form;
• Transport the spatial coordinates along the isotropic observers, in such a way each isotropic observer is at located

fixed spatial coordinates;
• Label each surface Στ with the proper time (clocks) of the isotropic observers.

The result is the Robertson-Walker metric

g = −dτ2 + a(τ)2

[
dr2

1− κr2
+ dΩ2

]
, (9.18)

or
g = −dτ2 + a(τ)2

[
dχ2 + Sκ(χ)2dΩ2

]
, (9.19)

where a(τ) > 0 is called the scale factor that determines the volume of τ = const spatial regions (volume comoving
with isotropic observers). Note that Eq. (9.18) is invariant under the transformation

a→ λa , r → r/λ , κ→ λ2κ , (9.20)

that implies that the curvature κ can be normalized. If the curvature is normalized, then the scale factor has dimension
of length and the radial coordinate r (or χ) is dimensionless. Alternatively, it is possible to work with a dimensionless
scale factor, e.g. normalized to the “current” value a(t) → a(t)/a(t0) = a(t)/a0, use a radial coordinate with the
dimension of distance, r → a0r, and work with a curvature parameter with dimension of inverse squared length,
κ→ κ/a2

0.

9.5 Cosmological redshift

The Hubble observation on the expansion of the Universe is based on the redshift of spectral lines of distant galaxies.
Consider two isotropic observers O1,2 and the following problem. Observer O1 emits a photon of momentum ka in p1

at τ1, observer O2 receives the photon in p2 at τ2. Compute the redshift of the photon.
The problem can be solved with few symmetry considerations, (Wald, 1984).

(i) Because of isotropy, there exists a KV that points to the direction of the projection of ka on Σ1 and Σ2. For
example, for κ = 0 the KV are ∂x, ∂y, ∂z. If ∂x is the direction of the k-projection on Σ1, then ka(∂y)a =
0 = ka(∂z)a on Σ1. But because ∂i are KVs the product with ka, which is tangent to null geodesics, must be
constant. Hence, ka(∂y)a = 0 = ka(∂z)a on Σ2.
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(ii) Call ξa the KV discussed in (i), e.g. ξ = ∂x. The norm of the KV is proportional to the scale factor,√
ξaξa(p1)√
ξaξa(p2)

=
a(τ1)

a(τ2)
. (9.21)

This is obvious for κ = 0 and true in general.
(iii) The photon’s frequency observed by an isotropic observer of 4-velocity u is ω = −kaua. Since k is a null vector,

the projection against against a unit timelike vector must be minus the projection against a unit spatial vector,

0 = kak
a ⇒ kau

a = −ka
ξa√
ξbξb

. (9.22)

Inserting (iii)-(i)-(ii) in the ratio of the frequencies gives

ω2

ω1
=
kau

a(p2)

kaua(p1)
= �

��kaξ
a

�
��kau
a

√
ξbξb(p1)√
ξbξb(p2)

=

√
ξbξb(p1)√
ξbξb(p2)

=
a(τ1)

a(τ2)
. (9.23)

For an expanding Universe, a(τ2) > a(τ1) and the photon wavelength (frequency) increases (decreses) proportionally.
The redshift is given by

z =
∆λ

λ
=

∆a

a
. (9.24)

For nearby galaxies, ∆τ = τ2 − τ1 ≈ d/c and a(τ2) ≈ a(τ1) + ∆τ ȧ(τ1) + ..., which gives the Hubble redshift,

z =
a(τ2)− a(τ1)

a(τ)1
≈ ∆τ

ȧ(τ1)

a(τ1)
≈ cd ȧ

a
= dH . (9.25)

Cosmological distance measurement. Consider the measurement of the distance between O1 and O2. Light
signals emitted by O1 will be measured by O2 at a later time τ2 > τ1. In a flat and static spacetime, O2 measures an
electromagnetic flux

F =
instrinsic luminosity of the source

4πχ2
=

Ė

4πχ2
. (9.26)

In a RW spacetime the formula needs to be changed to account of several effects
• The area of the spherical wave front is not χ2 but S2

κ(χ).
• Each photon is redshifted Erec = Eemt/(1 + z).
• Delay in the photon’s time arrival due to the expansion. Two photons emitted at time interval dt arrive at time

interval dt(1 + z).
The resulting formula is

F =
Ė

4πS2
κ(χ)(1 + z)2

=:
Ė

4πd2
L

. (9.27)

The quantity dL is called luminosity distance. The formula above can be used to determine cosmological parameters
given the observable (F, z, ...) and standard candles. The latter are sources for which Ė is either known or can be
estimated accurately.

9.6 Friedman-Robertson-Walker (FRW) equations

The FRW equations determine the scale factor by solving EFE using the RW metric as ansatz. The solution corre-
sponds to a spacetime

• Homogeneous;
• Isotropic;
• Nonvacuum;

where the matter content is modeled by a perfect fluid with the same velocity as the isotropic observers in such a way
that the fluid is at rest in coordinates comoving with isotropic observers.

Tµν = diag(ρ, p, p, p) , Tµν = diag(−ρ, p, p, p) , T = Tµµ = −ρ+ 3p . (9.28)

The necessary EFE read {
Gττ = 8πTττ = 8πρ

G⊥ = 8πT⊥ = 8πp
, (9.29)

where ⊥ indicate any equation spatially projected: because of isotropy any projection of the Einstein tensor along a

unit spatial direction, G⊥ = Gabŝ
aŝb, gives equivalent equations.
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Sketch of the calculation for the κ = 0 case. Christoffel:

Γτ11 = aȧ , Γi1τ =
ȧ

a
. (9.30a)

Ricci:

Rττ = −3
ä

a
, R11 = aä+ 2ȧ . (9.30b)

Spatial projection:

sµ = (0, 1, 0, 0, 0) , sµsµ = a2 , ŝµ := a−2sµ , R⊥ = Rµν ŝ
µŝν = a2 . (9.30c)

Ricci scalar

R = −Rττ + 3R⊥ = 6(
ä

a
+
ȧ2

a
) (9.30d)

Putting things together one gets to the final result (given below). The EOM for matter fields are given by

0 = ∇µTµ0 = ∂µT
µ
0 + ΓµµαT

α
0 − Γαµ0T

µ
α = −∂τρ− 3

ȧ

a
(ρ+ p) . (9.30e)

Computing the general case for κ gives the FRW equations

(
ȧ

a

)2

+
κ

a2
= 8π

3 ρ

ä

a
+ 4π

3 (ρ+ 3p) = 0

ρ̇+ 3(ρ+ p)
ȧ

a
= 0

(FRW equations) (9.31)

that need to be solved together with an equation of state in the form p = p(ρ).

9.7 FRW solutions

Let us discuss some general consequences of the FRW equations at early and late times. Explicit analytic solution
describing these features can be found in e.g. (Wald, 1984).

Dynamical Universe & Hubble law. The FRW equations in Eq. (9.31) predict that for positive energy density
and pressure matter the Universe cannot be static but must expand or contract,{

ρ ≥ 0

p ≥ 0
⇒ ä < 0 ⇒ ȧ ≶ 0 . (9.32)

Remark 9.7.1. Expansion or contraction in the cosmological context are refereed to the distance between two isotropic
observers at the same τ .

At fixed τ the comoving radial distance between two points is

d = a(τ)χ (9.33)

and the expansion velocity is expressed by the Hubble law

v = ḋ = ȧχ = ȧ
d

a
=
ȧ

a
d =: Hd , (9.34)

where it is defined the key quantity (note it is not a constant):

H :=
ȧ

a
Hubble parameter . (9.35)

The comoving radial distance and the expansion velocity are coordinate quantities and can be interpreted as physical
only for sufficiently close objects. If the distance is smaller with respect to the Hubble parameter at the moment of
the observation d � cH−1(τ = 0), then d can be used as a measure of the spatial distance between two isotropic
observers. The inverse of the Hubble parameter is called Hubble radius. However, if the distance is larger one must
take into account that the two objects are at different τ and d is meaningless. The expansion velocity, in particular,
can be larger than the speed of light for distance objects.
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Big-bang. Hubble observed that today (τ = 0) the galaxies are moving apart from each other, i.e. H(0) > 0 and
the derivative of the scale factor is positive. Indicating with a subscript the value at τ = 0,

H0 > 0 ⇒ ȧ0 > 0 . (9.36)

The above result combined with the fact that the scale factor’s acceleration is negative (for standard matter), ä < 0,
says that the Universe was expanding faster at earlier times. Hence, the scale factor must have been zero at some
earlier time. One can set a lower limit to the time at which a(τ) = 0 by simply extrapolating back at the current rate
of expansion, to find

TH :=
a0

ȧ0
= H−1

0 Hubble time . (9.37)

Sometime at τ > TH the Universe was in a state in which a = 0 that means
• The distance between all points on Σ is zero;
• Curvature is infinite, R ∼ a−2;
• Matter had infinite density.

This instant is called Big Bang 2.

Matter and radiation. A simple EOS considered in cosmology is

p(ρ) = wρ with w =


1/3 radiation

0 dust

−1 vacuum energy

(9.38)

Dust is the simplest model of baryonic matter and can be used for stars and galaxies distributions in which the
pressure is negligible. The EOS for radiation is derived in in the example below. Vacuum energy is discussed below.
By using the above EOS, the matter equation is solved by

ρ̇

ρ
= −3(1 + w)

ȧ

a
⇒ ρ ∝ a−3(1+w) or ρa3(1+w) = const . (9.39)

In particular
• For dust matter : ρMa

3 = const. This express the conservation of mass: the number density of particles (baryons)
must decrease as the Universe expand.

• For radiation: ρRa
4 = const. The energy density of photons decreases more rapidly than the increase in volume

because photons lose energy due to redshift.
• For vacuum: ρΛa

0 = const.
Hence, there is a clear hierarchy

• Radiation is the dominant contribution to matter sources at early times;
• As the Universe expands, the matter contribution decay slower and matter must become dominant. The current

observations indicate
ρM
ρR
∼ 103 , (9.40)

but fitting these observations require to assume vacuum energy (cosmological constant).
• Both matter and radiation decay faster than a−2, hence in the FRW the term ρa2 → 0 as time advance.
• Vacuum energy (if present) dominates over matter and radiation at later times.

Example 9.7.1. Equation of state for radiation. Radiation is often considered as a gas of relativistic particles
described modeled by the perfect fluid stress-energy tensor. At the same time one can consider the radiation as
described by the stress-energy tensor of electromagnetism. Simply combining these two modesl gives the radiation
EOS. Take the trace of both tensors

Tab = (ρ+ 3p)uaub + pgab , Tab = FacF
c
b −

1

4
gabF

dcFdc (9.41)

and equal them to obtain the result,
− ρ+ 3p = T = 0 . (9.42)

Open-flat-closed. Consider the FRW equation

ȧ2 =
8π

3
ρa2 − κ ≥ 0 , (9.43)

with ρ > 0. The scale factor is currently increasing a0 > 0, but a negative ä implies that ȧ must decrease. For large
times and standard matter and radiation ρa2 → 0 and

2The name is attributed to physicist Hoyle, an opponent of the Big Bang teory, that used it in 1949 on a BBC radio interview.
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• κ = 0 ⇒ ȧ→ 0: the Universe is flat.
• κ = −1 ⇒ ȧ→ 1: expansion continues, the Universe is open.
• κ = +1: because the r.h.s. has to remain positive there exists a maximum size a ≥ ac, after which the scale factor

starts to decrease. The critical value cannot be reached asymptotically because ä < 0. Hence, the Universe is
closed.

Another way to arrive to the above conclusion, is to substitute ρ = b/a3 (b is a constant) in Eq. (9.43) and consider
the equation in the form

ȧ2 = −VM (a)− κ ≥ 0 with VM := −8π

3

b

a
. (9.44)

Then, one can use the method of the effective potential: the Universe exists only in regions (values of a) where −κ
exceeeds the value of the potential VM (Cf. the discussion on Schwarschild’s orbit). For κ = −1, the Universe extends
to a(τ)→∞ with finite asymptotics velocity; for κ = 0 the Universe extends to a(τ)→∞ reaching zero velocity; for
κ = +1 the Universe extends to a maximum scale ac = 8/3πb (the interesection VM (ac) = −1) at which it reaches a
turning point and afterwards re-collapse.

The FRW equation is usually written by defining the critical density ρc := 8πH−2/3 and the density parameter as

Ω :=
ρ

ρc
=

8π

3

ρ

H2
⇒ Ω− 1 =

κ

H2a2
. (9.45)

The future geometry of the Universe is then summarized by the following table

κ ρ Ω Geometry
< 0 < ρc < 1 open
= 0 = ρc = 1 flat
> 0 > ρc > 1 closed

9.8 Horizons

How much Universe can be observed from a point of the Universe? The question can be reformulated by asking: given
an event p, which isotropic observers could have sent a signal that reached an isotropic observer at or before p?

Note that the question is not trivial since the Universe started at finite time. However, one would expect that,
since a → 0 at the big bang, an isotropic observer could communicate with all the others. The situation is in fact
more complicated. To answer the questions above one must determine the particle horizon.

Definition 9.8.1. Particle horizon at p = boundary of the region that contains worldlines of particles that intersect
the past light cone of p.

Consider a flat universe κ = 0 and make the coordinate transformation from proper time to conformal coordinate
time

τ 7→ t :=

∫
dτ

a(τ)
⇒ g = a2(t)(−dt2 + dx2 + dy2 + dz2) . (9.46)

The metric is now conformally flat, i.e. proportional to the Minkowski metric via the conformal factor given by
the square of the scaling factor. Such a conformally flat metric has the general property that a vector is time-
like/null/spacelike iff it has the same property in the flat metric. Hence, the causal structure of the κ = 0 Universe is
the same as the one of Mikowski ... as far as the conformal transformation is valid !

Let us study the validity of the transformation in Eq. (9.46). To this end, it is useful to shift the time of the Big bang
to τ = 0, such that a(0)→ 0 3.

• If the integral diverges approaching the big bang (a → 0), then then the RW metric is related to Mikowski all
the way down to t→ −∞ and NO particle horizon can exist.

• If the integral converges, then particle horizons can occur.
The integral diverges if a(τ → 0) ∝ τ (or in general if a(τ → 0) is a linear or slower function). The presence of particle
horizon depends on the particular solution of the FRW equations. A summary of such solutions for standard matter
content can be found in (Wald, 1984). They show that

• For most of the solutions particle horizons are present.
• For closed Universe κ = +1, particle horizons cease to exist at the moment of maximum expansion for dust

matter, but continue to exist also afterwards for radiation.

Example 9.8.1. Specifying FRW equations to the EOS P = wρ and the matter solutions ρa3(1+w) = const, one
obtains [exercise]

ȧ2 − C(p)

a1+p
+ κ = 0 , (9.47)

3Only in this section ! In the rest of the lecture τ = 0 is today.
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where p = 0, 1 for dust and radiation respectively and C(p) = 8π/3ρa3+p are constants. Solutions to the above equation
in the flat case (κ = 0) are

a(τ) = (9C(0)/4)1/3τ2/3 , a(τ) = (4C(1))1/4τ1/2 (9.48)

for dust and radiation respectively. The integral for the conformal time converges also for dust, so there are particle
horizons. Note dust is the worst case since for positive pressure a is larger than for zero pressure.

9.9 Cosmological constant

Before Hubble observation Einstein looked for a static solution for the Universe. The only way to obtain such a
solution is to modify EFE by a term proportional to the metric

Gab + Λgab = 8πTab . (9.49)

The constant Λ is called the cosmological constant and was introduced in 1917.

Observations.
• EFE with cosmological constant are the most general equations for a (0, 2) symmetric tensor which has zero

divergence and it is build out of the metric’s second derivatives.
• The presence of Λ makes EFE incompatible with Newton equations.
• For this reason, the Λ constant is often moved to the r.h.s. and interpreted as vacuum energy

Gab = 8π(Tab −
Λ

8π
gab) = 8π(Tab + T vacuum

ab ) . (9.50)

• The vaccum energy ρ = −Λ/8π can be interpreted as:
- Fundamental constant of nature
- Energy of quantum fields in vacuum state
- Energy of a classical field (dark energy)
- ???

• A positive cosmological constant Λ > 0 is currently necessary to explain observations of SNa Type Ia, that
indicate an expanding universe (Riess et al., 1998). Thus, Λ is employed in the standard cosmological models,
but its physical interpretation remains an open problem.

FRW with cosmological constant and static Universe. In presence of cosmological constant the FRW equa-
tions read 

(
ȧ

a

)2

= 8π
3 ρ+ Λ

3 −
κ

a2

ä

a
= − 4π

3 (ρ+ 3p) + Λ
3

(9.51)

A static Universe has ä = 0 = ȧ. Imposing these conditions in the above equations for a dust matter (p = 0, ρ > 0)
gives immediately that (i) the cosmological constant is positive and the (ii) the Universe is spherical (κ > 0):{

ä = 0 ⇒ Λ = 4πρ > 0

ȧ = 0 ⇒ a2 = κ
4πρ ⇒ a = +

√
κ

4πρ

(9.52)

This is Einstein’s spherical static Universe.

9.10 ΛCDM models

Realistic cosmological models are based on the FRW equations and include radiation, matter, the cosmological constant
and perturbations of the primordial homogeneous plasma 4. We discuss in the following some basic elements.

FRW equation in terms of density parameters. The first FRW equation reads

H2 =
8π

3
(ρR + ρM + ρΛ)− κ

a2
. (9.53)

Introducing the critical density ρc := 3H2/(8π) and the density parameters Ωi := ρi/ρc for each matter source
i = R,M,Λ the above equation reads (divide by H2)

1 = ΩR + ΩM + ΩΛ −
κ

a2H2
, or Ωk := − κ

a2H2
= 1− ΩR − ΩM − ΩΛ . (9.54)

4See https://lambda.gsfc.nasa.gov/education/graphic_history/univ_evol.cfm for a summary and Fig. (9.4) below for an illustra-
tion.
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To interpret observations is useful to have a formula with quantities that are measured today. Use a subscript 0 for
those

a0 = 1 , H0 , ρc0 =
3

8π
H2

0 , Ωi0 =
ρi0
ρc0

, Ωk0 = 1−
∑
i

Ωi0 , (9.55)

and re-express the ρ’s in the Friedmann equation in terms of the density parameter measured today by making
explicitly the depedence on the scale factor:

8π

3
ρR =

8π

3
ρR0

a4
0

a4
= H2

0 ΩR0a
−4 ,

8π

3
ρM = H2

0 ΩM0a
−3 ,

8π

3
ρΛ = H2

0 ΩΛ0 , −
κ

H2
= H2

0 Ωk0a
−2 . (9.56)

The Friedmann equation then becomes

H2

H2
0

= ΩR0a
−4 + ΩM0a

−3 + Ωk0a
−2 + ΩΛ0 , (9.57)

and allows one to connect observed quantities with the Hubble parameter and the scale factor.

Evolution. The Universe’s evolution is determined by the relative influence of the density parameters:

ΩRa
−4 ∝ ΩMa

−3 ∝ Ωka
−2 ∝ ΩΛ , (9.58)

where the curvature density parameter is given by the constraint

Ωk = 1− ΩR − ΩM − ΩΛ . (9.59)

The future evolution of the Universe is determined by the ΩΛ. If ΩΛ < 0 (vacuum energy is negative), then the
Universe will decelerate and collapse. If ΩΛ ≥ 0, then the Universe will expand unless the matter term will be
sufficiently large to halt the expansion before the ΩΛ takes over. If ΩΛ = 0, then the Universe expand forever ΩM ≤ 1
or collapses if ΩM > 1.

Remark 9.10.1. In the presence of a cosmological constant, there is no relationship between the spatial curvature
and the fate of the universe: any spatial geometry can expand or recollapse.

The various possibilities can be investigated by neglecting radiation and studying the equation above at the turning
point H = 0 that represents the collapse treshold. This gives a cubic equation for a

ΩΛ0a
3 + (1− ΩM0 − ΩΛ0)a+ ΩM0 = 0 ; (9.60)

real solutions are admitted for

ΩΛ0 =

{
0 0 ≤ ΩM0 ≤ 1

4ΩM0 cos[ 1
3 arccos( 1−ΩM0

ΩM0
) + 4π

3 ]3 ΩM0 > 1
(9.61)

and are represented as black line in Fig. (9.3). Above the black line the Universe expands, below it contracts. The
straight blue line represent a flat universe, κ = 0. On the right the curvature is positive, κ = 1; on the left it is
negative κ = −1. The figure shows as arrows the direction of evolution of the parameters in an expanding universe.
Comments:

• The attractor poin (0, 1) is a de Sitter space: a universe with no matter density, dominated by a cosmological
constant, and with scale factor growing exponentially with time;

• The saddle point at (0, 0) corresponds to an empty universe (not ours);
• The repulsive point (1, 0), is known as the Einstein-de Sitter solution.
• A Universe at a point of the diagram at a given time can return on that point following the same trajectory by

expanding to infinity and recollapsing.
• A universe with initial conditions located at a generic point on the diagram will, after several expansion times,

flow to de Sitter space if it began above the recollapse line, and flow to infinity and back to recollapse if it began
below that line.

Since our universe has expanded by many orders of magnitude since early times, it must have begun at a non-generic
point in order not to have evolved either to de Sitter space or to a collapse. Inflation provides a mechanism whereby
the universe can be driven to the line ΩM + ΩΛ = 1 (flatness), thus favouring Einstein-de Sitter geometry with Λ = 0.

Current observations indicate
• ΩR0 ∼ 10−4

• ΩM0 ∼ 0.3
- ΩM0 ∼ 0.03 baryons
- ΩM0 ∼ 0.27 dark matter

• ΩΛ0 ∼ 0.7
• Ωk0 . 0.01
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Figure 9.3: Dynamics of an expanding Universe in the Ωλ−ΩM plane. The arrows indicate the direction of evolution
of the parameters in an expanding universe. From (Carroll, 2001).

A favoured point in Fig. (9.3) is thus (0.3, 0.7). Note however, the above numbers are inferred from different datasets
and very different observations (not from a single “fit”). For example, the density of baryonic matter is estimated
from the light elements abundances (Big bang nucleosynthesis), observation of Lyman-alpha forest absoprtion lines
(absorption of light emitted from very distant quasars by intervening gas) and CMB. Dark matter density is estimated
from gravitational measurements like Galaxies rotational curves and galaxy cluster: weak lensing, structure formations,
etc. Several, but not all, observations are compatibile with a flat (or close-to-flat) Universe. Often, matter densities
are constrained by assuming a flat geometry.

9.11 Inflation

Two main problems arise confronting the FRW model above with observations:

1. Flatness problem. The points Ω ∼ 1 (κ ∼ 0) are unstable points in the diagram of Fig. (9.3): any small deviation
is expected to grow rapidly and bring the Universe to another geometry. In other terms, the Friedmann equation
predicts an expanding Universe dominated by curvature since the relative weight of the r.h.s. terms in absence
of vacuum energy (ρΛ = 0) is

κa−2

8π(ρM + ρR)/3
∼ κa−2

a−3
� 1 (for κ 6= 0) . (9.62)

A flat Universe is not expected.
2. Horizon problem. CMB is isotropic to a high degree of accuracy. The natural explanation for this is that

the radiation in the Universe had the possibility to interact and thermalize during the recombination epoch.
However, this is incompatible with the presence of particle horizons in FRW solutions, which are generically
predicted in that epoch.

A solution to both problem is provided by assuming that a early times (inflation period) the dynamics of the
Universe was characterized by a fast expansion with ä > 0. This was proposed by Guth in 1980 and further explored
by Linde, Albrecht and Steinhardt. A rapid early expansion would provide a mechanism to (i) drive Ω → 1 quickly,
for example with an effective density ρφ ∼ a; and (ii) “spread out” regions with the same matter/radiation conditions,
initially close, to large distances by keeping the same matter/radiation conditions. Moreover, inflation could provide
a mechanism to seed the structures observed today in the Universe. Quantum fluctuation during inflations could
generate CMB anisotropies and should be thus consistent with those observations. However, the inflation must be
driven by some field other than standard matter and radiation, for example scalar fields, vacuum energy, etc. whose
precise origin has not been identified.
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Figure 9.4: Picture of standard model for cosmology. See https://lambda.gsfc.nasa.gov/education/graphic_

history/univ_evol.cfm.

9.12 Discussion on ΛCDM

Points for discussions on ΛCDM.
SUCCESSES:

3 Hubble observation
3 Type Ia observations
3 GR (τ & 1 s quantum effects over)
3 Nucleosynthesis (first 3’)
3 He abundancies
3 re-combination epoch (radiation decouple, matter dominated)
3 CMB
3 Galaxies formation and structure
3 Constraints on weakly interacting particle masses
3 Flatness+horizon problem → Inflation

DIFFICULTIES:
7 Origin of dark matter
7 Inflation mechanism
7 Origin of Λ/dark energy
7 Tension among estimated cosmological parameters from different observations, e.g. H0.
7 Cosmological constant problem ρvacuum/ρΛ ∼ 10120

7 Asymmetry matter/antimatter
7 Early phase, curvature ∼ 1/`Planck (τ ∼ 10−43 s): GR does not apply, quantum gravity ?
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