
Post-Newtonian theory for the
common reader

Lecture notes (July 2007)

Eric Poisson
Department of Physics
University of Guelph





Contents

1 Preliminaries 1

1.1 Landau-Lifshitz formulation of the Einstein field equations 1
1.2 Momentum and flux: Integral identities 3
1.3 Harmonic coordinates and wave equation 4
1.4 Conservation identities 6
1.5 Schwarzschild metric in harmonic coordinates 6
1.6 Iteration of the Einstein field equations 8
1.7 Energy-momentum tensor of a point mass 9
1.8 Angular STF tensors and spherical harmonics 10

1.8.1 Angular STF tensors 10
1.8.2 Solutions to Laplace’s equation 11
1.8.3 Spherical harmonics 13
1.8.4 Spherical averages 15

2 Integration techniques 17

2.1 Formulation of the mathematical problem 17
2.2 Near zone and wave zone 18
2.3 Integration domains 20
2.4 Near-zone integration 20

2.4.1 Wave-zone field point 20
2.4.2 Near-zone field point 22

2.5 Wave-zone integration 22
2.5.1 Reduced Green’s function 23
2.5.2 Wave-zone field point 24
2.5.3 Near-zone field point 26
2.5.4 Estimates 27

3 First post-Minkowskian approximation 29

3.1 Field equations 29
3.2 Near-zone expressions 31
3.3 Wave-zone expressions 32

3.3.1 Multipole moments and identities 32
3.3.2 Wave-zone potentials 35
3.3.3 Post-Newtonian counting 36

4 Second post-Minkowskian approximation 39

4.1 Field equations 39
4.1.1 Wave equation 39
4.1.2 Material energy-momentum tensor 40
4.1.3 Landau-Lifshitz pseudotensor 41
4.1.4 Harmonic-gauge pseudotensor 42
4.1.5 Explicit form of the wave equations 43

4.2 Near-zone expressions 44

i



ii Contents

4.2.1 Computation of V 44
4.2.2 Computation of V a 45
4.2.3 Computation of W ab: Organization 45
4.2.4 Computation of W ab: W ab[M] 46
4.2.5 Computation of W ab: χ 46
4.2.6 Computation of W ab: χab

N
46

4.2.7 Computation of W ab: K(x;zA,zB) 49
4.2.8 Computation of W ab: χab

W
50

4.2.9 Computation of W ab: Final answer 51
4.2.10 Summary: Near-zone potentials 52

4.3 Conservation identities and equations of motion 53
4.4 Wave-zone expressions 55

4.4.1 Computation of V 55
4.4.2 Computation of V a 57
4.4.3 Computation of W ab: Organization 58
4.4.4 Computation of W ab: Near-zone integral 58
4.4.5 Computation of W ab: Wave-zone integral 60
4.4.6 Computation of W ab: Final answer 60
4.4.7 Summary: Wave-zone potentials 61

5 Equations of motion 63

5.1 Conservation identities and laws of motion 63
5.2 Internal and external potentials 66
5.3 Computation of M , Ṁ , Ṗ a, Qa, and Da 67
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Chapter 1

Preliminaries

1.1 Landau-Lifshitz formulation of the Einstein field equa-

tions 1

1.2 Momentum and flux: Integral identities 3

1.3 Harmonic coordinates and wave equation 4

1.4 Conservation identities 6

1.5 Schwarzschild metric in harmonic coordinates 6

1.6 Iteration of the Einstein field equations 8

1.7 Energy-momentum tensor of a point mass 9

1.8 Angular STF tensors and spherical harmonics 10

We collect in this chapter a number of results and techniques that will be required
in the following chapters. The formulation of the Einstein field equations that is
best suited to a post-Newtonian expansion is due to Landau and Lifshitz, and this
is reviewed in Secs. 1.1 and 1.2. In Secs. 1.3 and 1.4 we refine this formulation
by imposing the harmonic coordinate conditions, and we show that the exact field
equations can be expressed as a set of ten wave equations in Minkowski spacetime
(with complicated and highly nonlinear source terms). We illustrate the formalism
in Sec. 1.5, by showing how the Schwarzschild metric can be cast in harmonic
coordinates. The post-Newtonian method builds on approximate solutions to the
wave equations, and in Sec. 1.6 we show how the metric can be systematically
expanded in powers of the gravitational constant G and inserted within the field
equations; these are iterated a number of times, and each iteration of the field
equations increases the accuracy of the solution by one power of G. In Sec. 1.7
we construct the energy-momentum tensor of a point mass, and in Sec. 1.8 we
summarize the elegant theory of symmetric-tracefree (STF) angular tensors and
their relations with the spherical-harmonic functions.

1.1 Landau-Lifshitz formulation of the Einstein

field equations

The post-Newtonian approach to integrate the Einstein field equations is based on
the Landau and Lifshitz formulation of these equations. In this formulation the
main variables are not the components of the metric tensor gαβ but those of the
“gothic inverse metric”

g
αβ :=

√−ggαβ , (1.1.1)

where gαβ is the inverse metric and g the metric determinant. Knowledge of the
gothic metric is sufficient to determine the metric itself: Note first that det[gαβ ] = g,

1



2 Preliminaries

so that g can be directly obtained from the gothic metric; then Eq. (1.1.1) gives
gαβ , which can be inverted to give gαβ .

In the Landau-Lifshitz formulation, the left-hand side of the field equations is
built from

Hαµβν := g
αβ

g
µν − g

αν
g

βµ. (1.1.2)

This tensor density is readily seen to possess the same symmetries as the Riemann
tensor, namely,

Hµαβν = −Hαµβν , Hαµνβ = −Hαµβν , Hβναµ = Hαµβν . (1.1.3)

The Einstein field equations take the form

∂µνHαµβν =
16πG

c4
(−g)

(
Tαβ + tαβ

LL

)
, (1.1.4)

where Tαβ is the energy-momentum tensor of the matter distribution, and

(−g)tαβ
LL :=

c4

16πG

{

∂λg
αβ∂µg

λµ − ∂λg
αλ∂µg

βµ +
1

2
gαβgλµ∂ρg

λν∂νg
µρ

− gαλgµν∂ρg
βν∂λg

µρ − gβλgµν∂ρg
αν∂λg

µρ + gλµgνρ∂νg
αλ∂ρg

βµ

+
1

8

(
2gαλgβµ − gαβgλµ

)(
2gνρgστ − gρσgντ

)
∂λg

ντ∂µg
ρσ

}

(1.1.5)

is the Landau-Lifshitz pseudotensor, which (very loosely speaking) represents the
distribution of gravitational-field energy. We use the notation ∂µf := ∂f/∂xµ and
∂µνf := ∂2f/∂xµ∂xν for any field f(xµ) in spacetime.

By virtue of the antisymmetry of Hαµβν in the last pair of indices, we have that
the equation

∂βµνHαµβν = 0 (1.1.6)

holds as a trivial identity. This, together with Eq. (1.1.4), imply that

∂β

[

(−g)
(
Tαβ + tαβ

LL

)]

= 0. (1.1.7)

These are conservation equations for the total energy-momentum tensor (which
includes a contribution from the matter and another contribution from the grav-
itational field), expressed in terms of a partial-derivative operator. These equa-
tions are strictly equivalent to the usual expression of energy-momentum conserva-
tion, ∇βTαβ = 0, which involves only the matter’s energy-momentum tensor and a
covariant-derivative operator.

Equations (1.1.2)–(1.1.7) form the core of the Landau-Lifshitz framework. It is
out of the question to provide here a derivation of these equations (the calculations
are straightforward but extremely tedious), but the following considerations will
provide a partial understanding of where they come from.

Let us write down the Einstein field equations, in their usual tensorial form

Gαβ =
8πG

c4
Tαβ ,

at an event P in spacetime, in a local coordinate system such that ∂γgαβ(P )
∗
= 0.

(The special equality sign
∗
= means “equals in the selected coordinate system.”) In

these coordinates the Riemann tensor at P involves only second derivatives of the
metric, and a short computation reveals that the Einstein tensor is given by

Gαβ ∗
=

1

2

(
gαλgβµgνρ + gβλgαµgνρ − gαλgβρgµν − gαµgβνgλρ

− gαβgµλgνρ + gαβgµνgλρ
)
∂µνgλρ.
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If we now compute ∂µνHαµβν , at the same point and in the same coordinate system,
we find after straightforward manipulations that it is given by

∂µνHαµβν ∗
= (−g)

(
gαλgβµgνρ + gβλgαµgνρ − gαλgβρgµν − gαµgβνgλρ

− gαβgµλgνρ + gαβgµνgλρ
)
∂µνgλρ.

To arrive at this result we had to differentiate (−g) using the rule ∂µ(−g) =

(−g)gαβ∂µgαβ , which leads to ∂µν(−g)
∗
= (−g)gαβ∂µνgαβ . We also had to relate

derivatives of the inverse metric to derivatives of the metric itself; here we used the
rule ∂µgαβ = −gαλgβρ∂µgλρ, which leads to ∂µνgαβ ∗

= −gαλgβρ∂µνgλρ.

Comparing the last two displayed equations reveals that

Gαβ ∗
=

1

2(−g)
∂µνHαµβν ,

and we conclude that at P , the Einstein field equations take the form of

∂µνHαµβν ∗
=

16πG

c4
(−g)Tαβ .

This is the same as Eq. (1.1.4), because tαβ
LL

∗
= 0 at P , by virtue of the fact that each

term in the Landau-Lifshitz pseudotensor is quadratic in ∂µg
αβ , which vanishes at

P in the selected coordinate system. It is therefore plausible that at any other event
in spacetime, and in an arbitrary coordinate system, the Einstein field equations
should take the form of Eq. (1.1.4), with a pseudotensor tαβ

LL that restores all first-
derivative terms that were made to vanish at P in the special coordinate system.
To show that this pseudotensor takes the specific form of Eq. (1.1.5) requires a long
computation.

1.2 Momentum and flux: Integral identities

Because they involve a partial-derivative operator, the differential identities of
Eq. (1.1.7) can immediately be turned into integral identities. Consider a three-
dimensional volume V , a fixed (time-independent) domain of the spatial coordi-
nates xa, bounded by a two-dimensional surface S. We assume that V contains at
least some of the matter (so that Tαβ is nonzero somewhere within V ), but that
S does not intersect any of the matter (so that Tαβ = 0 everywhere on S). We
formally define a momentum vector Pα[V ] associated with the volume V by the
three-dimensional integral

Pα[V ] :=
1

c

∫

V

(−g)
(
Tα0 + tα0

LL

)
d3x. (1.2.1)

We assume that the coordinate x0 has a dimension of length, and the factor of c−1

on the right-hand side ensures that Pα[V ] has the dimension (mass) × (velocity)
of a momentum vector; it follows that cP 0[V ] has the dimension of an energy. In
flat spacetime, and in Cartesian coordinates, Pα[V ] would have the interpretation
of being the total momentum vector associated with the energy-momentum tensor
Tαβ . In curved spacetime, and in a coordinate system that cannot be assumed to be
Cartesian, the quantity defined by Eq. (1.2.1) does not have any physical meaning.
It is, nevertheless, a useful quantity to introduce, as we shall see in Chapter 5. In
the limit in which V includes all of three-dimensional space, Pα[V ] is known to
coincide with the ADM four-momentum of an asymptotically-flat spacetime; in this
limit, therefore, the physical interpretation of the momentum vector is robust.
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Substituting Eq. (1.1.4) into Eq. (1.2.1) gives

Pα[V ] =
c3

16πG

∫

V

∂µνHαµ0ν d3x.

Summation over ν must exclude ν = 0, because Hαµ00 ≡ 0. We therefore have

Pα[V ] =
c3

16πG

∫

V

∂c

(
∂µHαµ0c

)
d3x,

and this can be written as a surface integral by invoking Gauss’s theorem. We now
have

Pα[V ] =
c3

16πG

∮

S

∂µHαµ0c dSc, (1.2.2)

where dSc is an outward-directed surface element on the two-dimensional surface
S. Equation (1.2.2) can be adopted as an alternative definition for the momentum
enclosed by S. This is advantageous when the volume integral of Eq. (1.2.1) is
ill-defined or difficult to compute.

Assuming (as we have done) that the surface S does not move on the coordinate
grid, the rate of change of the momentum vector is given by

d

dx0
Pα[V ] =

c3

16πG

∮

S

∂µ0H
αµ0c dSc.

We have ∂µ0H
αµ0c = −∂µ0H

αµc0 = −∂µνHαµcν + ∂µdH
αµcd. The first term on

the right-hand side can be related to the total energy-momentum tensor on S,
which is equal to (−g)tαc

LL because the matter contribution vanishes on the surface.
The second term is the spatial divergence of an antisymmetric tensor field, and
its integral vanishes (by virtue of Stokes’s theorem) because S does not have a
boundary. Collecting results, we find that

d

dx0
Pα[V ] = −1

c

∮

S

(−g)tαc
LL dSc. (1.2.3)

The rate of change of Pα[V ] is therefore expressed as a flux integral over S; and
the flux is given by the Landau-Lifshitz pseudotensor. The integral identity of
Eq. (1.2.3), and others similar to it, will be put to good use in Chapter 5.

1.3 Harmonic coordinates and wave equation

It is advantageous at this stage to impose the four coordinate conditions

∂βg
αβ = 0 (1.3.1)

on the gothic metric. These are known as the harmonic coordinate conditions, and
they play a helpful role in post-Newtonian theory. It is also useful to introduce the
potentials

hαβ := ηαβ − g
αβ , (1.3.2)

where ηαβ := diag(−1, 1, 1, 1) is the Minkowski metric expressed in Cartesian coor-
dinates (x0 := ct, xa). In terms of the potentials the harmonic coordinate conditions
read

∂βhαβ = 0, (1.3.3)

and in this context they are usually referred to as the harmonic gauge conditions.
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The introduction of the potentials hαβ and the imposition of the harmonic gauge
conditions simplify the appearance of the Einstein field equations. It is easy to verify
that the left-hand side becomes

∂µνHαµβν = −¤hαβ + hµν∂µνhαβ − ∂µhαν∂νhβµ,

where ¤ = ηµν∂µν is the flat-spacetime wave operator. The right-hand side of the
field equations stays essentially unchanged, but the harmonic conditions do slightly
simplify the form of the Landau-Lifshitz pseudotensor, as can be seen in Eq. (1.1.5).
Isolating the wave operator on the left-hand side, and putting everything else on
the right-hand side, gives us the formal wave equation

¤hαβ = −16πG

c4
ταβ (1.3.4)

for the potentials hαβ , where

ταβ := (−g)
(
Tαβ + tαβ

LL + tαβ
H

)
(1.3.5)

is the effective energy-momentum pseudotensor for the wave equation. We have
introduced

(−g)tαβ
H :=

c4

16πG

{

∂µhαν∂νhβµ − hµν∂µνhαβ
}

(1.3.6)

as an additional (harmonic-gauge) contribution to the effective energy-momentum
pseudotensor. The wave equation of Eq. (1.3.4) is the main starting point of
post-Newtonian theory. It is worth emphasizing that Eq. (1.3.4), together with
Eq. (1.3.5), are an exact formulation of the Einstein field equations; no approxima-
tions have been introduced at this stage.

It is easy to verify that (−g)tαβ
H is separately conserved, in the sense that it

satisfies the equation ∂β [(−g)tαβ
H ] = 0. This, together with Eq. (1.1.7), imply that

∂βταβ = 0. (1.3.7)

The effective energy-momentum pseudotensor is conserved.
Because it involves second derivatives of the potentials, the term hµν∂µνhαβ

on the right-hand side of the field equations might have been more appropriately
placed on the left-hand side, and joined with the wave-operator term. In fact, there
is a way of combining all second-order derivatives into a curved-spacetime wave
operator. For this purpose we treat hαβ as a collection of ten scalar fields instead of
as a tensor field. The scalar wave operator associated with the metric gαβ (which
is to be constructed from the potentials) is denoted ¤g, and it has the following
action on the potentials:

¤gh
αβ :=

1√−g
∂µ

(√−ggµν∂νhαβ
)

=
1√−g

∂µ

[(
ηµν − hµν

)
∂νhαβ

]

=
1√−g

[

¤hαβ − hµν∂µνhαβ
]

,

where we have used the harmonic gauge conditions in the last step. This does indeed
involve all second-derivative terms that appear in Eq. (1.3.4). The field equations
could then be formulated in terms of ¤g, and this was, in fact, the approach adopted
by Kovacs and Thorne in their series of papers on the generation of gravitational
waves. This approach, while conceptually compelling, is not as immediately useful
for post-Newtonian theory as the approach adopted here, which is based on the
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Minkowski wave operator. It is indeed much simpler to solve the wave equation in
flat spacetime than it is to solve it in a curved spacetime with an unknown metric.

The wave equation of Eq. (1.3.4) admits the formal solution

hαβ(x) =
4G

c4

∫

G(x, x′)ταβ(x′) d4x′, (1.3.8)

where x = (ct,x) is a field point and x′ = (ct′,x′) a source point. The two-point
function G(x, x′) is the retarded Green’s function of the Minkowski wave operator,
which satisfies

¤G(x, x′) = −4πδ(x − x′), (1.3.9)

and which is known to be a function of x − x′ only. (An explicit expression will
be presented in Chapter 2.) This property is sufficient to prove that if the ef-
fective energy-momentum pseudotensor ταβ satisfies the conservation identities of
Eq. (1.3.7), then the potentials hαβ will satisfy the harmonic gauge conditions of
Eq. (1.3.3). The proof involves simple manipulations and integration by parts.

1.4 Conservation identities

The conservation identities of Eq. (1.3.7) can be expressed as

∂0τ
00 + ∂aτ0a = 0, ∂0τ

0a + ∂bτ
ab = 0, (1.4.1)

in which we have separated the time derivatives from the spatial derivatives. From
these we can easily derive the useful consequences

τ0a = ∂0

(
τ00xa

)
+ ∂b

(
τ0bxa

)
, (1.4.2)

τab =
1

2
∂00

(
τ00xaxb

)
+

1

2
∂c

(
τacxb + τ bcxa − ∂dτ

cdxaxb
)
, (1.4.3)

and

τabxc =
1

2
∂0

(
τ0axbxc + τ0bxaxc − τ0cxaxb

)
+

1

2
∂d

(
τadxbxc + τ bdxaxc − τ cdxaxb

)
.

(1.4.4)
As we shall see in Chapter 6, these conservation identities play an important role
in the theory of gravitational-wave generation.

1.5 Schwarzschild metric in harmonic coordinates

The usual form of the Schwarzschild metric is

ds2 = −
(

1 − 2GM

c2ρ

)

d(ct)2 +

(

1 − 2GM

c2ρ

)−1

dρ2 + ρ2
(
dθ2 + sin2 θ dφ2

)
, (1.5.1)

where (t, ρ, θ, φ) are the usual Schwarzschild coordinates. To help us gain experience
with the harmonic coordinates of post-Newtonian theory, we wish here to transform
the Schwarzschild metric to a new form that is compatible with the harmonic con-
ditions of Eq. (1.3.1).

We motivate the transformation with the observation that each one of the four
scalar fields (cT,X, Y, Z), defined by

cT := ct, (1.5.2)

X := (ρ − GM/c2) sin θ cos φ, (1.5.3)

Y := (ρ − GM/c2) sin θ sinφ, (1.5.4)

Z := (ρ − GM/c2) cos θ, (1.5.5)
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and collectively denoted X(µ), satisfies the scalar wave equation in the Schwarzschild
metric:

¤gX
(µ) := gαβ∇α∇βX(µ) =

1√−g
∂α

(√−ggαβ∂βX(µ)
)

= 0. (1.5.6)

This statement, which is invariant under coordinate transformations, is easily veri-
fied by a quick computation. Suppose now that (cT,X, Y, Z) are adopted as coordi-
nates, and that the Schwarzschild metric is expressed in terms of these coordinates.
In these circumstances we would have ∂βX(µ) ∗

= δµ
β and Eq. (1.5.6) would become

∂β

(√−ggαβ
) ∗

= 0.

This, in view of the definition g
αβ =

√−ggαβ , is the harmonic coordinate condition
of Eq. (1.3.1). The conclusion, therefore, is that (cT,X, Y, Z) is a set of harmonic
coordinates for the Schwarzschild spacetime.

The transformation from the Schwarzschild coordinates (t, ρ, θ, φ) to the har-
monic coordinates (x0 ≡ ct ≡ cT, x1 ≡ x ≡ X,x2 ≡ y ≡ Y, x3 ≡ z ≡ Z) is effected
by the relations

x0 = ct, xa = rΩa, r := ρ − GM/c2, (1.5.7)

where
Ω1 := sin θ cos φ, Ω2 := sin θ sin φ, Ω3 := cos θ. (1.5.8)

These definitions imply δabΩ
aΩb = 1, and we have the usual relation

r2 = δabx
axb = x2 + y2 + z2 (1.5.9)

between r and the Cartesian-like coordinates (x, y, z).
The differential form of xa = rΩa is

dxa = Ωa dρ + rΩa
A dθA, (1.5.10)

where Ωa
A = ∂Ωa/∂θA and θA = (θ, φ). This allows us to transform the inverse

metric gαβ from its original Schwarzschild form to its new harmonic form. The
computation involves the identity ΩABΩa

AΩb
B = δab − ΩaΩb, where ΩAB is the

inverse of ΩAB := diag(1, sin2 θ), the metric on a unit two-sphere. It gives

g00 = −r + GM/c2

r − GM/c2
, (1.5.11)

gab =
r − GM/c2

r + GM/c2
ΩaΩb +

r2

(r + GM/c2)2
(
δab − ΩaΩb

)
. (1.5.12)

In these expressions, r is defined by Eq. (1.5.9) and Ωa := xa/r forms the compo-
nents of a unit vector. In Eq. (1.5.12) the spatial components of the inverse metric
are decomposed into a longitudinal part proportional to ΩaΩb and a transverse part
proportional to δab −ΩaΩb; notice that this last tensor is orthogonal to Ωa and Ωb.

The metric is next obtained by inverting Eqs. (1.5.11) and (1.5.12). We obtain

g00 = −r − GM/c2

r + GM/c2
, (1.5.13)

gab =
r + GM/c2

r − GM/c2
ΩaΩb +

(r + GM/c2)2

r2

(
δab − ΩaΩb

)
. (1.5.14)

It is understood that Ωa := δabΩ
b. It is worth noticing that in harmonic coordinates,

the event horizon is located at r = GM/c2; the familiar factor of 2 is missing.
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The metric determinant is easily calculated to be
√−g = (r +GM/c2)2/r2, and

the gothic inverse metric is then

g
00 = − (r + GM/c2)3

r2(r − GM/c2)
, (1.5.15)

g
ab = δab −

(
GM/c2

r

)2

ΩaΩb. (1.5.16)

The potentials hαβ = ηαβ − g
αβ are

h00 = −1 +
(r + GM/c2)3

r2(r − GM/c2)
= 4

GM/c2

r
+ 7

(
GM/c2

r

)2

+ · · · , (1.5.17)

hab =

(
GM/c2

r

)2

ΩaΩb. (1.5.18)

In Eq. (1.5.17) the exact expression for h00 is expanded in powers of GM/(c2r).
This is an example of a post-Newtonian expansion; the leading term in h00 is said
to be of Newtonian order, while the next term is of first post-Newtonian order.

It is easy to substitute Eqs. (1.5.16) and (1.5.17) into Eq. (1.1.2) to calcu-
late Hαµ0c. This can then be substituted into Eq. (1.2.2) to calculate Pα[r], the
momentum vector associated with a surface S described by r = constant. The
computations are simple, they involve the surface element dSc = r2Ωc dΩ (where
dΩ = sin θ dθdφ is an element of solid angle), and they lead to P a[r] = 0 and

P 0[r] =
1

2
Mc

(2r − GM/c2)(r + GM/c2)

r(r − GM/c2)
. (1.5.19)

The spatial momentum vanishes (as expected, since the coordinates are centered on
the black hole), and in the limit r → ∞ Eq. (1.5.20) reduces to

P 0[∞] = Mc. (1.5.20)

The total energy is cP 0[∞] = Mc2, and M is the total gravitational mass of the
spacetime.

1.6 Iteration of the Einstein field equations

A practical way of integrating the Einstein field equations, in the form of the wave
equation of Eq. (1.3.4),

¤hαβ = −16πG

c4
ταβ , ταβ = (−g)

(
Tαβ [g] + tαβ

LL + tαβ
H

)
, (1.6.1)

is to involve a post-Minkowskian expansion of the form

hαβ = Gkαβ
1 + G2kαβ

2 + G3kαβ
3 + · · · . (1.6.2)

The strategy consists of integrating the wave equation order-by-order in G. This
method gives rise to an adequate asymptotic expansion of the metric when the
spacetime does not deviate too strongly from Minkowski spacetime. Notice that
as was indicated in Eq. (1.6.1), the matter’s energy-momentum tensor is actually a
functional of the metric gαβ , and this dependence comes in addition to its depen-
dence on the purely material variables. Part of the challenge of finding a solution
to the wave equation resides in this implicit dependence on the metric.

A zeroth-order approximation for the potentials is hαβ
0 = 0, which implies that

g
αβ
0 = ηαβ and g0

αβ = ηαβ . If one substitutes this into the right-hand of the
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wave equation, one obtains ¤hαβ = −(16πG/c4)ταβ
0 , where ταβ

0 is the zeroth-order
approximation to the effective energy-momentum pseudotensor. This is known,
because at this order of approximation it is equal to Tαβ [η], the material energy-
momentum expressed as a functional of the Minkowski metric. The solution to the
wave equation is hαβ

1 ≡ Gkαβ
1 , and the Einstein field equations have been integrated

to first order in G.
The next iteration begins by substituting hαβ

1 into the right-hand side of the

wave equation to form ταβ
1 , the first-order approximation to the effective energy-

momentum pseudotensor. This is known, because it is constructed from tαβ
LL and tαβ

H ,

which can both be computed from hαβ
1 , and also from Tαβ [g], which is now expressed

as a functional of the first-order approximation to the metric, gαβ = ηαβ + O(G).

The new solution to the wave equation is hαβ
2 ≡ Gkαβ

1 + G2kαβ
2 , and the Einstein

field equations have been integrated to second order in G.
The iterations are continued until a desired degree of accuracy has been achieved.

At this stage we have nth-iterated potentials hαβ
n that depend on the position in

spacetime, and that depend also on the matter variables contained in Tαβ . These
must be determined as well, and this is done by imposing the conservation identities
of Eq. (1.3.7), ∂βταβ = 0. Or equivalently [see the discussion following Eq. (1.3.9)],
the matter variables are determined by imposing the harmonic gauge conditions,
∂βhαβ = 0. After this final procedure the potentials, and the associated metric,
become proper tensor fields in spacetime. The point, of course, is that solving
the wave equation order-by-order in G amounts to integrating only a subset of
the Einstein field equations; to get a solution to the complete set of equations
it is necessary also to impose the coordinate conditions. And since doing this is
equivalent to enforcing energy-momentum conservation, the motion of the matter
is determined, along with the metric, by a complete integration of the Einstein field
equations.

The post-Minkowskian method requires an efficient way of computing the metric
and various associated quantities from the potentials. The following approximate
relations are easy to verify:

gαβ = ηαβ + hαβ − 1

2
hηαβ + hαµhµ

β − 1

2
hhαβ

+

(
1

8
h2 − 1

4
hµνhµν

)

ηαβ + O(G3), (1.6.3)

gαβ = ηαβ − hαβ +
1

2
hηαβ − 1

2
hhαβ

+

(
1

8
h2 +

1

4
hµνhµν

)

ηαβ + O(G3), (1.6.4)

(−g) = 1 − h +
1

2
h2 − 1

2
hµνhµν + O(G3), (1.6.5)

√−g = 1 − 1

2
h +

1

8
h2 − 1

4
hµνhµν + O(G3). (1.6.6)

It is understood that here, indices on hαβ are lowered with the Minkowski metric.
Thus, hαβ := ηαµηβνhµν and h := ηµνhµν .

1.7 Energy-momentum tensor of a point mass

Let a particle of mass m follow a world line described by the equations xα = zα(λ),
with λ denoting proper time. Its energy-momentum tensor is given by

Tαβ(x) = mc

∫
dzα

dλ

dzβ

dλ

δ(x0 − z0)δ(x − z)√−g
dλ, (1.7.1)
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in which x = (x1, x2, x3) denotes a purely spatial vector with components xa. The
energy-momentum tensor depends on the metric explicitly through the factor

√−g,
and also implicitly through the calibration of the proper time λ.

It is useful to change the parameterization of the world line from λ to z0. We
write

Tαβ = mc

∫
dzα

dz0

dzβ

dz0

dz0

dλ

δ(x0 − z0)δ(x − z)√−g
dz0,

and we carry out the integration with respect to z0. This eliminates one of the
δ-functions, and we obtain

Tαβ = mc
dzα

dz0

dzβ

dz0

dz0

dλ

δ(x − z)√−g
.

Letting z0 ≡ x0 = ct, we write this as

Tαβ =
m

c
vαvβ dz0

dλ

δ(x − z)√−g
,

where vα = dzα/dt is the velocity four-vector. We next write dλ2 = −gµνdzµdzν/c2

for proper time, and deduce that

dλ

dz0
=

1

c

√

−gµνvµvν/c2.

Inserting this into our previous expression returns

Tαβ(t,x) =
mvαvβ

√−g
√

−gµνvµvν/c2
δ(x − z), vα :=

dzα

dt
= (c,v), (1.7.2)

our final expression for the energy-momentum tensor. This is expressed in terms
of z(t), the spatial position of the particle as a function of time, and in terms of
v(t) = dz/dt, the spatial velocity vector. The dependence on the metric is now
fully explicit.

The wave equation of Eq. (1.6.1) involves (−g)Tαβ instead of just Tαβ , and we
shall be interested in a situation in which there is an arbitrary number of point
particles in the spacetime. Assigning a label A to each particle, and denoting their
masses by mA, their position vectors by zA, and their velocity vectors by vA, we
find that Eq. (1.7.2) generalizes to

(−g)Tαβ(t,x) =
∑

A

mAvα
Avβ

A

√−g
√

−gµνvµ
Avν

A/c2
δ
(
x − zA

)
, (1.7.3)

vα
A =

dzα
A

dt
=

(
c,vA

)
, (1.7.4)

where the sum extends over each particle. It is understood that the metric gµν , and
its determinant g, are to be evaluated at the position x = zA of each particle.

1.8 Angular STF tensors and spherical harmonics

1.8.1 Angular STF tensors

The angular vector

Ω :=
x

r
= (sin θ cos φ, sin θ sin φ, cos θ) (1.8.1)



1.8 Angular STF tensors and spherical harmonics 11

will appear frequently throughout these notes, together with various products ΩaΩbΩc · · ·,
and together with tracefree versions Ω〈abc···〉 of such products. These tracefree ten-
sors, distinguished by the angular bracket notation, are constructed by removing
all traces from the “raw” products ΩaΩbΩc · · ·. Explicit examples are

Ω〈ab〉 := ΩaΩb − 1

3
δab, (1.8.2)

Ω〈abc〉 := ΩaΩbΩc − 1

5

(
δabΩc + δacΩb + δbcΩa

)
, (1.8.3)

Ω〈abcd〉 := ΩaΩbΩcΩd − 1

7

(
δabΩcΩd + δacΩbΩd + δadΩbΩc + δbcΩaΩd

+ δbdΩaΩc + δcdΩaΩb
)

+
1

35

(
δabδcd + δacδbd + δadδbc

)
. (1.8.4)

For example, Ω〈abc〉 is tracefree because δabΩ
〈abc〉 = Ωc − 1

5 (3Ωc +Ωc +Ωc) = 0 and

similarly, δacΩ
〈abc〉 = δbdΩ

〈abc〉 = 0. Because these tensors are also symmetric with
respect to all pairs of indices, they are called symmetric-tracefree tensors, or STF
tensors.

The angular STF tensors Ω〈abc···〉 play a useful role in the construction of irre-
ducible solutions to Laplace’s equation, ∇2ψ = 0. In preparation for this discussion
we record the useful identities

∂ar = Ωa, ∂aΩb =
1

r

(
δab − ΩaΩb

)
(1.8.5)

and introduce a multi-index L := a1a2 · · · aℓ as well as the notation

ΩL := Ωa1Ωa2 · · ·Ωaℓ (ℓ factors), (1.8.6)

in which the number of factors matches the number of indices contained in the
multi-index. The STF version of this product is denoted Ω〈L〉. A tensor such as
AL is assumed to be completely symmetric, and a tensor such as A〈L〉 is completely
tracefree. It is understood that summation over a repeated multi-index involves
summation over each individual index contained in the multi-index.

1.8.2 Solutions to Laplace’s equation

Let us first consider the growing solutions to Laplace’s equation,

∇2ψ = 0.

The simplest solution is the monopole, ψ = A = constant, and next in order
of complexity is the dipole ψ = Aaxa = rAaΩa, where Aa is a constant vector (3
independent components). For a quadrupole solution we might try ψ = r2AabΩ

aΩb,
but this is a solution if and only if δabAab = 0; the constant tensor must be tracefree,
and we find that our quadrupole solution can be expressed as ψ = r2A〈ab〉Ω

aΩb,

or as ψ = r2A〈ab〉Ω
〈ab〉, because the difference between ΩaΩb and Ω〈ab〉 is 1

3δab,
and this vanishes after multiplication by a STF tensor. Notice that the number of
independent components contained in A〈ab〉 is equal to 5. Continuing along these
lines would eventually reveal that a general ℓ-pole solution to Laplace’s equation
can be expressed as

ψ = rℓA〈L〉Ω
〈L〉 (growing solution), (1.8.7)

in which the constant STF tensor A〈L〉 contains 2ℓ + 1 independent components.
Let us consider next the decaying solutions. The simplest is the monopole

ψ = Ar−1, which involves a single constant A. To generate a dipole solution we
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simply differentiate r−1 and multiply this by a constant vector. The result is ψ =
Aa∂ar−1, and this clearly is a solution to Laplace’s equation; the vector Aa contains
3 independent components. To generate a quadrupole solution we differentiate once
more, and write ψ = Aab∂abr

−1. The solution is currently expressed in terms of
a symmetric tensor that contains 6 independent components. The trace part of
Aab, however, provides only irrelevant information, because δab∂abr

−1 = ∇2r−1 =
0 (away from r = 0). We may therefore remove the trace part of Aab without
sacrificing the generality of the solution, which we now write as ψ = A〈ab〉∂abr

−1,
or as ψ = A〈ab〉∂〈ab〉r

−1; the STF tensor A〈ab〉 contains 5 independent components.
Continuing along these lines would eventually reveal that a general ℓ-pole solution
to Laplace’s equation can be expressed as

ψ = A〈L〉∂〈L〉r
−1 (decaying solution), (1.8.8)

in which the constant STF tensor A〈L〉 contains 2ℓ + 1 independent components.
The decaying solutions of Eq. (1.8.8) are not yet expressed in terms of Ω〈L〉.

This is easily remedied. Involving Eq. (1.8.5) we note first that ∂ar−1 = −r−2Ωa,
that ∂abr

−1 = r−3(3ΩaΩb − δab), and that ∂abcr
−1 = 3r−4(−5ΩaΩbΩc + δabΩc +

δacΩb + δbcΩa). Because r−1 is a solution to Laplace’s equation, its derivatives
form the components of a STF tensor, and the preceding results can be expressed
as ∂〈ab〉r

−1 = 3r−3Ω〈ab〉 and ∂〈abc〉r
−1 = −15r−4Ω〈abc〉. To derive the general

statement we assume that there is an ℓ for which we know that

∂Lr−1 = Mℓ r−(ℓ+1)ΩL + trace terms,

and we proceed by induction. (Here Mℓ is a constant that will be determined for
all values of ℓ.) An additional differentiation yields

∂aLr−1 = Mℓ

[
−(ℓ + 1)r−(ℓ+2)ΩaΩL + r−(ℓ+1)∂aΩL

]
+ trace terms,

and we compute

∂aΩL = ∂a

(
Ωb1Ωb2 · · ·Ωbℓ

)

=
(
∂aΩb1

)
Ωb2 · · ·Ωbℓ

+ · · · + Ωb1Ωb2 · · ·
(
∂aΩbℓ

)

= r−1
(
δab1 − ΩaΩb1

)
Ωb2 · · ·Ωbℓ

+ · · · + r−1Ωb1Ωb2 · · · (δabℓ
− ΩaΩbℓ

)

= −ℓr−1ΩaΩL + trace terms.

Incorporating this into our previous result gives

∂aLr−1 = −(2ℓ + 1)Mℓ r−(ℓ+2)ΩaΩL + trace terms,

and this allows us to conclude that the expression for ∂aLr−1 is of the same general
form as the expression for ∂Lr−1, and that Mℓ+1 = −(2ℓ + 1)Mℓ. The solution to
this recurrence relation is Mℓ = (−1)ℓ(2ℓ − 1)!!M0, and using our previous special
cases we can verify that M0 ≡ 1. What we have, at this stage, is a proof that
∂Lr−1 = (−1)ℓ(2ℓ − 1)!! r−(ℓ+1)ΩL + trace terms. Because ∂Lr−1 is a STF tensor,
we may express this in its final form as

∂Lr−1 = ∂〈L〉r
−1 = (−1)ℓ(2ℓ − 1)!! r−(ℓ+1)Ω〈L〉. (1.8.9)

It follows that Eq. (1.8.8) can be written as

ψ = r−(ℓ+1)A〈L〉Ω〈L〉 (decaying solution), (1.8.10)

after absorbing the factor (−1)ℓ(2ℓ − 1)!! into a re-definition of A〈L〉.
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1.8.3 Spherical harmonics

It is well known that irreducible solutions to Laplace’s equations can also be ex-
pressed as

ψ = rℓ
ℓ∑

m=−ℓ

AℓmYℓm(θ, φ) (growing solution) (1.8.11)

and

ψ = r−(ℓ+1)
ℓ∑

m=−ℓ

AℓmYℓm(θ, φ) (decaying solution), (1.8.12)

where Yℓm(θ, φ) are the usual spherical-harmonic functions, which satisfy Yℓ,−m =
(−1)mȲℓm, with the overbar indicating complex conjugation. The sums over m
contain 2ℓ + 1 terms, and for a real ψ the number of independent real constants
contained in Aℓm is also 2ℓ + 1. This number matches the number of independent
components contained in the STF tensor A〈L〉.

Comparing Eq. (1.8.7) to Eq. (1.8.11), and also Eq. (1.8.10) to Eq. (1.8.12), it is
clear that there must exist a strict correspondence between the angular STF tensors
Ω〈L〉 on the one hand, and the spherical harmonics Yℓm(θ, φ) on the other hand.
We can, in fact, express this correspondence as

Yℓm(θ, φ) = Y
〈L〉

ℓm Ω〈L〉, (1.8.13)

where Y
〈L〉

ℓm is a constant STF tensor that satisfies Y
〈L〉

ℓ,−m = (−1)mȲ
〈L〉

ℓm . As specific
examples, it is easy to check that

Y
〈xx〉

22 =
1

4

√

15

2π
, Y

〈xy〉
22 = Y

〈yx〉
22 =

i

4

√

15

2π
, Y

〈yy〉
22 = −1

4

√

15

2π
,

with all other components of Y
〈ab〉

22 vanishing, that

Y
〈xz〉

21 = Y
〈zx〉

21 = −1

4

√

15

2π
, Y

〈yz〉
21 = Y

〈zy〉
21 = − i

4

√

15

2π
,

with all other components of Y
〈ab〉

21 vanishing, and that

Y
〈xx〉

20 = −1

4

√

5

π
, Y

〈yy〉
20 = −1

4

√

5

π
, Y

〈zz〉
20 =

1

2

√

5

π
,

with all other components of Y
〈ab〉

20 vanishing. It is also easy to verify that the
functions of θ and φ defined by Eq. (1.8.13) satisfy the familiar eigenvalue equation
for spherical harmonics.

The inverted form of Eq. (1.8.13) is

Ω〈L〉 = Nℓ

ℓ∑

m=−ℓ

Ȳ
〈L〉

ℓm Yℓm(θ, φ), Nℓ =
4πℓ!

(2ℓ + 1)!!
. (1.8.14)

This can easily be checked for specific cases, such as ℓ = 2. To illustrate the truth of
this statement we introduce another angular vector Ω′ := (sin θ′ cos φ′, sin θ′ sinφ′, cos θ′),
defined in terms of a distinct set of angles (θ′, φ′), and we multiply each side of
Eq. (1.8.14) by Ω′

〈L〉. We get

Ω〈L〉Ω′
〈L〉 = Nℓ

ℓ∑

m=−ℓ

(
Ȳ

〈L〉
ℓm Ω′

〈L〉

)
Yℓm(θ, φ),
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and substituting Eq. (1.8.14) gives

Ω〈L〉Ω′
〈L〉 = Nℓ

ℓ∑

m=−ℓ

Ȳℓm(θ′, φ′)Yℓm(θ, φ) =
2ℓ + 1

4π
NℓPℓ(Ω · Ω′),

where we have invoked the addition theorem for spherical harmonics. Let us
examine a few special cases. When ℓ = 1 a direct computation reveals that
ΩaΩ′

a = Ω · Ω′ =: cos γ ≡ P1(cos γ), where γ is the angle between the vectors
Ω and Ω′. When ℓ = 2 we have Ω〈ab〉Ω′

〈ab〉 = cos2 γ − 1
3 ≡ 2

3P2(cos γ). And when

ℓ = 3 we have Ω〈abc〉Ω′
〈abc〉 = cos3 γ − 3

5 cos γ ≡ 2
5P3(cos γ). All these results are

compatible with the general statement, which follows from Eq. (1.8.14). Now, the
number that multiplies Pℓ(cos γ) in the general expression is (2ℓ + 1)Nℓ/(4π). It is
also, as we can see from the special cases, the reciprocal of the coefficient multiply-
ing cosℓ γ in an expansion of Pℓ(cos γ) in powers of cos γ. This coefficient is equal
to (2ℓ − 1)!!/ℓ! and we conclude that (2ℓ + 1)Nℓ/(4π) = ℓ!/(2ℓ − 1)!!, so that Nℓ is
indeed given by the expression displayed in Eq. (1.8.14). We conclude also that as
a consequence of Eqs. (1.8.13) and (1.8.14), we have

Ω〈L〉Ω′
〈L〉 =

ℓ!

(2ℓ − 1)!!
Pℓ(Ω · Ω′), (1.8.15)

a useful identity involving the contraction of angular STF tensors that refer to two
distinct directions.

The foregoing results give rise to another useful identity. We rewrite Eq. (1.8.14)
as

Ω′
〈L′〉 = Nℓ′

ℓ′∑

m′=−ℓ′

Y
ℓ′m′

〈L′〉 Ȳℓ′m′(θ′, φ′)

and insert it into the integral
∫

Yℓm(θ′, φ′)Ω′
〈L′〉 dΩ′, where dΩ′ = sin θ′ dθ′dφ′. This

gives

∫

Yℓm(θ′, φ′)Ω′
〈L′〉 dΩ′ = Nℓ′

ℓ′∑

m′=−ℓ′

Y
ℓ′m′

〈L′〉

∫

Ȳℓ′m′(θ′, φ′)Yℓm(θ′, φ′) dΩ′,

and the orthonormality of the spherical harmonics allows us to simplify this as

∫

Yℓm(θ′, φ′)Ω′
〈L′〉 dΩ′ = δℓℓ′Nℓ Y

ℓm
〈L〉

If we now multiply each side by Ȳℓm(θ, φ) and sum over m, we obtain

ℓ∑

m=−ℓ

Ȳℓm(θ, φ)

∫

Yℓm(θ′, φ′)Ω′
〈L′〉 dΩ′ = δℓℓ′Nℓ

ℓ∑

m=−ℓ

Y
ℓm
〈L〉 Ȳℓm(θ, φ).

In view of Eq. (1.8.14), this is

ℓ∑

m=−ℓ

Ȳℓm(θ, φ)

∫

Yℓm(θ′, φ′)Ω′
〈L′〉 dΩ′ = δℓℓ′ Ω〈L〉. (1.8.16)

This identity will be put to good use in Chapters 2 and 6.
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1.8.4 Spherical averages

We denote by 〈〈ψ〉〉 the average of a quantity ψ(θ, φ) over the surface of a unit
two-sphere:

〈〈
ψ

〉〉
:=

1

4π

∫

ψ(θ, φ) dΩ, (1.8.17)

where dΩ = sin θ dθdφ. Of particular interest are the spherical average of products
ΩaΩbΩc · · · of angular vectors. These are easily computed using Eqs. (1.8.2) and the
fact that the average of an angular STF tensor Ω〈abc···〉 must be zero; this property
follows directly from Eq. (1.8.14) and the identity

∫
Yℓm(θ, φ) dΩ = δℓ,0δm,0. We

obtain

〈〈
Ωa

〉〉
= 0, (1.8.18)

〈〈
ΩaΩb

〉〉
=

1

3
δab, (1.8.19)

〈〈
ΩaΩbΩc

〉〉
= 0, (1.8.20)

〈〈
ΩaΩbΩcΩd

〉〉
=

1

15

(
δabδcd + δacδbd + δadδbc

)
. (1.8.21)

These results can also be established directly, by recognizing that the tensorial
structure on the right-hand side is uniquely determined by the complete symmetry
of the left-hand side and the fact that δab is the only available geometrical object.
The numerical coefficient can then be determined by taking traces; for example,
1 = δabδcd〈〈ΩaΩbΩcΩd〉〉 = 1

15 (9 + 3 + 3), and this confirms that the numerical
coefficient must indeed be 1

15 .
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We saw in Chapter 1 that in their Landau-Lifshitz formulation, the Einstein field
equations take the form of wave equations in Minkowski spacetime. Integrating the
field equations requires finding solutions to the wave equation, and in this chapter
we introduce the relevant techniques. We begin by giving a precise formulation of
the problem in Sec. 2.1, and after introducing the retarded Green’s function for the
wave equation, we describe how its solution can be expressed as an integral over the
past light cone of the spacetime point at which the field is evaluated. In Sec. 2.2
we partition three-dimensional space into near-zone and wave-zone regions, and in
Sec. 2.3 we follow Will and Wiseman (1996) and explain how the light-cone integral
can be decomposed into near-zone and wave-zone contributions. Techniques to
evaluate near-zone integrals are introduced in Sec. 2.4, and techniques to evaluate
wave-zone integrals are developed in Sec. 2.5.

2.1 Formulation of the mathematical problem

We wish to integrate the wave equation

¤ψ = −4πµ (2.1.1)

for a potential ψ(x) generated by a source µ(x). Here x = (ct,x) labels a spacetime
event, and

¤ := ηαβ∂αβ = − ∂2

∂(ct)2
+

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(2.1.2)

is the wave operator of Minkowski spacetime. In this chapter ψ plays the role of the
gravitational potentials hαβ , and the source function µ plays the role of the effective
energy-momentum pseudotensor ταβ . The source function is assumed to be known,
as ταβ would be in the post-Minkowskian formulation of the Einstein field equations
— see Sec. 1.6. But unlike the typical situation encountered in electrodynamics, it
is not assumed to be bounded. Instead, the source is assumed to be distributed over
all of Minkowski spacetime, because ταβ is constructed in part from hαβ , which does
extend over all of spacetime. The source does not have compact support, but it is
assumed to fall off sufficiently fast to ensure that the solution to the wave equation
decays at least as fast as |x|−1.

17
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The central tool to integrate Eq. (2.1.1) is the retarded Green’s function G(x, x′),
a solution to

¤G(x, x′) = −4πδ(x − x′) = −4πδ(ct − ct′)δ(x − x′) (2.1.3)

with the property that G(x, x′) vanishes if x is in the past of x′. The Green’s
function is given explicitly by

G(x, x′) =
δ(ct − ct′ − |x − x′|)

|x − x′| , (2.1.4)

where |x − x′| :=
√

(x − x′) · (x − x′) =
√

(x − x′)2 + (y − y′)2 + (z − z′)2 is the
length of the three-dimensional vector x − x′ and the spatial distance between x
and x′. Alternatively, the Green’s function can be expressed as

G(x, x′) = 2Θ(ct − ct′) δ
[
(ct − ct′)2 − |x − x′|2

]
, (2.1.5)

in terms of the spacetime interval between x and x′; here Θ(ct−ct′) is the Heaviside
step function, which is equal to one when ct > ct′ and to zero when ct < ct′.

In terms of the Green’s function, the solution to Eq. (2.1.1) is

ψ(x) =

∫

G(x, x′)µ(x′) d4x′, (2.1.6)

where d4x′ = d(ct′)d3x′. After substitution of Eq. (2.1.4) and integration over
d(ct′), this becomes

ψ(ct,x) =

∫
µ(ct − |x − x′|,x′)

|x − x′| d3x′. (2.1.7)

This is the retarded solution to the wave equation, and the domain of integration
extends over C (x), the past light cone of the field point x = (ct,x).

2.2 Near zone and wave zone

The domain C (x) will be partitioned into a near-zone domain N and a wave-zone
domain W . Before we formally introduce these notions, let us examine the solution
to a specific version of Eq. (2.1.1),

ψ = p · Ω
[
cos ω(t − r/c)

r2
− ω

c

sinω(t − r/c)

r

]

,

which corresponds to µ = −p · ∇δ(x) cos ωt. Here p is a constant vector, r := |x|,
Ω := x/r is the angular vector of Eq. (1.8.1), and ω is an angular frequency. Physi-
cally, this solution represents the scalar potential of a dipole of constant direction p,
oscillating in strength with a frequency f = ω/(2π); the wavelength of the radiation
produced by the oscillating dipole is λ = c/f = 2πc/ω.

Our first observation is that ψ behaves very differently depending on whether
r is small or large compared with λ. When r ≪ λ = 2πc/ω, the trigonometric
functions can be expanded in powers of ωr/c, and the result is

ψ = p · Ωcos ωt

r2

[

1 + O
(ω2r2

c2

)]

(near zone),

with a correction term that is quadratic in r/λ ≪ 1. We observe also that in the
near zone — the region r ≪ λ — the derivatives of ψ are related by

∂tψ

c|∇ψ| = O
(ωr

c

)

(near zone).
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In the near zone, therefore, a time derivative is smaller than a spatial derivative
(multiplied by c) by a factor of order r/λ ≪ 1.

When, on the other hand, r ≫ λ = 2πc/ω, it is no longer appropriate to expand
the trigonometric functions, and the potential must be expressed as

ψ = −p · Ωω

c

sinωτ

r

[

1 + O
( c

ωr

)]

(wave zone),

in terms of the retarded-time variable τ := t − r/c; here the difference between τ
and t is not small, and the correction term is linear in λ/r ≪ 1. We observe also
that in the wave zone — the region r ≫ λ — the derivatives of ψ are related by

∂tψ

c|∇ψ| = O(1) (wave zone).

To obtain this result we use the fact that the spatial dependence contained in Ω

and r−1 produces a spatial derivative of fractional order λ/r, while the spatial
dependence contained in τ = t − r/c produces a spatial derivative of order unity.
In the wave zone, therefore, a time derivative has the same order of magnitude as
a spatial derivative (multiplied by c).

To define the notions of near zone and wave zone in the general context of the
wave equation of Eq. (2.1.1), we introduce the following scaling quantities:

tc := characteristic time scale of the source, (2.2.1)

ωc :=
2π

tc
= characteristic frequency of the source, (2.2.2)

λc :=
2πc

ωc
= ctc = characteristic wavelength of the radiation. (2.2.3)

The characteristic time scale tc is the time required for noticeable changes to occur
within the source; it is defined such that ∂tµ is typically of order µ/tc over the
support of the source function. If, as in the previous example, µ oscillates with a
frequency ω, then tc ∼ 1/ω and ωc ∼ ω.

The near zone and the wave zone are defined as

near zone: r or r′ ≪ λc =
2πc

ωc
= ctc, (2.2.4)

wave zone: r or r′ ≫ λc =
2πc

ωc
= ctc. (2.2.5)

Thus, the near zone is the region of space in which r := |x| or r′ := |x′| is small
compared with a characteristic wavelength λc, while the wave zone is the region of
space in which r or r′ is large compared with this length scale. As we have seen in
the dipole example, the potential behaves very differently in the two zones: In the
near zone the difference between τ = t − r/c and t is small (the field retardation is
unimportant), and time derivatives are small compared with spatial derivatives; in
the wave zone the difference between τ = t−r/c and t is large, and time derivatives
are comparable to spatial derivatives. These properties are shared by all generic
solutions to the wave equation.

Another important feature of the near zone concerns the quantity (r′/c)∂tµ, in
which µ is understood to be a function of time and the spatial variables x′. This
quantity is of order (r′/c)(µ/tc), or (r′/λc)µ, which is much smaller than µ. In the
near zone, therefore,

r′

c

∂µ

∂t
= O

( r′

λc
µ
)

≪ µ. (2.2.6)

This states, simply, that the source retardation is unimportant within the near
zone. This was to be expected, because the field retardation itself was seen to be
unimportant in the near zone.
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2.3 Integration domains

The integral of Eq. (2.1.7) extends over the past light cone C (x) of the field point
x. Following Will and Wiseman, we partition the integration domain into two
pieces, the near-zone domain N (x) and the wave-zone domain W (x). We place
the boundary of the near/wave zones at an arbitrarily selected radius R, with R
imagined to be of the same order of magnitude as λc, the characteristic wavelength
of the radiation associated with ψ. We let N (x) be the intersection between C (x)
and the near zone, formally defined as the spatial region such that r′ := |x′| <
R. Similarly, we let W (x) be the intersection between C (x) and the wave zone,
formally defined as the spatial region such that r′ > R. The near-zone and wave-
zone domains join together to form the complete light cone of the field point x:
N (x) + W (x) = C (x).

We write Eq. (2.1.6) as

ψ(x) = ψN (x) + ψW (x), (2.3.1)

where

ψN (x) =

∫

N

G(x, x′)µ(x′) d4x′ (2.3.2)

is the near-zone portion of the light-cone integral, while

ψW (x) =

∫

W

G(x, x′)µ(x′) d4x′ (2.3.3)

is its wave-zone portion. We recall that the boundary between the near and wave
zones is placed at r′ = R = O(λc), where λc is defined by Eq. (2.2.3). Methods to
evaluate ψN and ψW will be devised in the following sections. It is an important
fact that while ψN and ψW will individually depend on the cutoff parameter R,
their sum ψ = ψN + ψW will necessarily be independent of this parameter. The
R-dependence of ψN and ψW is therefore unimportant, and it can freely be ig-
nored. This observation will serve as a helpful simplifying tool in many subsequent
computations.

2.4 Near-zone integration

2.4.1 Wave-zone field point

To begin, we evaluate

ψN (x) =

∫

N

µ(ct − |x − x′|,x′)

|x − x′| d3x′ (2.4.1)

when x is situated in the wave zone, that is, when r = |x| > R. We recall that
the domain of integration N is the intersection between C (x), the past light cone
of the field point x, and the near zone, defined as the spatial region such that
r′ := |x′| < R.

For this purpose we introduce a modified integrand,

µ(ct − |x − x′|,y)

|x − x′| =: f(|x − x′|) =: g(x′),

in which the spatial dependence of the source function on x′ has been replaced by
a dependence on arbitrary parameters y. We have indicated that if t and y are
kept fixed, then the modified integrand can be viewed as a function f of argument
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|x − x′|. If, in addition, x is kept fixed, then we have a function g that depends
only on the vector x′.

Knowing that x′ lies within the near zone, we treat it as a small vector, and
we Taylor-expand g about x′ = 0. Keeping just a few terms in this expansion, we
obtain

g(x′) = g(0) +
∂g

∂x′a
x′a +

1

2

∂2g

∂x′ax′b
x′ax′b + · · · ,

in which all derivatives are evaluated at x′ = 0. But

∂g

∂x′a
=

∂f

∂x′a
= − ∂f

∂xa
,

because f depends on x′ only through the combination |x − x′|. Our Taylor ex-
pansion can therefore be expressed as

g(x′) = f(|x|) − ∂f

∂xa
x′a +

1

2

∂2f

∂xaxb
x′ax′b + · · · .

The derivatives of f are still evaluated at x′ = 0. But because the differentiation
is now carried out with respect to x, we can set x′ = 0 in f before taking the
derivatives. Observing that f then becomes a function of r = |x| only, we have

g(x′) = f(r) − ∂f(r)

∂xa
x′a +

1

2

∂2f(r)

∂xaxb
x′ax′b + · · · .

Keeping all terms of the Taylor expansion, this is

g(x′) =
∞∑

q=0

(−1)q

q!
x′Q∂Qf(r),

where Q := a1a2 · · · aq is a multi-index of the sort introduced in Sec. 1.8.1. More
explicitly, we have established the identity

µ(ct − |x − x′|,y)

|x − x′| =

∞∑

q=0

(−1)q

q!
x′Q∂Q

µ(ct − r,y)

r
. (2.4.2)

The dependence of µ/r on the variables xa is contained entirely within r.
We may now set y equal to x′ and substitute Eq. (2.4.2) into Eq. (2.4.1). This

gives

ψN (ct,x) =

∞∑

q=0

(−1)q

q!
∂Q

[
1

r

∫

M

µ(u,x′)x′Q d3x′

]

, (2.4.3)

where
u := ct − r = c(t − r/c) =: cτ (2.4.4)

is a retarded-time variable. Notice that the temporal dependence of the source
function no longer involves x′, the variable of integration. The integration domain
has therefore become a surface of constant time (the constant being equal to τ =
t − r/c) bounded externally by the sphere r′ = R. This domain is denoted M in
Eq. (2.4.3).

Equation (2.4.3) is valid everywhere within the wave zone. It simplifies when
r → ∞, that is, when ψN is evaluated in the far-away wave zone, a neighbourhood
of future null infinity. In this limit we retain only the dominant, r−1 term in ψN ,
and we approximate Eq. (2.4.3) by

ψN =
1

r

∞∑

q=0

(−1)q

q!

∫

M

∂Qµ(u,x′)x′Q d3x′ + O(r−2).
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The dependence of µ on xa is contained in u = ct − r, so that ∂aµ = −µ(1)∂ar =
−µ(1)Ωa, in which µ(1) denotes the first derivative of µ with respect to u, and
where we used Eq. (1.8.5). Involving this equation once more, we find that ∂abµ =
µ(2)ΩaΩb +O(r−1), and continuing along these lines reveals that in general, ∂Qµ =
(−1)qµ(q)ΩQ + O(r−1). Inserting this into the previously displayed equation, we
find that Eq. (2.4.3) becomes

ψN (t,x) =
1

r

∞∑

q=0

1

q!
ΩQ

(
∂

∂u

)q ∫

M

µ(u,x′)x′Q d3x′ + O(r−2) (2.4.5)

in the far-away wave zone. This is a multipole expansion for the potential ψN .
Notice that ΩQx′Q = Ωa1

Ωa2
· · ·Ωaq

x′a1x′a2 · · ·x′aq = (Ω · x′)q.

2.4.2 Near-zone field point

We next evaluate

ψN (x) =

∫

N

µ(ct − |x − x′|,x′)

|x − x′| d3x′ (2.4.6)

when x is situated in the near zone, that is, when r = |x| < R.
In this situation, both x and x′ lie within the near zone, and |x − x′| can be

treated as a small quantity. To evaluate the integral we simply Taylor-expand the
time-dependence of the source function, as in

µ(ct − |x − x′|) = µ(ct) − ∂µ

∂(ct)
|x − x′| + 1

2

∂2µ

∂(ct)2
|x − x′|2 + · · · ,

in which all derivatives are evaluated at ct. Substituting this expansion into Eq. (2.4.6)
produces

ψN (t,x) =

∞∑

q=0

(−1)q

q!

(
∂

∂(ct)

)q ∫

M

µ(ct,x′)|x − x′|q−1 d3x′, (2.4.7)

which is valid everywhere within the near zone. Notice that once more, the domain
of integration is M , a surface of constant time bounded externally by the sphere
r′ = R.

2.5 Wave-zone integration

In this section we develop a method to evaluate

ψW (x) =

∫

W

G(x, x′)µ(x′) d4x′, (2.5.1)

the wave-zone portion of the complete solution ψ to the wave equation. We recall
that the domain of integration W is the intersection between C (x), the past light
cone of the field point x, and the wave zone, defined as the spatial region such that
r′ := |x′| > R. The wave-zone integral of Eq. (2.5.1) is much more difficult to
evaluate than the near-zone integral encountered in Sec. 2.4. To proceed it will be
necessary to restrict our attention to source functions of the form

µ(x′) =
1

4π

f(u′)

r′n
Ω′〈L〉, (2.5.2)

where f is an arbitrary function of argument u′ = ct′ − r′ (it is unrelated to the
function f introduced in Sec. 2.4.1), n is an arbitrary integer, and Ω′〈L〉 is an
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angular STF tensor of degree ℓ, of the sort introduced in Sec. 1.8.1. Fortunately,
this restriction is not too important from a practical point of view: All sources
functions that will be involved in wave-zone integrals in the remaining chapters of
these notes will be seen to be superpositions of the irreducible forms displayed in
Eq. (2.5.2).

2.5.1 Reduced Green’s function

The source function of Eq. (2.5.2) can be neatly expressed in terms of spherical
harmonics Yℓm(θ′, φ′) — see Sec. 1.8.3 — and for this reason it is advantageous
to express G(x, x′), the retarded Green’s function of Eqs. (2.1.4) and (2.1.5), as a
spherical-harmonic decomposition. We therefore write

G(x, x′) =
∑

ℓm

gℓ(ct, r; ct
′, r′)Ȳℓm(θ′, φ′)Yℓm(θ, φ), (2.5.3)

where gℓ(ct, r; ct
′, r′) is a reduced Green’s function for each multipole order ℓ. Sub-

stitution of Eq. (2.5.3) into Eq. (2.1.3) reveals that each gℓ satisfies the reduced
wave equation

[

− ∂2

∂(ct)2
+

1

r2

∂

∂r
r2 ∂

∂r
− ℓ(ℓ + 1)

r2

]

gℓ = −4π

r2
δ(ct − ct′)δ(r − r′). (2.5.4)

It follows from this equation that (as was already indicated) the reduced Green’s
function depends on ℓ but is independent of m.

We shall not attempt to integrate Eq. (2.5.4) directly. It is simpler to take
the known expression for G(x, x′), as it appears in Eq. (2.1.5), and to extract its
multipole components using Eq. (2.5.3) and the orthonormality of the spherical
harmonics. Introducing the notation

∆ := c(t − t′), R := |x − x′|, (2.5.5)

Eq. (2.1.5) can be expressed as

G(x, x′) = 2Θ(∆)δ(∆2 − R2).

We substitute this on the left-hand side of Eq. (2.5.1), multiply each side by
Yℓ′m′(θ′, φ′), and integrate over dΩ′ = sin θ′ dθ′dφ′. The result is

2Θ(∆)

∫

δ(∆2 − R2)Yℓm(θ′, φ′) dΩ′ = gℓYℓm(θ, φ).

We next set m = 0 and use the fact that Yℓ0(θ, φ) ∝ Pℓ(cos θ). The previous
equation reduces to

2Θ(∆)

∫

δ(∆2 − R2)Pℓ(cos θ′) d cos θ′ dφ′ = gℓPℓ(cos θ).

Finally, we set cos θ = 1 and use the fact that Pℓ(1) = 1. This gives

gℓ = 2Θ(∆)

∫

δ(∆2 − R2)
∣
∣
∣
cos θ=1

Pℓ(cos θ′) d cos θ′ dφ′,

and since ∆2 − R2 evaluated at cos θ = 1 is independent of φ′ (as we shall see), we
have

gℓ(ct, r; ct
′, r′) = 4πΘ(∆)

∫

δ(∆2 − R2)
∣
∣
∣
cos θ=1

Pℓ(cos θ′) d cos θ′. (2.5.6)
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To evaluate the remaining integral we must compute R2 = (x − x′) · (x − x′)
and evaluate it at cos θ = 1. This gives R2 = r2 − 2rr′ cos θ′ + r′2, and substitution
inside the δ-function produces

gℓ =
2πΘ(∆)

rr′

∫

δ(cos θ′ − ξ)Pℓ(cos θ′) d cos θ′,

where ξ := (r2 + r′2 − ∆2)/(2rr′). The integral is nonzero whenever ξ lies in the
interval between −1 and +1; when this condition is satisfied it evaluates to

gℓ =
2πΘ(∆)

rr′
Pℓ(ξ).

The condition −1 < ξ implies −2rr′ < r2 + r′2 − ∆2, so that ∆ < r + r′. The
condition ξ < 1 implies 2rr′ > r2 + r′2 − ∆2, so that ∆ > |r − r′|. This last
condition supersedes the requirement ∆ > 0, which comes from the step function
appearing in G(x, x′). Altogether, we find that the reduced Green’s function is
given by

gℓ(ct, r; ct
′, r′) =

2π

rr′
Θ(∆ − |r − r′|)Θ(r + r′ − ∆)Pℓ(ξ), (2.5.7)

where

ξ :=
r2 + r′2 − ∆2

2rr′
. (2.5.8)

The temporal support of the reduced Green’s function is the interval |r− r′| < ∆ <
r + r′.

For later convenience we wish to express gℓ in terms of the retarded-time vari-
ables

u := ct − r, u′ := ct′ − r′. (2.5.9)

We have ∆ = u − u′ + r − r′, and for r > r′ the condition ∆ > |r − r′| translates
to u − u′ > 0, while for r < r′ it translates to u − u′ > 2(r′ − r). In both cases
the condition ∆ < r + r′ translates to u− u′ < 2r′. Finally, rewriting ξ in terms of
u − u′ reveals that the reduced Green’s function of Eq. (2.5.7) can be expressed as

gℓ(u, r;u′, r′) =
2πH

rr′
Pℓ(ξ), (2.5.10)

where

H :=

{
Θ

[
u − u′

]
Θ

[
2r′ − (u − u′)

]
r > r′

Θ
[
u − u′ − 2(r′ − r)

]
Θ

[
2r′ − (u − u′)

]
r < r′

(2.5.11)

and

ξ = 1 − r − r′

rr′
(u − u′) − 1

2rr′
(u − u′)2. (2.5.12)

The simplicity of the reduced Green’s function comes as a great help in the evalu-
ation of wave-zone integrals.

2.5.2 Wave-zone field point

To begin, we evaluate

ψW (x) =

∫

W

G(x, x′)µ(x′) d4x′

when x is situated in the wave zone, that is, when r = |x| > R. We do this for
the specific source term displayed in Eq. (2.5.2), using the representation of the
retarded Green’s function given in Eq. (2.5.3).
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The first step is to change the variables of integration from (ct′, x′, y′, z′) to
(u′, r′, θ′, φ′), using u′ = ct′ − r′ and the usual relation between Cartesian and
spherical coordinates. The new volume element is d4x′ = r′2du′dr′dΩ′, where dΩ′ =
sin θ′ dθ′dφ′. After inserting this, together with Eqs. (2.5.2) and (2.5.3), inside the
integral, we obtain

ψW =
1

4π

∑

ℓ′

∫

du′dr′
f(u′)

r′(n−2)
gℓ′(u, r;u′, r′)

×
ℓ′∑

m′=−ℓ′

Yℓ′m′(θ, φ)

∫

Ȳℓ′m′(θ′, φ′)Ω′〈L〉 dΩ′.

The angular integration is carried out with the help of Eq. (1.8.16), and we arrive
at

ψW =
Ω〈L〉

4π

∫

du′dr′
f(u′)

r′(n−2)
gℓ(u, r;u′, r′).

To evaluate this we partition the spatial domain of integration into the two intervals
R < r′ < r and r < r′ < ∞. (Because x is chosen to be within the wave zone, it
is automatic that r > R.) We next refer to Eq. (2.5.11) and use the step functions
to define the temporal domain of integration. After also involving Eq. (2.5.10) and
changing the integration variable from u′ to s := 1

2 (u − u′), we obtain

ψW =
Ω〈L〉

r

{∫ r

R

dr′
∫ r′

0

ds
f(u − 2s)

r′(n−1)
Pℓ(ξ) +

∫ ∞

r

dr′
∫ r′

r′−r

ds
f(u − 2s)

r′(n−1)
Pℓ(ξ)

}

,

where ξ is now given by ξ = 1 − 2(r′ − r)s/(rr′) − 2s2/(rr′).
We can make additional progress if we change the order of integration and rewrite

the preceding expression as

ψW =
Ω〈L〉

r

{∫ R

0

dsf(u − 2s)

∫ r

R

dr′
Pℓ(ξ)

r′(n−1)
+

∫ r

R

dsf(u − 2s)

∫ r

s

dr′
Pℓ(ξ)

r′(n−1)

+

∫ r

0

dsf(u − 2s)

∫ r+s

r

dr′
Pℓ(ξ)

r′(n−1)
+

∫ ∞

r

dsf(u − 2s)

∫ r+s

s

dr′
Pℓ(ξ)

r′(n−1)

}

.

The integrals over dr′ can now be evaluated. Let

G(k) :=

∫ k

dr′
Pℓ(ξ)

r′(n−1)

be a function of the parameter k, in addition to the dependence on r and s contained
in ξ. In terms of this function we have

ψW =
Ω〈L〉

r

{∫ R

0

dsf(u − 2s)
[
G(r) − G(R)

]

+

∫ r

R

dsf(u − 2s)
[
G(r) − G(s)

]

+

∫ r

0

dsf(u − 2s)
[
G(r + s) − G(r)

]

+

∫ ∞

r

dsf(u − 2s)
[
G(r + s) − G(s)

]
}

,

which can be rewritten as

ψW =
Ω〈L〉

r

{

−
∫ R

0

dsf(u − 2s)G(R)
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−
∫ ∞

R

dsf(u − 2s)G(s)

+

∫ ∞

0

dsf(u − 2s)G(r + s)

}

,

or as

ψW =
Ω〈L〉

r

{∫ R

0

dsf(u − 2s)
[
G(r + s) − G(R)

]

+

∫ ∞

R

dsf(u − 2s)
[
G(r + s) − G(s)

]
}

.

To put this in its final form we introduce the functions

A(s, r) :=

∫ r+s

R

Pℓ(ξ)

pn−1
dp (2.5.13)

and

B(s, r) :=

∫ r+s

s

Pℓ(ξ)

pn−1
dp, (2.5.14)

in which p stands for r′, s for 1
2 (u − u′), and

ξ =
r + 2s

r
− 2s(r + s)

rp
. (2.5.15)

We next observe that A = G(r + s)−G(R) and B = G(r + s)−G(s), and we write
our previous expression as

ψW (u, r, θ, φ) =
Ω〈L〉

r

{∫ R

0

dsf(u−2s)A(s, r)+

∫ ∞

R

dsf(u−2s)B(s, r)

}

. (2.5.16)

This is a concrete expression for the ψW of Eq. (2.5.1), corresponding to a source
function of the form displayed in Eq. (2.5.2), when the field point x is in the wave
zone. Here, f(u′) describes the temporal behaviour of the source function, which
decays spatially as r′−n; the angular dependence is given by Ω′〈L〉, an angular STF
tensor of degree ℓ.

2.5.3 Near-zone field point

We next evaluate

ψW (x) =

∫

W

G(x, x′)µ(x′) d4x′

when x is situated in the near zone, that is, when r = |x| < R.
We return to

ψW =
Ω〈L〉

4π

∫

du′dr′
f(u′)

r′(n−2)
gℓ(u, r;u′, r′)

and notice that here, r is always smaller than r′, so that there is no need to partition
the spatial domain of integration. The step functions of Eq. (2.5.11) define the
temporal domain of integration, and after substituting Eq. (2.5.10) and changing
the integration variable from u′ to s := 1

2 (u − u′), we obtain

ψW =
Ω〈L〉

r

∫ ∞

R

dr′
∫ r′

r′−r

ds
f(u − 2s)

r′(n−1)
Pℓ(ξ),
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where ξ is still given by ξ = 1 − 2(r′ − r)s/(rr′) − 2s2/(rr′). This becomes

ψW =
Ω〈L〉

r

{∫ R

R−r

dsf(u − 2s)

∫ s+r

R

dr′
Pℓ(ξ)

r′(n−1)

+

∫ ∞

R

dsf(u − 2s)

∫ s+r

s

dr′
Pℓ(ξ)

r′(n−1)

}

after changing the order of integration. Proceeding through the same steps as
before, we finally obtain

ψW (u, r, θ, φ) =
Ω〈L〉

r

{∫ R

R−r

dsf(u−2s)A(s, r)+

∫ ∞

R

dsf(u−2s)B(s, r)

}

, (2.5.17)

where the functions A(s, r) and B(s, r) are defined by Eqs. (2.5.13) and (2.5.14),
respectively. This is a concrete expression for the ψW of Eq. (2.5.1), corresponding
to a source function of the form displayed in Eq. (2.5.2), when the field point x is in
the near zone. Here, f(u′) describes the temporal behaviour of the source function,
which decays spatially as r′−n; the angular dependence is given by Ω′〈L〉, an angular
STF tensor of degree ℓ.

2.5.4 Estimates

It is possible to give crude estimates to the integrals appearing on the right-hand
side of Eqs. (2.5.16) and (2.5.17).

Suppose first that we wish to evaluate Eq. (2.5.16) in the far-away wave zone, and
keep only its dominant, r−1 part. Taking Pℓ(ξ) to be of order unity, we approximate
the functions defined by Eqs. (2.5.13) and (2.5.14) as

A ∼
∫ ∞

R

dp

pn−1
∼ 1

Rn−2

and

B ∼
∫ ∞

s

dp

pn−1
∼ 1

sn−2
;

we ignore all numerical factors and exclude the special case n = 2. Inserting A into
the first integral of Eq. (2.5.16) yields

1

Rn−2

∫ R

0

f(u − 2s) ds.

Taking R to be small, we Taylor-expand f(u − 2s) about s = 0 and integrate
term-by-term. A typical term in the expansion is

1

Rn−2
f (q)(u)Rq+1,

where the superscript (q) indicates the number of derivatives with respect to u. As
was motivated at the end of Sec. 2.3, we are interested in the R-independent part
of ψW . In order to extract this from your previous expansion, we retain the term
q = n − 3 and discard all others. An estimate for the first integral is therefore
f (n−3)(u). We next substitute B into the second integral of Eq. (2.5.16) and obtain

∫ ∞

R

f(u − 2s)
ds

sn−2
.

Assuming that f and all its derivatives vanish in the infinite past, repeated integra-
tion by parts returns an expression of the form

f(u − 2R)

Rn−3
+

f (1)(u − 2R)

Rn−4
+

f (2)(u − 2R)

Rn−5
+ · · · .
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The R-independent part of this is easily seen to be of the form f (n−3)(u), as we
had for the first integral. We conclude that a crude estimate for Eq. (2.5.16) is

ψW ∼ Ω〈L〉

r
f (n−3)(u) (far-away wave zone). (2.5.18)

This estimate ignores numerical factors, R-dependent terms, and terms that decay
faster than r−1.

Suppose next that we wish to evaluate Eq. (2.5.17) deep within the near zone,
for r ≪ R. Here the first integral of Eq. (2.5.17) is approximated as

∫ R

R−r

dsf(u − 2s)A(s, r) ∼ rf(u − 2R)A(R, r),

with

A(R, r) ∼
∫ r+R

R

dp

pn−1
∼ r

Rn−1
.

This produces the estimate
r2

Rn−1
f(u − 2R)

for the first integral, and the R-independent part of this is r2f (n−1)(u). The second
integral of Eq. (2.5.17) involves the domain of integration R < s < ∞. Because s
is large compared with r, we have the estimate

B ∼
∫ r+s

s

dp

pn−1
∼ r

sn−1
.

Inserting this inside the integral gives

r

∫ ∞

R

f(u − 2s)
ds

sn−1
,

and repeated integration by parts returns an expression of the form

rf(u − 2R)

Rn−2
+

rf (1)(u − 2R)

Rn−3
+

rf (2)(u − 2R)

Rn−4
+ · · · .

The R-independent part of this is easily seen to be rf (n−2)(u). Collecting results,
we conclude that a crude estimate for Eq. (2.5.17) is

ψW ∼ Ω〈L〉
{

f (n−2)(u) + rf (n−1)(u)
}

(near zone). (2.5.19)

This estimate ignores numerical factors and all R-dependent terms.
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Our strategy to integrate the Einstein field equations, in their Landau-Lifshitz
formulation introduced in Chapter 1, relies on a post-Minkowskian expansion of
the gravitational potentials in powers of G. This strategy leads to an iterative
approach to the solution, and each iteration of the field equations increases the
order of accuracy by one power of G. In this chapter we carry out the first iteration
of this program, and construct the first post-Minkowskian approximation to the
gravitational potentials. Because the wave equations are linear at this level of
approximation, this is the domain of the linearized theory, that is, general relativity
linearized about Minkowski spacetime. We begin in Sec. 3.1 with a statement of
the field equations, for which we can write down immediate integral solutions. In
Sec. 3.2 we evaluate the integrals when the field point lies within the near zone, and
in Sec. 3.3 we construct expressions that are valid in the wave zone. In each case the
gravitational potentials are presented in the form of a post-Newtonian expansion in
powers of c−2.

3.1 Field equations

In the first post-Minkowskian approximation, Eq. (1.6.1) reduces to the linear wave
equation

¤hαβ = −16πG

c4
Tαβ , (3.1.1)

in which the energy-momentum tensor is a functional of ηαβ , the metric of Minkowski
spacetime. The coordinate system is xα = (ct, xa), and ¤ := ηαβ∂αβ is the wave
operator of Minkowski spacetime. The potentials must also satisfy the harmonic
gauge conditions

∂βhαβ = 0, (3.1.2)

which are enforced automatically when the energy-momentum tensor satisfies the
conservation identities

∂βTαβ = 0; (3.1.3)

this statement was established at the end of Sec. 1.3. At this order of approximation,
the metric and other related quantities are given by

gαβ = ηαβ + hαβ − 1

2
hηαβ + O(G2), (3.1.4)

29
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gαβ = ηαβ − hαβ +
1

2
hηαβ + O(G2), (3.1.5)

(−g) = 1 − h + O(G2), (3.1.6)
√−g = 1 − 1

2
h + O(G2). (3.1.7)

These expressions are a special case of Eqs. (1.6.3)–(1.6.6). Notice that hαβ is the
“trace-reversed” metric perturbation. It is understood that here, indices on hαβ are
lowered with the Minkowski metric. Thus, hαβ := ηαµηβνhµν and h := ηµνhµν .

For our purposes in this chapter, it will not be necessary to specify the nature
of the matter distribution. We shall leave Tαβ arbitrary, except for the conditions
of Eq. (3.1.3). We shall assume, however, that the matter distribution is bounded,
and that it has enough internal dynamics to produce an interesting gravitational
field. (By interesting we mean, for example, a nonspherical and time-dependent
gravitational field.) This dynamics must have a nongravitational origin, because the
conservation identities of Eq. (3.1.3) forbid the existence of significant gravitational
interactions within the matter distribution.

We introduce the field variables Φ, Aa, and Bab, which are related to the grav-
itational potentials by

h00 :=
4

c2
Φ, h0a :=

4

c3
Aa, hab :=

4

c4
Bab. (3.1.8)

We also introduce the matter variables ρ, ja, and T ab, which are related to the
energy-momentum tensor by

T 00 := c2ρ, T 0a := cja, T ab = T ab. (3.1.9)

The quantity ρ has the dimension of a mass density, ja has the dimension of
(mass density)×(velocity), and T ab has the dimension of (mass density)×(velocity)2.

The field equations are

¤Φ = −4πGρ, (3.1.10)

¤Aa = −4πGja, (3.1.11)

¤Bab = −4πGT ab, (3.1.12)

and the gauge conditions are

∂tΦ + ∂aAa = 0, ∂tA
a + ∂bB

ab = 0. (3.1.13)

The conservation identities are

∂tρ + ∂aja = 0, ∂tj
a + ∂bT

ab = 0. (3.1.14)

The retarded solutions to the wave equations are

Φ(ct,x) = G

∫
ρ(ct − |x − x′|,x′)

|x − x′| d3x′, (3.1.15)

Aa(ct,x) = G

∫
ja(ct − |x − x′|,x′)

|x − x′| d3x′, (3.1.16)

Bab(ct,x) = G

∫
T ab(ct − |x − x′|,x′)

|x − x′| d3x′. (3.1.17)

We assume that the matter distribution is contained within the near zone (refer

back to Secs. 2.2 and 2.3), so that hαβ
W

= 0 and hαβ = hαβ
N

.
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3.2 Near-zone expressions

To express the potentials in the near zone we rely on the method described in
Sec. 2.4.2, which consists of treating |x − x′| as a small quantity and Taylor-
expanding the time dependence of each source term. For example, we write

ρ(ct − |x − x′|) = ρ − 1

c

∂ρ

∂t
|x − x′| + 1

2c2

∂2ρ

∂t2
|x − x′|2 + · · ·

and insert this into Eq. (3.1.15). We obtain

Φ = G

∫
ρ(t,x′)

|x − x′| d3x′ − G

c

∂

∂t

∫

ρ(t,x′) d3x′

+
G

2c2

∂2

∂t2

∫

ρ(t,x′)|x − x′| d3x′ + · · · .

The second term vanishes by virtue of the conservation identities:

∫

∂tρ d3x = −
∫

∂aja d3x = −
∮

jadSa = 0,

because there is no flux of matter across the surface bounding the matter distribu-
tion. Our final expression for the scalar potential is

Φ = U +
1

2c2

∂2X

∂t2
+ O(c−3), (3.2.1)

where

U(t,x) := G

∫
ρ(t,x′)

|x − x′| d3x′ (3.2.2)

is the Newtonian potential associated with the mass density ρ, while

X(t,x) := G

∫

ρ(t,x′)|x − x′| d3x′ (3.2.3)

is known as the superpotential. It is easy to verify that these satisfy the Poisson
equations

∇2U = −4πGρ, ∇2X = 2U. (3.2.4)

It is evident that the Newtonian potential ignores all retardation effects within
the near-zone, and that these are contained in the superpotential as well as the
higher-order corrections discarded in Eq. (3.2.1).

Similar considerations reveal that the vector potential is given by

Aa = Ua + O(c−2), (3.2.5)

where

Ua(t,x) := G

∫
ja(t,x′)

|x − x′| d3x′ (3.2.6)

is another instanteneous potential that satisfies

∇2Ua = −4πGja. (3.2.7)

Notice that by virtue of the conservation identity ∂tj
a + ∂bT

ab = 0, a term of order
c−1 that should be present in Eq. (3.2.5) actually vanishes. The discarded term of
order c−2 would involve ∂2

t ja and would partially incorporate the retardation effects
that do not appear in Ua.



32 First post-Minkowskian approximation

Finally, the near-zone expression for the tensor potential is

Bab = P ab + O(c−1), (3.2.8)

where

P ab(t,x) := G

∫
T ab(t,x′)

|x − x′| d3x′ (3.2.9)

is an instanteneous potential that satisfies

∇2P ab = −4πGT ab. (3.2.10)

Here it should be noticed that the discarded term of order c−1 does not vanish —
we have run out of conservation identities.

Substituting Eqs. (3.2.1), (3.2.5), and (3.2.8) into Eqs. (3.1.8) gives

h00 =
4

c2
U +

2

c4

∂2X

∂t2
+ O(c−5), (3.2.11)

h0a =
4

c3
Ua + O(c−5), (3.2.12)

hab =
4

c4
P ab + O(c−5). (3.2.13)

These expansions in powers of c−1 are known as post-Newtonian expansions. The
leading term in h00, of order c−2 and involving U , is said to be of Newtonian order,
or 0pn order. The second term in h00, of order c−4 and involving X, is said to
be of first post-Newtonian order, or 1pn order. The leading term in h0a, of order
c−3 and involving Ua, is said to be of one-half post-Newtonian order, or 1

2pn order.
And finally, the leading term in hab, of order c−4 and involving P ab, is also of 1pn
order. The counting of post-Newtonian order depends on the power of c−1; to an
additional power of c−1 one assigns a half pn order, and to an additional power of
c−2 one assignes a full post-Newtonian order.

3.3 Wave-zone expressions

3.3.1 Multipole moments and identities

To express the potentials in the wave zone we rely on the method described in
Sec. 2.4.1, which led to the multipole expansion displayed in Eq. (2.4.3). Our
expressions will involve the mass multipole moments

I(u) :=

∫

ρ(u,x′) d3x′, (3.3.1)

Ia(u) :=

∫

ρ(u,x′)x′a d3x′, (3.3.2)

Iab(u) :=

∫

ρ(u,x′)x′ax′b d3x′, (3.3.3)

Iabc(u) :=

∫

ρ(u,x′)x′ax′bx′c d3x′, (3.3.4)

and so on; these tensors are all completely symmetric. Recall that

u := ct − r = c(t − r/c) =: cτ (3.3.5)

is a retarded-time variable, and notice that I is in fact the total mass associated
with the mass density ρ. Our expressions will involve also the current multipole
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moments

Jab(u) :=

∫
[
ja(u,x′)x′b − jb(u,x′)x′a

]
d3x′, (3.3.6)

Jabc(u) :=

∫
[
ja(u,x′)x′b − jb(u,x′)x′a

]
x′c d3x′, (3.3.7)

and so on; these tensors are antisymmetric in the first pair of indices. Notice that
Jab is in fact the total angular-momentum tensor associated with the current density
ja; this is related to the angular-momentum vector Ja by Ja := 1

2εa
bcJ

bc, where
εabc is the permutation symbol.

We will use the conservation identities involving ρ, ja, and T ab to derive the
important consequences

I = constant, (3.3.8)

Ia = 0 (in centre-of-mass frame), (3.3.9)

Jab = constant, (3.3.10)
∫

ja d3x′ = İa = 0, (3.3.11)

∫

jax′b d3x′ =
1

2
İab +

1

2
Jab, (3.3.12)

∫

jax′bx′c d3x′ =
1

3
İabc +

1

3

(
Jabc + Jacb

)
, (3.3.13)

∫

T ab d3x′ =
1

2
Ïab, (3.3.14)

∫

T abx′c d3x′ =
1

6
Ïabc +

1

3

(
J̇acb + J̇bca

)
, (3.3.15)

in which an overdot indicates differentiation with respect to τ : İQ := dIQ/dτ =
cdIQ/du.

We begin by differentiating Eq. (3.3.1) with respect to u. We obtain

dI

du
=

∫

∂uρ d3x = −c−1

∫

∂aja d3x = −c−1

∮

ja dSa = 0,

because (as was observed before) there is no flux of matter across the surface bound-
ing the matter distribution. Because dI/du = 0, I(u) must be a constant, and we
conclude that the total mass I is conserved, as was stated in Eq. (3.3.8). Notice that
to simplify the notation we have dropped the primes on the integration variables;
we shall continue to do so in the remainder of this subsection.

We proceed by differentiating Eq. (3.3.2) with respect to u, which gives

dIa

du
=

∫

(∂uρ)xa d3x = −c−1

∫
(
∂bj

b
)
xa d3x.

We rewrite the integrand as

(
∂bj

b
)
xa = ∂b

(
jbxa

)
− ja,

which is a special case of Eq. (1.4.2) expressed in a different notation. The diver-
gence produces a surface integral that vanishes (because, as usual, jbdSb vanishes
on the surface bounding the matter distribution), and we obtain

dIa

du
= c−1

∫

ja d3x,
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which is just Eq. (3.3.11). Differentiating once more, we get

d2Ia

du2
= c−1

∫

∂uja d3x = −c−2

∫

∂bT
ab d3x = −c−2

∮

T abdSb = 0,

because there can be no normal stress on the surface bounding the matter distribu-
tion. We conclude that d2Ia/dτ2 = 0, so that the mass dipole moment Ia(τ) must
be at all times of the form Ia(0) + İa(0)τ . We may choose the initial conditions
Ia(0) = 0 = İa(0) and set Ia(τ) ≡ 0. This defines the system’s centre-of-mass
frame, and this is the statement of Eq. (3.3.9).

To establish Eq. (3.3.12) we express jaxb in terms of its symmetric and anti-
symmetric parts, and we integrate over d3x. Taking Eq. (3.3.6) into account, we
obtain ∫

jaxb d3x =
1

2

∫
(
jaxb + jbxa

)
d3x +

1

2
Jab.

Going back to Eq. (3.3.3), we have

dIab

du
=

∫

(∂uρ)xaxb d3x = −c−1

∫
(
∂cj

c
)
xaxb d3x.

The integrand can be expressed as

(
∂cj

c
)
xaxb = ∂c

(
jcxaxb

)
− jaxb − jbxa,

and integration produces

dIab

du
= c−1

∫
(
jaxb + jbxa

)
d3x

because, as usual, there is no contribution from the surface integral. Collecting
results, we have

∫

jaxb d3x =
c

2

dIab

du
+

1

2
Jab,

and this is just Eq. (3.3.12). The derivation of Eq. (3.3.13) follows a very similar
path, and we shall not go through the details here.

To establish Eq. (3.3.14) we invoke the identity

T ab =
c2

2
∂uu

(
ρxaxb

)
+

1

2
∂c

(
T acxb + T bcxa − ∂dT

cdxaxb
)
,

which is a special case of Eq. (1.4.3). After integrating over d3x and discarding the
surface integral, we obtain Eq. (3.3.14). For Eq. (3.3.15) our starting point is

T abxc =
c

2
∂u

(
jaxbxc + jbxaxc − jcxaxb

)
+

1

2
∂d

(
T adxbxc + T bdxaxc − T cdxaxb

)
,

a special case of Eq. (1.4.4). After integration and involvement of Eq. (3.3.13), we
obtain

∫

T abxc d3x =
c2

6

d2

du2
Iabc +

c

6

d

du

(
Jabc + Jacb

)
+

c2

6

d2

du2
Ibac

+
c

6

d

du

(
Jbac + Jbca

)
− c2

6

d2

du2
Icab − c

6

d

du

(
Jcab + Jcba

)
.

Noting the complete symmetry of Iabc and the antisymmetry of Jabc in the first
pair of indices, this is just Eq. (3.3.15).
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3.3.2 Wave-zone potentials

According to Eq. (2.4.3), the scalar potential is given by

Φ = G

[
1

r

∫

ρ d3x′ − ∂a

(
1

r

∫

ρx′a d3x′

)

+
1

2
∂ab

(
1

r

∫

ρx′ax′b d3x′

)

− 1

6
∂abc

(
1

r

∫

ρx′ax′bx′c d3x′

)

+ · · ·
]

in the wave zone. With the definitions of Eqs. (3.3.1)–(3.3.4), this is

Φ = G

[
I

r
− ∂a

(
Ia

r

)

+
1

2
∂ab

(
Iab

r

)

− 1

6
∂abc

(
Iabc

r

)

+ · · ·
]

.

Taking into account Eq. (3.3.9) gives us the final expression

Φ = G

[
I

r
+

1

2
∂ab

(
Iab

r

)

− 1

6
∂abc

(
Iabc

r

)

+ · · ·
]

, (3.3.16)

in which each multipole moment IQ, with the exception of the constant monopole
moment I, is a function of the retarded-time variable τ = t − r/c.

For the vector potential we have

Aa = G

[
1

r

∫

ja d3x′ − ∂b

(
1

r

∫

jax′b d3x′

)

+
1

2
∂bc

(
1

r

∫

jax′bx′c d3x′

)

+ · · ·
]

.

Taking into account Eqs. (3.3.11)–(3.3.13), this is

Aa = G

[

−1

2
∂b

(
İab + Jab

r

)

+
1

6
∂bc

(
İabc + Jabc + Jacb

r

)

+ · · ·
]

. (3.3.17)

We recall that Jab is the constant angular-momentum tensor; all other multipole mo-
ments depend on τ . Because Jab is constant, we have that ∂b(J

abr−1) = Jab∂br
−1 =

−r−2JabΩb, where Ωa = xa/r.
Finally, the wave-zone tensor potential is

Bab = G

[
1

r

∫

T ab d3x′ − ∂c

(
1

r

∫

T abx′c d3x′

)

+ · · ·
]

,

which becomes

Bab = G

[
Ïab

2r
− 1

6
∂c

(
Ïabc + 2J̇acb + 2J̇bca

r

)

+ · · ·
]

(3.3.18)

after taking into account the identities displayed in Eqs. (3.3.14) and (3.3.15).
Substituting Eqs. (3.3.16), (3.3.17), and (3.3.18) into Eqs. (3.1.8) gives

h00 =
4G

c2

[
I

r
+

1

2
∂ab

(
Iab

r

)

− 1

6
∂abc

(
Iabc

r

)

+ · · ·
]

, (3.3.19)

h0a =
4G

c3

[
1

2
Jab Ωb

r2
− 1

2
∂b

(
İab

r

)

+
1

6
∂bc

(
İabc + Jabc + Jacb

r

)

+ · · ·
]

, (3.3.20)

hab =
4G

c4

[
1

2

Ïab

r
− 1

6
∂c

(
Ïabc + 2J̇acb + 2J̇bca

r

)

+ · · ·
]

. (3.3.21)

These are the gravitational potentials in the wave zone, expressed as multipole
expansions involving the mass multipole moments IQ and the current multipole
moments JQ. The dependence on xa of each quantity within round brackets is
contained in the factor r−1, and also in the dependence of each moment on τ =
t − r/c.
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3.3.3 Post-Newtonian counting

Counting post-Newtonian orders is more subtle in the wave zone than in the near
zone. Recalling our discussion in Sec. 2.2, let us introduce the scaling quantities

mc := characteristic mass scale of the source, (3.3.22)

rc := characteristic length scale of the source, (3.3.23)

tc := characteristic time scale of the source, (3.3.24)

vc :=
rc

tc
= characteristic velocity within the source, (3.3.25)

λc := ctc = characteristic wavelength of the radition. (3.3.26)

The characteristic radius rc is defined such that the matter variables vanish outside
a sphere of radius rc; the matter distribution is confined within this sphere. The
characteristic time scale tc, we recall, is the time required for noticeable changes to
occur within the matter distribution. We assume that the characteristic velocity vc

is small compared with the speed of light:

vc ≪ c. (3.3.27)

This, of course, is the standard slow-motion approximation of post-Newtonian the-
ory. It follows from Eq. (3.3.27) that

rc ≪ λc; (3.3.28)

in the slow-motion approximation, the matter distribution is always situated deep
within the near zone.

Let us examine the various terms that make up hαβ , and let us estimate their
orders of magnitude in the wave zone, when r > λc. Based on these estimates, we
shall assign a post-Newtonian order to each term.

We begin with the first term on the right of Eq. (3.3.19). This is evidently of
order Gmc/(c2r), which is what was called Newtonian order at the end of Sec. 3.2.
We therefore assign a 0pn order to this term.

We continue with the second term on the right of Eq. (3.3.19). Recalling that
Iab is a function of τ = t − r/c, we find that after differentiation, the second term
is of the schematic form

G

c2

(
Ïab

c2r
+

İab

cr2
+

Iab

r3

)

,

where we ignore the angular dependence and all numerical factors. Noting that Iab

is of order mcr
2
c , this term is of order

G

c2

(
mcr

2
c

c2t2cr
+

mcr
2
c

ctcr2
+

mcr
2
c

r3

)

=
Gmc

c2r

r2
c

c2t2c

(

1 +
ctc
r

+
c2t2c
r2

)

.

In view of Eqs. (3.3.25) and (3.3.26), this is of order

(vc

c

)2
[

1 +
λc

r
+

(λc

r

)2
]

relative to Gmc/(c2r). The term within square brackets is of order unity in the
wave zone, and we conclude that the second term in Eq. (3.3.19) is smaller than
the first term by a factor of order (vc/c)2. To this term we therefore assign a 1pn
order.

Similar considerations reveal that the third term on the right of Eq. (3.3.19) is
smaller than the first by a factor of order (vc/c)3. To this term we therefore assign a
3
2pn order. The discarded terms in Eq. (3.3.19) are terms of 2pn order and higher.
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We next move on to the first term on the right of Eq. (3.3.20). The angular-
momentum tensor Jab is of order mcvcrc, and it follows that the first term is of
order

G

c3

mcvcrc

r2
=

Gmc

c2r

(vc

c

)2 λc

r
.

Relative to Gmc/(c2r) this is of order (vc/c)2(λc/r) < (vc/c)2, and to this term we
assign a 1pn order. The same conclusion applies to the second term of Eq. (3.3.20).
For the third term we note that both İabc and Jabc are of order mcr

3
c/tc, which

allows us to focus on only one of these contributions. After differentiation we find
that the second term has the schematic form

G

c3

(
J̈abc

c2r
+

J̇abc

cr2
+

Jabc

r3

)

,

which leads to an estimate of

G

c2

(
mcr

3
c

c3t3cr
+

mcr
3
c

c2t2cr
2

+
mcr

3
c

ctcr3

)

=
Gmc

c2r

(vc

c

)3
[

1 +
λc

r
+

(λc

r

)2
]

.

Because this is smaller than Gmc/(c2r) by a factor of order (vc/c)3, we assign a
3
2pn order to this term. The discarded terms in Eq. (3.3.20) are of 2pn order and
higher.

Finally, it is easy to see that the first term on the right of Eq. (3.3.21) is of order
(vc/c)2 relative to Gmc/(c2r), and is therefore of 1pn order. The second term is of
3
2pn order, and the discarded terms are of 2pn order and higher.

These conclusions are summarized in the following equations:

h00 =
4G

c2

[
I

r
︸︷︷︸

0pn

+
1

2
∂ab

(
Iab

r

)

︸ ︷︷ ︸

1pn

− 1

6
∂abc

(
Iabc

r

)

︸ ︷︷ ︸
3

2
pn

+ · · ·
]

, (3.3.29)

h0a =
4G

c2

[
1

2c
Jab Ωb

r2
︸ ︷︷ ︸

1pn

− 1

2c
∂b

(
İab

r

)

︸ ︷︷ ︸

1pn

+
1

6c
∂bc

(
İabc + Jabc + Jacb

r

)

︸ ︷︷ ︸
3

2
pn

+ · · ·
]

, (3.3.30)

hab =
4G

c2

[
1

2c2

Ïab

r
︸ ︷︷ ︸

1pn

− 1

6c2
∂c

(
Ïabc + 2J̇acb + 2J̇bca

r

)

︸ ︷︷ ︸
3

2
pn

+ · · ·
]

. (3.3.31)

This reveals that the gravitational potentials have been calculated consistently
through 3

2pn order. Comparison with Eqs. (3.2.11)–(3.2.13) shows that the count-
ing of post-Newtonian orders is different in the near and wave zones. For example,
in the near zone h0a begins at 1

2pn order, while in the wave zone it begins at 1pn
order.

Another difference concerns the post-Newtonian order of a time derivative rela-
tive to that of a spatial derivative. As we have seen in Sec. 2.2, in the near zone we
have

∂th
αβ

c|∇hαβ | = O
(vc

c

)

(near zone),

so that a time-differentiated potential is assigned a post-Newtonian order that is
half a unit higher than the spatially-differentiated potential. In the wave zone, on
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the other hand,
∂th

αβ

c|∇hαβ | = O(1) (wave zone),

so that a time-differentiated potential is assigned the same post-Newtonian order
as the spatially-differentiated potential. There are, however, important exceptions
to this rule. For example, it is clear from Eq. (3.3.29) and the constancy of I that
c−1∂th

00 is of 1pn order while ∂ah00 is of 0pn order. Similarly, the constancy of Jab

implies that c−1∂th
0a is of 2pn order while ∂bh

0a is of 1pn order. These exceptions
are consequences of the harmonic gauge conditions,

c−1∂th
00 + ∂ah0a = 0, c−1∂th

0a + ∂bh
ab = 0,

which indeed imply that c−1∂th
00, for example, must be of the same post-Newtonian

order as ∂ah0a everywhere in spacetime, and not just in the near zone.



Chapter 4

Second post-Minkowskian

approximation

4.1 Field equations 39

4.2 Near-zone expressions 44

4.3 Conservation identities and equations of motion 53
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In this chapter we continue the iterative program initiated in Chapter 3 and
construct the second post-Minkowskian approximation to the gravitational poten-
tials. These will be accurate to second order in the gravitational constant G, and
they will apply specifically to a system of N bodies moving under their mutual
gravitational attraction. The chapter is structured much as the preceding one. We
begin in Sec. 4.1 with a statement of the field equations and a presentation of their
integral solutions. In Sec. 4.2 we construct expressions for the potentials that are
valid in the near zone, and in Sec. 4.4 we do the same for the wave zone. In each case
the potentials are presented in the form of a post-Newtonian expansion in powers
of c−2. In Sec. 4.3 we make a brief excursion off the main path and indicate how
the (Newtonian) equations of motion for the N bodies can be obtained from the
conservation identities satisfied by the source terms. A more complete derivation
of the post-Newtonian equations of motions is postponed until Chapter 5.

4.1 Field equations

4.1.1 Wave equation

As was shown in Sec. 1.3, the Einstein field equations are written in the form of the
wave equation

¤hαβ = −16πG

c4
ταβ (4.1.1)

for the potentials hαβ , where

ταβ := (−g)
(
Tαβ + tαβ

LL + tαβ
H

)
(4.1.2)

is an effective energy-momentum pseudotensor. Here, Tαβ is the energy-momentum
tensor of the matter distribution, tαβ

LL is the Landau-Lifshitz pseudotensor of Eq. (1.1.5),

and tαβ
H is an additional contribution to ταβ , defined by Eq. (1.3.6), and associated

with the harmonic-gauge conditions ∂βhαβ = 0.
Equation (4.1.1) is exact, but in this chapter the right-hand side of Eq. (4.1.2)

will be approximated to first order in G. This will make the right-hand side of

39
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Eq. (4.1.1) accurate to second order in G, which is the required degree of accuracy
in the second post-Minkowskian approximation.

4.1.2 Material energy-momentum tensor

In Chapter 3 the nature of the matter distribution was not specified, and Tαβ was
left arbitrary. In this chapter we assume specifically that the matter distribution
is a collection of N point particles of masses mA at positions zA(t); the index
A = 1, 2, · · · , N labels each particle. The energy-momentum tensor for such a
matter distribution was constructed in Sec. 1.7. According to Eq. (1.7.3), it is given
by

(−g)Tαβ(t,x) =
∑

A

mAvα
Avβ

A

√−g
√

−gµνvµ
Avν

A/c2
δ
(
x − zA

)
, (4.1.3)

where
vα

A =
(
c,vA

)
(4.1.4)

is the velocity four-vector of each particle, with zeroth component c and spatial
components vA = dzA/dt.

We assume that the particles move slowly, so that

vA ≪ c, (4.1.5)

with vA :=
√

vA · vA denoting the length of the spatial vector vA. We assume also
that the system of particles is gravitationally bound, which implies (as a consequence
of the Newtonian virial theorem) that v2

A is of the same order of magnitude as
GmA/|zA − zB |. This approximate equality,

v2
A ∼ GmA

|zA − zB | , (4.1.6)

implies that an expansion in powers of (vA/c)2 is intimately linked to an expansion
in powers of G. To be consistent in this context of gravitationally-bound systems,
a post-Newtonian expansion must keep the order of accuracy in G in step with the
order of accuracy in c−2.

The energy-momentum tensor of Eq. (4.1.3) is a functional of the metric gαβ ,
which must be calculated to first-order in G. This calculation was carried out in
Chapter 3, and from Sec. 1.6 (as well as Sec. 3.1) we recall the relations

gαβ = ηαβ + hαβ − 1

2
hηαβ + O(G2) (4.1.7)

and √−g = 1 − 1

2
h + O(G2), (4.1.8)

where it is understood that indices on hαβ are lowered with the Minkowski metric
ηαβ ; thus, hαβ := ηαµηβνhµν and h := ηµνhµν .

To evaluate the potentials we rely on the observation made in Sec. 3.3.3, that in
a slow-motion approximation the matter distribution is always situated deep within
the near zone. This means that we can rely on the near-zone expressions obtained
in Sec. 3.2. Recalling Eqs. (3.2.11)–(3.2.13), we have

h00 =
4

c2
U + O(c−4), h0a = O(c−3), hab = O(c−4), (4.1.9)

where the Newtonian potential U is determined by Poisson’s equation ∇2U =
−4πGρ, in which ρ := T 00/c2 is the mass density calculated from Eq. (4.1.3) while
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neglecting all correction terms of order c−2 and G. Indeed, corrections of fractional
order c−2 have already been discarded in h00, and a correction of order G in ρ
would produce a term of order G2 in U that must be neglected. In other words,
ρ =

∑

B mBδ(x − zB), and the solution to Poisson’s equation is

U(t,x) =
∑

B

GmB

|x − zB | . (4.1.10)

This is indeed the Newtonian potential for a system of point masses at positions
zB(t).

Combining Eqs. (4.1.4), (4.1.7), and (4.1.9) produces

−gµνvµ
Avν

A/c2 = 1 − v2
A/c2 − 2U/c2 + O(c−4),

and we see that this expression was calculated consistently through order c−2; ac-
cording to Eq. (4.1.6), the terms v2

A/c2 and 2U/c2 are of the same order of magni-
tude. We also have √−g = 1 + 2U/c2 + O(c−4),

and inserting these relations into Eq. (4.1.3) gives

(−g)Tαβ(t,x) =
∑

A

mAvα
Avβ

A

[

1 +
v2

A

2c2
+

3⌊U⌋A

c2
+ O(c−4)

]

δ
(
x − zA

)
, (4.1.11)

in which ⌊U⌋A is formally equal to U(t,zA), the Newtonian potential evaluated
at the position of particle A — the potential must be evaluated there because it
multiplies δ(x − zA).

Equation (4.1.11) is an explicit expression for the energy-momentum tensor, but
it is formally ill-defined because the Newtonian potential is infinite at x = zA. As
it stands, the energy-momentum tensor cannot be defined as a proper distribution,
and there exist no solutions to the wave equation of Eq. (4.1.1). (It is a bad
idea to incorporate infinite densities within a nonlinear field theory.) Following
Blanchet and his collaborators, we shall step around this problem by postulating
a prescription to regularize the expression of Eq. (4.1.11). We shall assert, simply,
that the quantity δ(x−z)/|x−z|, which is too singular to be a proper distribution,
is to be set equal to zero. Thus,

regularization prescription:
δ(x − z)

|x − z| ≡ 0. (4.1.12)

This prescription, known as taking Hadamard’s partie finie, can be loosely inter-
preted as a renormalization of each mass parameter mA by the infinite self-energy
of the particle: mA(1 + 3U self/c2) → mA. In the case of extended bodies, the
gravitational self-energy would indeed contribute to the total mass-energy of each
body.

The prescription of Eq. (4.1.12) allows us to formally define ⌊U⌋A as

⌊U⌋A :=
∑

B 6=A

GmB

|zA − zB | . (4.1.13)

The sum now excludes body A, and the result can safely be substituted into
Eq. (4.1.11).

4.1.3 Landau-Lifshitz pseudotensor

We next compute (−g)tαβ
LL, the Landau-Lifshitz pseudotensor of Eq. (1.1.5), to first

order in G. This is a fairly labourious calculation, but an important source of
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simplification comes from the fact that we need expressions that are accurate only
up to some power of c−1. A source of caution, on the other hand, is that we need
expressions that sufficiently accurate both in the near zone and in the wave zone.

To begin, we recall the scalings that are implied by Eq. (3.1.8),

h00 = O(c−2), h0a = O(c−3), hab = O(c−4); (4.1.14)

it is understood that each potential carries also a factor of G. It follows that the
spatial derivatives of the potentials scale as

∂ch
00 = O(c−2), ∂ch

0a = O(c−3), ∂ch
ab = O(c−4). (4.1.15)

The temporal derivatives, on the other hand, scale as

∂0h
00 = O(c−3), ∂0h

0a = O(c−4), ∂0h
ab = O(c−4), (4.1.16)

because the gauge conditions imply that ∂0h
00 must be of the same order as ∂ah0a,

and ∂0h
0a must be of the same order as ∂bh

ab. In the near zone the temporal
derivative of hab would come with an additional factor of c−1, and would therefore
scale as O(c−5), but this does not happen in the wave zone.

Substituting the potentials hαβ into Eq. (1.1.5) and keeping careful track of the
orders in c−1 eventually returns

16πG

c4
(−g)t00LL = −7

8
∂ch

00∂ch00 + O(c−6), (4.1.17)

16πG

c4
(−g)t0a

LL =
3

4
∂ah00∂0h

00 +
(
∂ah0c − ∂ch0a

)
∂ch

00 + O(c−7), (4.1.18)

16πG

c4
(−g)tab

LL =
1

4
∂ah00∂bh00 − 1

8
δab∂ch

00∂ch00 + O(c−6). (4.1.19)

These results are sufficiently accurate for our immediate purposes. At a later stage,
however, we shall need additional accuracy in our expression for (−g)tab

LL, and we
record this improved expression here:

16πG

c4
(−g)tab

LL =
1

4

(
1 − 2h00

)
∂ah00∂bh00 − 1

8
δab

(
1 − 2h00

)
∂ch

00∂ch00

− ∂ah0c∂bh0
c + ∂ah0c∂ch

0b + ∂bh0c∂ch
0a − ∂ch

0a∂ch0b

+ ∂ah00∂0h
0b + ∂bh00∂0h

0a +
1

4
∂ah00∂bhc

c +
1

4
∂bh00∂ahc

c

+ δab

[

−3

8

(
∂0h

00
)2 − ∂ch

00∂0h
0c − 1

4
∂ch

00∂chd
d

+
1

2
∂ch

0
d

(
∂ch0d − ∂dh0c

)
]

+ O(c−8). (4.1.20)

It should be noted that this incorporates corrections of fractional order c−2 relative
to the leading-order expression of Eq. (4.1.19), and that to be consistent, we have
terms (such as h00∂ah00∂bh00) which contain an additional power of the gravita-
tional constant G.

4.1.4 Harmonic-gauge pseudotensor

We next compute (−g)tαβ
H , the “harmonic-gauge” pseudotensor of Eq. (1.3.6), to

first order in G. Here the computations are quite simple, and the scalings of
Eqs. (4.1.14)–(4.1.16) imply

16πG

c4
(−g)t00H = O(c−6), (4.1.21)
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16πG

c4
(−g)t0a

H = O(c−7), (4.1.22)

16πG

c4
(−g)tab

H = O(c−6). (4.1.23)

For later reference we record the improved expression

16πG

c4
(−g)tab

H = −h00∂00h
ab + O(c−8) (4.1.24)

for the spatial components of the pseudotensor.

4.1.5 Explicit form of the wave equations

We may now substitute Eqs. (4.1.11), (4.1.17)–(4.1.19), and (4.1.21)–(4.1.23) into
Eq. (4.1.2), and insert this into the right-hand side of Eq. (4.1.1). Before we do
this, however, we recall that the h00 that appears within the Landau-Lifshitz pseu-
dotensor is the one that was determined during the first iteration of the Einstein
field equations. Returning to the notation of Sec. 3.1, we write this as h00 = 4Φ/c2,
and we note that Φ satisfies the wave equation

¤Φ = −4πG
∑

A

mAδ
(
x − zA

)
; (4.1.25)

to get this we have inserted our previous expression for ρ [see the text preceding
Eq. (4.1.10)] into Eq. (3.1.10). The wave equations for the second post-Minkowskian
potentials are then

¤h00 = −16πG

c2

∑

A

mA

(

1 +
v2

A

2c2
+

3⌊U⌋A

c2

)

δ
(
x − zA

)
+

14

c4
∂cΦ∂cΦ

+ O(c−6), (4.1.26)

¤h0a = −16πG

c3

∑

A

mAva
Aδ

(
x − zA

)
+ O(c−5), (4.1.27)

¤hab = −16πG

c4

∑

A

mAva
Avb

Aδ
(
x − zA

)
− 4

c4

(

∂aΦ∂bΦ − 1

2
δab∂cΦ∂cΦ

)

+ O(c−6). (4.1.28)

We recall that ⌊U⌋A is given by Eq. (4.1.13).
The structure of each wave equation simplifies if we introduce new potentials V ,

V a, and W ab, defined by

h00 =
4

c2
V − 4

c4
W +

8

c4
Φ2, (4.1.29)

h0a =
4

c3
V a, (4.1.30)

hab =
4

c4
W ab, (4.1.31)

where W := δabW
ab is the trace of the tensor potential. The wave equation satisfied

by V a follows immediately from Eq. (4.1.27), and the wave equation satisfied by W ab

follows from Eq. (4.1.28); from this we deduce that ¤W = −4πG
∑

A mAv2
Aδ(x −

zA) + 1
2∂cΦ∂cΦ + O(c−2). The equation for V follows from Eq. (4.1.26) and our

result for ¤W , but we need also an expression for ¤Φ2.
We apply the wave operator on Φ2 and find that

¤Φ2 = 2Φ¤Φ + 2∂cΦ∂cΦ − 2
(
∂0Φ

)2
.
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We next involve Eq. (4.1.25) and write

2Φ¤Φ = −4πG
∑

A

mA

(
2Φ

)
δ
(
x − zA

)

for the first term, which we copy as

2Φ¤Φ = −4πG
∑

A

mA

[
2⌊U⌋A + O(c−2)

]
δ
(
x − zA

)
,

because Φ is evaluated in the near zone, at x = zA. We further notice that thanks
to Eq. (4.1.16), (∂0Φ)2 is of order c−2, and we arrive at

¤Φ2 = −4πG
∑

A

mA

(
2⌊U⌋A

)
δ
(
x − zA

)
+ 2∂cΦ∂cΦ + O(c−2). (4.1.32)

With this we find that the wave equations for V , V a, and W ab are

¤V = −4πG
∑

A

mA

(

1 +
3

2

v2
A

c2
− ⌊U⌋A

c2

)

δ
(
x − zA

)
+ O(c−4), (4.1.33)

¤V a = −4πG
∑

A

mAva
Aδ

(
x − zA

)
+ O(c−2), (4.1.34)

¤W ab = −4πG
∑

A

mAva
Avb

Aδ
(
x − zA

)
−

(

∂aΦ∂bΦ − 1

2
δab∂cΦ∂cΦ

)

+ O(c−2). (4.1.35)

We recall that ⌊U⌋A is defined by Eq. (4.1.13), and that Φ is determined by
Eq. (4.1.25).

The reason for expressing h00 in the form of Eq. (4.1.29) is now clear: By
inserting the terms involving W and Φ2 we were able to make the wave equation
for V entirely independent of the field variable Φ. The equation for V a also is
independent of Φ, and the only place in which Φ appears is within the wave equation
for W ab.

Equation (4.1.33) allows us to calculate V through order c−2, while Eqs. (4.1.25),
(4.1.34), and (4.1.35) allow us to calculate Φ, V a, and W ab through order c0. Insert-
ing the results into Eqs. (4.1.29)–(4.1.31) produces gravitational potentials with an
order structure given schematically by h00 = c−2 + c−4, h0a = c−3, and hab = c−4.

4.2 Near-zone expressions

4.2.1 Computation of V

The wave equation for V has a source term that is confined to the near zone, and
recalling the discussion of Sec. 2.3, we observe that as a consequence, VW = 0 and
V = VN . The near-zone scalar potential is computed with the help of Eq. (2.4.7),
and we quickly obtain

V = U +
1

c2
ψ +

1

2c2

∂2X

∂t2
+ O(c−3), (4.2.1)

where

U(t,x) =
∑

A

GmA

|x − zA|
(4.2.2)

is the Newtonian potential of Eq. (4.1.10),

ψ(t,x) =
∑

A

GmA

(
3
2v2

A − ⌊U⌋A

)

|x − zA|
(4.2.3)
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is a post-Newtonian correction to the Newtonian potential, and

X(t,x) =
∑

A

GmA|x − zA| (4.2.4)

is the superpotential.

We notice that there is no term of order c−1 in Eq. (4.2.1). A contribution at
this order would originate from the q = 1 term in Eq. (2.4.7), and it would be equal
to

−G

c

d

dt

∑

A

mA

(

1 +
3

2

v2
A

c2
− ⌊U⌋A

c2

)

.

Because
∑

A mA is a constant, this is actually of order c−3, and is part of the
discarded terms in Eq. (4.2.1).

4.2.2 Computation of V a

The wave equation for V a has a source term that is also confined to the near zone,
and once more we find that V a

W
= 0 and V a = V a

N
. The near-zone vector potential

also is computed with the help of Eq. (2.4.7), and here we obtain

V a =
∑

A

GmAva
A

|x − zA|
− 1

c

d

dt

∑

A

GmAva
A + O(c−2).

The second term can be expressed as −(G/c)dP a/dt, in terms of the vector P =
∑

A mAvA, which is the total (Newtonian) momentum of the N -body system. An-
ticipating that at leading order the motion of the system is governed by the New-
tonian equations of motion (a fact that will be established properly in Sec. 4.3), we
declare that the Newtonian momentum is conserved at 0pn order: dP /dt = O(c−2).
It follows that the second term in V a is actually of order c−3 and part of the dis-
carded terms.

We write our final expression as

V a = Ua + O(c−2), (4.2.5)

where

Ua(t,x) =
∑

A

GmAva
A

|x − zA|
(4.2.6)

is the same instantaneous potential that was first introduced in Eq. (3.2.6).

4.2.3 Computation of W ab: Organization

The computation of the tensor potential is much more involved, because its wave
equation possesses a source term that contains a field contribution in addition to a
material contribution. To distinguish these we shall write

W ab = W ab[M] + W ab[F], (4.2.7)

with W ab[M] denoting the part of the tensor potential that comes entirely from the
material source, while W ab[F] comes from the field source. The wave equation for
W ab[F] is simplified if we define an auxiliary potential χab by

W ab[F] =: χab − 1

2
δabχ, (4.2.8)
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where χ := δabχ
ab. With these definitions, Eq. (4.1.35) becomes the set of equations

¤W ab[M] = −4πG
∑

A

mAva
Avb

Aδ
(
x − zA

)
+ O(c−2), (4.2.9)

¤χab = −∂aΦ∂bΦ + O(c−2). (4.2.10)

Because the source term of Eq. (4.2.9) is contained within the near zone, we have
that W ab

W
[M] = 0 and W ab[M] = W ab

N
[M]. The source term of Eq. (4.2.10), on the

other hand, is distributed over all space, and

χab = χab
N + χab

W . (4.2.11)

In the following subsections we will endeavour to compute each one of the quantities
introduced here, so as to finally build up a complete expression for W ab.

4.2.4 Computation of W ab: W ab[M]

This is the easiest piece. Following the same steps as in Secs. 4.2.1 and 4.2.2, we
arrive at

W ab[M] =
∑

A

GmAva
Avb

A

|x − zA|
+ O(c−1). (4.2.12)

4.2.5 Computation of W ab: χ

The computation of χab is much more involved, and to get us started we first
examine its trace χ, which is in fact easy to calculate. From Eq. (4.2.10) we have
¤χ = −∂cΦ∂cΦ + O(c−2). Using Eq. (4.1.32), we write this as

¤

(

χ +
1

2
Φ2

)

= −4πG
∑

A

mA

(
⌊U⌋A

)
δ
(
x − zA

)
+ O(c−2). (4.2.13)

Because this source term comes entirely from the matter distribution, we follow the
familiar steps and obtain

χ = −1

2
U2 +

∑

A

GmA⌊U⌋A

|x − zA|
+ O(c−1). (4.2.14)

Here we used the fact that Φ = U + O(c−2) in the near zone, and the Newtonian
potential U is given by Eq. (4.1.10).

4.2.6 Computation of W ab: χab
N

Now for a more challenging computation. In this subsection we calculate χab
N

,
the near-zone contribution to the retarded integral associated with Eq. (4.2.10),
assuming that the field-point x = (ct,x) is within the near zone. The techniques
to carry out such a computation were described in Sec. 2.4.2, and according to
Eq. (2.4.7) we have

χab
N (t,x) =

1

4π

∫

M

∂a′

U∂b′U

|x − x′| d3x′ + O(c−1). (4.2.15)

Here we have once more substituted U in place of Φ, and inside the integral the
Newtonian potential is viewed as a function of t and x′; the symbol ∂a′

indicates
differentiation with respect to x′a, and the domain of integration M is a surface of
constant time bounded externally by the sphere r′ := |x′| = R.
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Our starting point is Eq. (4.1.10) for the Newtonian potential, from which we
obtain

∂a′

U = −
∑

A

GmA
(x′ − zA)a

|x′ − zA|3

and then

∂a′

U∂b′U =
∑

A

G2m2
A

(x′ − zA)a(x′ − zA)b

|x′ − zA|6

+
∑

A

∑

B 6=A

G2mAmB
(x′ − zA)a(x′ − zB)b

|x′ − zA|3|x′ − zB |3 , (4.2.16)

in which we distinguish “self terms” from “interaction terms”.
Following Blanchet, Faye, and Ponsot, we re-express Eq. (4.2.16) in terms of

quantities differentiated with respect to zA and zB . The derivative operators are
taken outside the integral of Eq. (4.2.15), and χab

N
is written in terms of these oper-

ators acting on a generating function K(x;zA,zB). This function can be evaluated,
and it is straightforward to take the derivatives. The end result is the relatively
simple expression for χab

N
displayed in Eq. (4.2.23) below.

To proceed we note the identities

∂

∂za
A

1

|x′ − zA|
=

(x′ − zA)a

|x′ − zA|3

and

∂2

∂za
A∂zb

A

1

|x′ − zA|
=

3(x′ − zA)a(x′ − zA)b

|x′ − zA|5
− δab

|x′ − zA|3
− 4π

3
δabδ

(
x′ − zA

)
;

in the last one it is necessary to insert a distributional term proportional to δab, to
ensure that the Laplacian of |x′−zA|−1 with respect to the variables zA is properly
equal to −4πδ(x′−zA). More work along these lines produces an additional identity,

∂2

∂za
A∂zb

A

1

|x′ − zA|2
=

8(x′ − zA)a(x′ − zA)b

|x′ − zA|6
− 2δab

|x′ − zA|4

− 8π

3

δab

|x′ − zA|
δ
(
x′ − zA

)
.

The last term is not defined as a distribution, and the identity must be regularized.
Following consistently the general prescription of Eq. (4.1.12), we simply drop the
last term, and write our last identity as

(x′ − zA)a(x′ − zA)b

|x′ − zA|6
=

1

8

(
∂2

∂za
A∂zb

A

+ δab∇2
A

)
1

|x′ − zA|2
, (4.2.17)

where ∇2
A is the Laplacian operator with respect to the variables zA. The last

identity we shall need follows directly from the first, and it is

(x′ − zA)a(x′ − zB)b

|x′ − zA|3|x′ − zB |3 =
∂2

∂za
A∂zb

B

1

|x′ − zA||x′ − zB | ; (4.2.18)

this requires no regularization, and is valid when zA 6= zB .
We substitute Eqs. (4.2.17) and (4.2.18) into Eq. (4.2.16), and insert the result

inside the integral of Eq. (4.2.15). This produces

χab
N =

1

8

∑

A

G2m2
A

(
∂2

∂za
A∂zb

A

+ δab∇2
A

)

K(x;zA,zA)

+
∑

A

∑

B 6=A

G2mAmB
∂2

∂za
A∂zb

B

K(x;zA,zB) + O(c−1), (4.2.19)
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where

K(x;zA,zB) =
1

4π

∫

M

d3x′

|x − x′||x′ − zA||x′ − zB | (4.2.20)

is the generating function that was mentioned previously.

The generating function will be evaluated in Sec. 4.2.7. The result is

K(x;zA,zB) = 1 − ln
S

2R , (4.2.21)

where

S(x;zA,zB) := |x − zA| + |x − zB | + |zA − zB |. (4.2.22)

The dependence of K on R comes from the fact that the domain of integration
M is truncated at r′ = R. This dependence plays no role, however, because K is
differentiated as soon as it is substituted into Eq. (4.2.19).

It is now straightforward to compute derivatives of K(x;zA,zB) with respect
to zA and zB . We find, for example,

∂2

∂za
A∂zb

A

K(x;zA,zA) =
2(x − zA)a(x − zA)b

|x − zA|4
− δab

|x − zA|2

and

∂2

∂za
A∂zb

B

K(x;zA,zB) =
1

S2

[
(x − zA)a

|x − zA|
− (zA − zB)a

|zA − zB |

][
(x − zB)b

|x − zB | +
(zA − zB)b

|zA − zB |

]

− 1

S

[
(zA − zB)a(zA − zB)b

|zA − zB |3 − δab

|zA − zB |

]

,

and these results are to be inserted within Eq. (4.2.19).

Our final result is

χab
N =

1

4

∑

A

G2m2
A

|x − zA|2
(
na

Anb
A − δab

)

+
∑

A

∑

B 6=A

G2mAmB

S2

(
na

A − na
AB

)(
nb

B + nb
AB

)

−
∑

A

∑

B 6=A

G2mAmB

S|zA − zB |
(
na

ABnb
AB − δab

)
+ O(c−1), (4.2.23)

where we have introduced the unit vectors

nA :=
x − zA

|x − zA|
, nB :=

x − zB

|x − zB | , nAB :=
zA − zB

|zA − zB | , (4.2.24)

and where S(x;zA,zB) is defined by Eq. (4.2.22).

It is a straightforward exercise to verify that the trace of Eq. (4.2.23) is

χN = −1

2

∑

A

G2m2
A

|x − zA|2
+

1

2

∑

A

∑

B 6=A

G2mAmB

×
(

1

|x − zA||zA − zB | +
1

|x − zB ||zA − zB | −
1

|x − zA||x − zB |

)

+ O(c−1), (4.2.25)
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and that this is the same statement as in Eq. (4.2.14). This calculation is aided by
the identities

nA · nB =
r2
A + r2

B − z2
AB

2rArB
,

nA · nAB =
r2
B − r2

A − z2
AB

2rAzAB
,

nB · nAB =
r2
B − r2

A + z2
AB

2rBzAB
,

where rA := |x − zA|, rB := |x − zB |, and zAB := |zA − zB |.

4.2.7 Computation of W ab: K(x; zA,zB)

To calculate the generating function we note first that Eq. (4.2.20) is a solution to

∇2K(x;zA,zB) = − 1

|x − zA||x − zB | . (4.2.26)

Strictly speaking, the source term should be multiplied by Θ(R− r) to truncate it
at the boundary of the near zone, because the domain of integration in Eq. (4.2.20)
does not extend beyond this boundary. The step function is not necessary, however,
because we require the solution to Eq. (4.2.26) only within the near zone; how the
solution extends beyond r = R is of no concern here.

We will show below that

Kp = − lnS,

where S(x;zA,zB) is defined by Eq. (4.2.22), is a particular solution to Eq. (4.2.26).
To this we must add a suitable solution Kh to Laplace’s equation to obtain the
desired solution K = Kp + Kh. The solution to the homogeneous equation must
be regular in all three variables x, zA, and zB , because the singularity structure
required by Eq. (4.2.26) is already contained in Kp. Furthermore, Kh must be
dimensionless, and the only possibility is to make it equal to a constant. We are
therefore looking for a solution of the form

K = K0 − ln
(
|x − zA| + |x − zB | + |zA − zB |

)
,

where K0 is a dimensionless constant. To determine this we shall carry out an
independent computation of the special value K(x;0,0), and compare our result to
K0 − ln(2r), which follows from the general expression. From Eq. (4.2.20) we have

K(x;0,0) =
1

4π

∫

M

d3x′

|x − x′||x′|2 =
1

4π

∫ R

0

dr′dΩ′

|x − x′| .

Invoking the addition theorem for spherical harmonics, this is simply

∫ R

0

dr′

r>
,

where r> is the greater of r and r′. The integral evaluates to

K(x;0,0) = 1 + ln
R
r

, (4.2.27)

and we conclude that K0 = 1 + ln(2R). All together, this gives us the result
displayed in Eq. (4.2.21).
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We now wish to verify that Kp = − lnS is a solution to Eq. (4.2.26), which we
write in the form

∇2K = − 1

rArB
,

where rA and rB were introduced previously. In this notation, S = rA + rB + zAB .
We first check that

∇2Kp = − 1

S2

(
S∇2S − ∂cS∂cS

)
,

and we compute the various derivatives of S. We have, for example, ∂aS = na
A+na

B ,
from which it follows that

∂abS = −na
Anb

A − δab

rA
− na

Bnb
B − δab

rB
.

From this, and the helpful identities that were listed at the end of Sec. 4.2.6, we
obtain

∇2S = 2
rA + rB

rArB
, ∂cS∂cS =

(rA + rB − zAB)S

rArB
.

Collecting results, we confirm that Kp is indeed a solution to ∇2K = −1/(rArB).

4.2.8 Computation of W ab: χab
W

In this subsection we estimate χab
W

, the wave-zone contribution to the retarded
integral associated with Eq. (4.2.10), assuming that the field-point x = (ct,x)
is within the near zone. The techniques to carry out such a computation were
described in Sec. 2.5.3, and crude estimates were obtained in Sec. 2.5.4. These
estimates ignore numerical factors and terms that depend explicitly on R, but they
are sufficient to allow us to conclude that

χab
W = O(c−4). (4.2.28)

The wave-zone contribution is therefore much smaller than χab
N

, which is of order
c0. Recalling that χab enters hab (via W ab[F]) with an additional factor of c−4,
we observe that the wave-zone contribution to hab is of order c−8. Relative to
h00 = O(c−2), this is a correction of order c−6, and we conclude that χab

W
contributes

a 3pn correction to the near-zone potentials. This post-Newtonian order is far
beyond the 1pn accuracy of our calculations in this section, and we shall therefore
ignore the wave-zone contribution to χab.

The wave-zone integral is

χab
W =

1

4π

∫

W

G(x, x′)∂a′

Φ∂b′Φ d4x′,

where Φ(x′) is the solution to Eq. (4.1.25) evaluated in the wave zone. A relevant
expression was obtained in Sec. 3.3.2, and Eq. (3.3.16) gives

Φ = G

[
I

r
+

1

2
∂ab

(
Iab

r

)

+ · · ·
]

,

where I =
∑

A mA is the total mass and Iab =
∑

A mAza
Azb

A is the quadrupole
moment, a function of retarded-time τ = t − r/c. (We drop the primes to simplify
the notation, and we have set the dipole moment Ia =

∑

A mAza
A to zero by placing

the origin of the coordinate system at the system’s barycentre.) We recall from
Sec. 3.3.3 that the monopole term is formally of 0pn order, that the quadrupole
term is formally of 1pn order, and that the discarded terms are of higher post-
Newtonian order.



4.2 Near-zone expressions 51

Ignoring all numerical and angle-dependent factors, the source term has a struc-
ture given schematically by

∂aΦ∂bΦ = G2

[
I2

r4
+

IIab

r6
+

Iİab

cr5
+

IÏab

c2r4
+

IIab(3)

c3r3
+ · · ·

]

.

Each term is of the form f(τ)/rn required for the integration techniques of Sec. 2.5.3.
For example, for n = 3 we have f = G2IIab(3)/c3, for n = 4 we have f =
G2(I2 + IÏab/c2), and so on. According to Eq. (2.5.19), an estimate of χab

W
for

each contributing n is c−(n−2)f (n−2) + rc−(n−1)f (n−1). (The factors of c appear
when the u-derivatives of Sec. 2.5.4 are converted into τ -derivatives; recall that
u = cτ .) The dominant term in a post-Newtonian expansion is c−(n−2)f (n−2), and
we find that for each n, χab

W
is estimated as

G2

c4
I
d4Iab

dτ4
.

This, as was claimed in Eq. (4.2.28), is of order c−4. This result implies that χab
W

is too small to contribute to our 1pn potentials, and for this reason we do not need
to calculate it in detail.

4.2.9 Computation of W ab: Final answer

Collecting the results of Sec. 4.2.3–4.2.8, we find that W ab is finally given by

W ab = P ab + O(c−1), (4.2.29)

where P ab = W ab[M] + χab − 1
2δabχ. Here W ab[M] is given by Eq. (4.2.12), and

χab = χab
N

+ O(c−4), with χab
N

and its trace displayed in Eqs. (4.2.23) and (4.2.25),
respectively. Explicitly,

P ab(t,x) =
∑

A

GmAva
Avb

A

|x − zA|
+

1

4

∑

A

G2m2
A

|x − zA|2
na

Anb
A

− 2
∑

A

∑

B>A

G2mAmB

S|zA − zB |n
a
ABnb

AB

+ 2
∑

A

∑

B>A

G2mAmB

S2

[
(
n

(a
A − n

(a
AB

)(
n

b)
B + n

b)
AB

)

− 1

2
δab(nA − nAB) · (nB + nAB)

]

. (4.2.30)

The unit vectors nA, nB , and nAB were introduced in Eq. (4.2.24). The trace of
P ab is given by P = W [M] − 1

2χ; with Eq. (4.2.25), this is

P (t,x) =
∑

A

GmAv2
A

|x − zA|
+

1

4

∑

A

G2m2
A

|x − zA|2
− 1

2

∑

A

∑

B>A

G2mAmB

×
(

1

|x − zA|
1

|zA − zB | +
1

|x − zB |
1

|zA − zB | −
1

|x − zA||x − zB |

)

.

(4.2.31)

For our final expressions we have chosen to symmetrize the double sums
∑

A

∑

A 6=B,
and to rewrite these as sums over pairs

∑

A

∑

B>A. Consider, for example, the term

∑

A

∑

B 6=A

G2mAmB

S2

(
na

A − na
AB

)(
nb

B + nb
AB

)
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in χab
N

. By interchanging the identities of A and B we may write this as

∑

A

∑

B 6=A

G2mAmB

S2

(
na

B − na
BA

)(
nb

A + nb
BA

)
,

where we note that S stays unchanged during this operation. Adding these results
together and dividing by 2 gives

∑

A

∑

B 6=A

G2mAmB

S2

(
n

(a
A − n

(a
AB

)(
n

b)
B + n

b)
AB

)
,

where we used the fact that nBA = −nAB . Each term in the sum is now symmetric
under the exchange A ↔ B. Each pair of bodies is counted twice in the sum, and
to eliminate this redundancy we write it in its final form as

2
∑

A

∑

B>A

G2mAmB

S2

(
n

(a
A − n

(a
AB

)(
n

b)
B + n

b)
AB

)
.

This is a sum over pairs, and since each pair is counted only once, there is a factor
of 2 to compensate.

4.2.10 Summary: Near-zone potentials

We may finally collect the results obtained in this section and construct the near-
zone expressions for the gravitational potentials. Combining Eqs. (4.1.29)–(4.1.31),
(4.2.1), (4.2.5), and (4.2.29), we have

h00 =
4

c2
U +

4

c4

(

ψ +
1

2

∂2X

∂t2
− P + 2U2

)

+ O(c−5), (4.2.32)

h0a =
4

c3
Ua + O(c−5), (4.2.33)

hab =
4

c4
P ab + O(c−5), (4.2.34)

where P = δabP
ab.

The Newtonian potential is given by Eq. (4.2.2),

U(t,x) =
∑

A

GmA

|x − zA|
, (4.2.35)

and the 1pn terms in h00 were displayed in Eqs. (4.2.3) and (4.2.4):

ψ(t,x) =
∑

A

GmA

(
3
2v2

A − ⌊U⌋A

)

|x − zA|
(4.2.36)

and
X(t,x) =

∑

A

GmA|x − zA|. (4.2.37)

We recall from Eq. (4.1.13) that

⌊U⌋A =
∑

B 6=A

GmB

|zA − zB | (4.2.38)

is the Newtonian potential evaluated at x = zA, excluding the infinite contribution
coming from body A. An alternative expression for ψ is

ψ(t,x) =
3

2

∑

A

GmAv2
A

|x − zA|
−

∑

A

∑

B>A

G2mAmB

|zA − zB |

(
1

|x − zA|
+

1

|x − zB |

)

. (4.2.39)
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The vector potential is given by Eq. (4.2.6),

Ua(t,x) =
∑

A

GmAva
A

|x − zA|
, (4.2.40)

and the tensor potential is displayed in Eq. (4.2.30):

P ab(t,x) =
∑

A

GmAva
Avb

A

|x − zA|
+

1

4

∑

A

G2m2
A

|x − zA|2
na

Anb
A

− 2
∑

A

∑

B>A

G2mAmB

S|zA − zB |n
a
ABnb

AB

+ 2
∑

A

∑

B>A

G2mAmB

S2

[
(
n

(a
A − n

(a
AB

)(
n

b)
B + n

b)
AB

)

− 1

2
δab(nA − nAB) · (nB + nAB)

]

, (4.2.41)

with the unit vectors of Eq. (4.2.24),

nA :=
x − zA

|x − zA|
, nB :=

x − zB

|x − zB | , nAB :=
zA − zB

|zA − zB | , (4.2.42)

and the distance function

S = |x − zA| + |x − zB | + |zA − zB | (4.2.43)

defined by Eq. (4.2.22).
Finally, the trace of the tensor potential is given by Eq. (4.2.31),

P (t,x) =
∑

A

GmAv2
A

|x − zA|
+

1

4

∑

A

G2m2
A

|x − zA|2

− 1

2

∑

A

∑

B>A

G2mAmB

|zA − zB |

(
1

|x − zA|
+

1

|x − zB |

)

+
1

2

∑

A

∑

B>A

G2mAmB

|x − zA||x − zB | . (4.2.44)

It may be noticed that ψ and P have a number of terms in common, and that it is
the combination ψ − P that enters h00.

4.3 Conservation identities and equations of

motion

It was pointed out in Sec. 1.3, and also in Sec. 1.6, that the gravitational potentials
hαβ will satisfy the harmonic gauge conditions (and will therefore satisfy the full
set of Einstein field equations) whenever the effective energy-momentum tensor ταβ

satisfies the conservation identities ∂βταβ = 0, or more explicitly,

∂0τ
00 + ∂aτ0a = 0, ∂0τ

0a + ∂bτ
ab = 0. (4.3.1)

Because ταβ depends on both matter and field variables, the conservation identities
give rise to equations of motion for the matter. In our specific context in which the
matter distribution is a system of N point masses, they give rise to equations of
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motion for each particle. We shall show in this section that with the effective energy-
momentum pseudo tensor of Sec. 4.1.5, we can derive the Newtonian equations of
motion

aA = −
∑

B 6=A

GmB(zA − zB)

|zA − zB |3 + O(c−2), (4.3.2)

where aA := dvA/dt = d2zA/dt2 is the acceleration vector of body A. In Chapter
5 we will use the results obtained in this chapter to obtain 1pn corrections to these
equations.

We begin with the second of Eqs. (4.3.1), which we write in the form

c−1∂tτ
0a + ∂bτ

ab = 0, (4.3.3)

and we recall from Sec. 4.1.5 that

c−1τ0a =
∑

A

mAva
Aδ

(
x − zA

)
+ O(c−2) (4.3.4)

and

τab =
∑

A

mAva
Avb

Aδ
(
x − zA

)
+

1

4πG

(

∂aΦ∂bΦ − 1

2
δab∂cΦ∂cΦ

)

+ O(c−2). (4.3.5)

Making the substitutions produces

0 =
∑

A

mAaa
Aδ

(
x − zA

)
+

∑

A

mAva
A

(
∂t + vb

A∂b

)
δ
(
x − zA

)
+

1

4πG
∂aΦ∇2Φ

+ O(c−2),

in which we may replace Φ by the Newtonian potential U . The second sum vanishes
by virtue of the distributional identity (∂t + vb

A∂b)δ(x − zA) = 0, and we obtain

0 =
∑

A

mA

(

aa
A − ⌊∂aU⌋A

)

δ
(
x − zA

)
+ O(c−2)

after involving Poisson’s equation ∇2U = −4πG
∑

A mAδ(x−zA). Here ⌊∂aU⌋A is
formally the derivative of the Newtonian potential evaluated at x = zA. We have

∂aU = −
∑

B

GmB

(
x − zB

)a

|x − zB |3 ,

and this evidently diverges at x = zA. As a plausible extension of our prescription
of Eq. (4.1.12), we regularize ∂aU simply by excluding body A from the sum over
B. This yields Eq. (4.3.2), the Newtonian equations of motion for a system of N
bodies subjected to their mutual gravitational attractions.

The method of derivation that leads to Eq. (4.3.2) is not entirely satisfactory, be-
cause it requires an additional regularization rule beyond the one already introduced
in Eq. (4.1.12). We shall do better in Chapter 5, and derive the 1pn equations of
motion without invoking additional (and ad-hoc) regularization prescriptions. The
considerations of this section are still useful, however, because they reveal in a direct
manner the connection between the conservation identities and the concrete form
of the equations of motion. They also close a loophole left open in Sec. 4.2.2, in
which the Newtonian equations of motion were assumed to hold.

One might ask whether it may not be possible to establish Eq. (4.3.2) more
cleanly by dealing instead with the gauge conditions ∂0h

0a +∂bh
ab = 0. The answer

is in the affirmative, but this approach would require lengthy computations, and we
choose not to pursue this here.
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It may be verified that the first of Eqs. (4.3.1) eventually produces the statement

0 = vA ·
[

aA +
∑

B 6=A

GmB(zA − zB)

|zA − zB |3
]

+ O(c−2),

which is already implied by Eq. (4.3.2). This is evidently a statement of the work-
energy theorem for our system of N bodies.

4.4 Wave-zone expressions

4.4.1 Computation of V

The wave equation for V was written down in Eq. (4.1.33), and we copy it as

¤V = −4πG
∑

A

m∗
Aδ

(
x − zA

)
+ O(c−4), (4.4.1)

in terms of the “augmented mass parameters”

m∗
A = mA

(

1 +
3

2

v2
A

c2
− ⌊U⌋A

c2

)

, (4.4.2)

which are in fact functions of time. Recall that ⌊U⌋A is the (regularized) Newtonian
potential evaluated at x = zA, as given by Eq. (4.1.13). Notice that the source term
is confined to the near zone, so that VW = 0 and V = VN .

Methods to integrate Eq. (4.4.1) in the wave zone were described in Sec. 2.4.1,
and according to Eq. (2.4.3) we have

V = G

[
I∗
r

− ∂a

(
Ia
∗

r

)

+
1

2
∂ab

(
Iab
∗

r

)

− 1

6
∂abc

(
Iabc
∗

r

)

+ · · ·
]

, (4.4.3)

where the “augmented multipole moments”

I∗ =
∑

A

m∗
A, (4.4.4)

Ia
∗ =

∑

A

m∗
Aza

A, (4.4.5)

Iab
∗ =

∑

A

m∗
Aza

Azb
A, (4.4.6)

Iabc
∗ =

∑

A

m∗
Aza

Azb
Azc

A (4.4.7)

are functions of retarded time τ := t−r/c. Recalling the discussion of Sec. 3.3.3, we
observe that the monopole term involving I∗ gives a contribution at 0pn order to
V , but that since I∗ includes a 1pn correction to the “bare mass parameters” mA,
this term contributes also at 1pn order. Similarly, the quadrupole term involving
Iab
∗ gives a contribution at 1pn order together with a correction at 2pn order. And

the octupole term involving Iabc
∗ gives a contribution at 3

2pn order together with a
correction at 5

2pn order. For an expression accurate to 3
2pn order, we can ignore

the O(c−2) corrections within Iab
∗ and Iabc

∗ .
The dipole term involving Ia

∗ requires a separate discussion. This, potentially,
would contribute a leading term at 1

2pn order and a correction at 3
2pn order. We

should expect, however, that conservation identities will eliminate the leading-order
contribution. As we shall see presently, this expectation is indeed correct.
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Let us examine the multipole moments more closely. We first define

M :=
∑

A

(

1 +
1

2

v2
A

c2
− 1

2

⌊U⌋A

c2

)

+ O(c−4) (4.4.8)

as the total post-Newtonian gravitational mass of the N -body system. It is easy
to verify that M is conserved by virtue of the Newtonian equations of motion,
Eq. (4.3.2). And indeed, Mc2 is easily recognized as the total energy of the system,
including rest-mass energy, kinetic energy, and gravitational potential energy. Next
we define

Z :=
1

M

∑

A

mAzA

(

1 +
1

2

v2
A

c2
− 1

2

⌊U⌋A

c2

)

+ O(c−4) (4.4.9)

as the position vector of the post-Newtonian barycentre (also known as centre of
mass). We shall verify in Chapter 5 that Z is conserved by virtue of the 1pn
equations of motion for the N -body system. Placing the origin of the coordinate
system at the barycentre, we can set Z = 0. Next we reintroduce

Iab(τ) :=
∑

A

mAza
Azb

A + O(c−2) (4.4.10)

and
Iabc(τ) :=

∑

A

mAza
Azb

Azc
A + O(c−2) (4.4.11)

as the Newtonian quadrupole and multipole moments, respectively. And finally, we
reintroduce the Newtonian angular-momentum tensor

Jab :=
∑

A

mA

(
va

Azb
A − za

Avb
A

)
+ O(c−2) (4.4.12)

and its first moment

Jabc(τ) :=
∑

A

mA

(
va

Azb
A − za

Avb
A

)
zc
A + O(c−2); (4.4.13)

these were first encountered in Sec. 3.3.1. As was indicated in the definitions, M , Z,
and Jab are conserved quantities, while Iab, Iabc, and Jabc are functions of retarded
time.

The augmented moments I∗ and Ia
∗ can be expressed in terms of these funda-

mental quantities. To begin, we find from Eqs. (4.4.2)–(4.4.4) and (4.4.8) that

I∗ = M +
1

c2

∑

A

mA

(

v2
A − 1

2
⌊U⌋A

)

+ O(c−4).

The second term, however, can easily be related to the second time derivative of
the Newtonian quadrupole moment. From Eq. (4.4.10) we have

Ïab =
∑

A

mA

(
2va

Avb
A + za

Aab
A + aa

Azb
A

)
+ O(c−2),

which leads to
Ïcc = 2

∑

A

mA

(
v2

A + aA · zA

)
+ O(c−2)

for its trace (summation over c is implied). Involving now the Newtonian equations
of motion, Eq. (4.3.2), we find that

∑

A

mAaA · zA = −
∑

A

∑

B 6=A

GmAmB

|zA − zB |3 (zA − zB) · zA + O(c−2).
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After symmetrization of the double sum (see Sec. 4.2.9), this becomes

∑

A

mAaA · zA = −1

2

∑

A

∑

B 6=A

GmAmB

|zA − zB | + O(c−2) = −1

2

∑

A

mA⌊U⌋A + O(c−2).

Collecting results, we have obtained

I∗ = M +
1

2c2
Ïcc + O(c−2), (4.4.14)

in which Icc := δbcI
bc is the trace of the Newtonian quadrupole moment. Following

similar steps we also find that

Ia
∗ = MZa +

1

6c2

(
Ïacc + 4J̇cac

)
+ O(c−4), (4.4.15)

in which Iacc := δbcI
abc and Jcac := δbcJ

bac.
Making these substitutions into our previous expression for V , we finally obtain

V = G

[
M

r
︸︷︷︸

0pn+1pn

+
1

2c2

Ïcc

r
︸ ︷︷ ︸

1pn

+
1

2
∂ab

(
Iab

r

)

︸ ︷︷ ︸

1pn

− 1

6
∂abc

(
Iabc

r

)

︸ ︷︷ ︸
3

2
pn

− 1

6c2
∂a

(
Ïacc + 4J̇cac

r

)

︸ ︷︷ ︸
3

2
pn

− ∂a

(
MZa

r

)

︸ ︷︷ ︸

=0

+ · · ·
]

, (4.4.16)

in which we indicate the post-Newtonian order of each term, and the fact that Z can
be set equal to zero by placing the origin of the coordinate system at the system’s
barycentre.

4.4.2 Computation of V a

The wave equation for V a was written down in Eq. (4.1.34),

¤V a = −4πG
∑

A

mAva
Aδ

(
x − zA

)
+ O(c−2), (4.4.17)

and we notice that this is the same as Eq. (3.1.11) if we replace Aa by V a and set
ja =

∑

A mAva
Aδ(x − zA). The wave-zone solution to Eq. (3.1.11) was displayed

in Eq. (3.3.17), and expressed in terms of the same multipole moments that were
introduced in Eqs. (4.4.10)–(4.4.13). We copy this expression here,

V a = G

[
1

2
Jab Ωb

r2
︸ ︷︷ ︸

1pn

− 1

2
∂b

(
İab

r

)

︸ ︷︷ ︸

1pn

+ · · ·
]

, (4.4.18)

and indicate the post-Newtonian order of each term. (Recall that the relation
between h0a and V a involves a factor of c−3, while the relation between h00 and V
involves a factor of c−2.)

Once more a conservation identity was invoked to eliminate a potential contri-
bution at 1

2pn order. Indeed, the leading term in the multipole expansion for V a

should have been
G

r

∫

ja d3x′ =
G

r

∑

A

mAva
A =

G

r
P a,

where P is the total Newtonian momentum of the system. Having placed the origin
of the coordinate system at the (post-Newtonian) barycentre, we have set P =
0+ O(c−2), and the leading term vanishes. The correction of order c−2 contributes
a term at 3

2pn order, and all such terms have been discarded in Eq. (4.4.18).
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4.4.3 Computation of W ab: Organization

The wave equation for W ab was written down in Eq. (4.1.35), and we copy it as

¤W ab = −4πGτab, (4.4.19)

where the effective stress tensor

τab =
∑

A

mAva
Avb

Aδ
(
x − zA

)
+

1

4πG

(

∂aΦ∂bΦ − 1

2
δab∂cΦ∂cΦ

)

+ O(c−2) (4.4.20)

contains both a matter and a field contribution. Recall that Φ is the retarded
solution to Eq. (4.1.25). In the near zone,

Φ = U + O(c−2) (near zone), (4.4.21)

where U is the Newtonian potential given by Eq. (4.1.10). In the wave zone Φ can
be expressed as the multipole expansion of Eq. (3.3.16); for our purposes here, it is
sufficient to take

Φ =
GM

r
+ · · · (wave zone), (4.4.22)

in which M differs from the actual monopole moment I =
∑

A mA by post-Newtonian
corrections that are discarded.

The source term of Eq. (4.4.20) is distributed over all space, and as a conse-
quence, the retarded integral for W ab contains both a near-zone and a wave-zone
contribution:

W ab = W ab
N + W ab

W . (4.4.23)

In the following two subsections we will endeavour to compute W ab
N

and W ab
W

so as
to finally obtain a complete expression for W ab.

4.4.4 Computation of W ab: Near-zone integral

Methods to integrate Eq. (4.4.19) in the wave zone were described in Secs. 2.4.1
and 2.5.2, and according to Eq. (2.4.3) the near-zone contribution to the retarded
integral is

W ab
N = G

[
1

r

∫

M

τab d3x′ − ∂c

(
1

r

∫

M

τabx′c d3x′

)

+ · · ·
]

, (4.4.24)

in which τab is expressed as a function of retarded time u := ct − r and spatial
coordinates x′. The domain of integration M is a surface of constant time bounded
externally by the sphere r′ := |x′| = R.

Evaluation of the integrals is simplified by involving the conservation identities
of Eqs. (1.4.3) and (1.4.4),

τab =
1

2
∂00

(
τ00xaxb

)
+

1

2
∂c

(
τacxb + τ bcxa − ∂dτ

cdxaxb
)

(4.4.25)

and

τabxc =
1

2
∂0

(
τ0axbxc + τ0bxaxc − τ0cxaxb

)

+
1

2
∂d

(
τadxbxc + τ bdxaxc − τ cdxaxb

)
. (4.4.26)

Here,

c−2τ00 =
∑

A

mAδ
(
x − zA

)
+ O(c−2) (4.4.27)



4.4 Wave-zone expressions 59

and

c−1τ0a =
∑

A

mAva
Aδ

(
x − zA

)
+ O(c−2) (4.4.28)

are the remaining components of the effective energy-momentum pseudotensor,
written to a degree of accuracy that will be sufficient for our purposes. Integrating
Eqs. (4.4.25) and (4.4.26) over M and inserting the definitions of Eqs. (4.4.10)–
(4.4.13) produces

∫

M

τab d3x′ =
1

2
Ïab +

1

2

∮

∂M

(
τacx′b + τ bcx′a −∂d′τ cdx′ax′b

)
dS′

c +O(c−2) (4.4.29)

and

∫

M

τabx′c d3x′ =
1

6
Ïabc +

1

3

(
J̇acb + J̇bca

)

+
1

2

∮

∂M

(
τadx′bx′c + τ bdx′ax′c − τ cdx′ax′b

)
dS′

d

+ O(c−2). (4.4.30)

Here, the multipole moments are expressed in terms of τ := t− r/c and an overdot
indicates differentiation with respect to τ ; the surface integrals are over the sphere
r′ = R, and the surface element is dS′

a = R2Ω′
adΩ′, in which Ω′a := x′a/r′ and

dΩ′ = sin θ′ dθ′dφ′ is an element of solid angle.

The surface integrals in Eqs. (4.4.29) and (4.4.30) are evaluated outside the
matter distribution, at the boundary ∂M between the near and wave zones. They
involve only the field contribution to τab, and we may use Eq. (4.4.22) to calculate

τab =
GM2

4πr′4

(

Ω′aΩ′b − 1

2
δab

)

+ · · · . (4.4.31)

This expression is valid everywhere in the wave zone, but in order to evaluate the
surface integrals we must set r′ = R. It is then easy to see that an integral such
as

∮
τacx′b dS′

c is proportional to R−1, and that an integral such as
∮

τadx′bx′c dS′
d,

which might have given a result independent of R, actually vanishes because it
involves an odd number of angular vectors Ω (see Sec. 1.8.4). Because we are free
to ignore all R-dependent terms in the near-zone and wave-zone contributions to
W ab (such terms will cancel out — see the end of Sec. 2.3), we are therefore free to
ignore the surface integrals in Eqs. (4.4.29) and (4.4.30).

Inserting Eqs. (4.4.29) and (4.4.30) into Eq. (4.4.24) produces

W ab
N = G

[
1

2

Ïab

r
︸ ︷︷ ︸

1pn

− 1

6
∂c

(
Ïabc + 2J̇acb + 2J̇bca

r

)

︸ ︷︷ ︸
3

2
pn

+ · · ·
]

, (4.4.32)

in which we indicate the post-Newtonian order of each term. (Recall that the re-
lation between hab and W ab involves a factor of c−4, while the relation between
h00 and V involves a factor of c−2.) Notice that Eq. (4.4.32) appears to be identi-
cal to Eq. (3.3.18) for the tensor potential Bab, which corresponds to W ab in the
first post-Minkowskian approximation to the gravitational potentials. The simi-
larity is deceptive, however, because our W ab

N
is truly a second post-Minkowskian

approximation; the apparently absent second factor of G appears when the multi-
pole moments are differentiated with respect to τ and Eq. (4.3.2) is inserted within
terms involving the Newtonian accelerations aA.
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4.4.5 Computation of W ab: Wave-zone integral

Methods to calculate the wave-zone contribution W ab
W

were described in Sec. 2.5.2.
These methods work for source terms of the form displayed in Eq. (2.5.2), and
our first task is to decompose the effective stress tensor of Eq. (4.4.31) in terms
of STF angular tensors (see Sec. 1.8.1). We therefore involve the identity ΩaΩb =
Ω〈ab〉 + 1

3δab and rewrite Eq. (4.4.31) as

Gτab =
G2M2

4πr′4

(

Ω′〈ab〉 − 1

6
δab

)

+ · · · . (4.4.33)

This is of the form of Eq. (2.5.2), with Gτab playing the role of the source function
µ, and we identify fℓ=2 = G2M2 and fℓ=0 = − 1

6G2M2δab. In each case we have
that f is a constant, and for both contributions we have n = 4.

The contribution to W ab
W

from each value of ℓ is given by Eq. (2.5.16), which we
copy as

W ab
W =

Ω〈L〉

r

{∫ R

0

dsf(u − 2s)A(s, r) +

∫ ∞

R

dsf(u − 2s)B(s, r)

}

,

where A(s, r) =
∫ r+s

R
Pℓ(ξ)p

−(n−1) dp, B(s, r) =
∫ r+s

s
Pℓ(ξ)p

−(n−1) dp, and ξ =
(r + 2s)/r − 2s(r + s)/(rp). Because f is a constant it can be taken outside of each
integral, and the remaining computations are simple. For ℓ = 2 we find

W ab
W =

(
G2M2

4r2
− G2M2R

5r3

)

Ω〈ab〉 (ℓ = 2),

and for ℓ = 0 we find

W ab
W =

(
G2M2

12r2
− G2M2

6Rr

)

δab (ℓ = 0).

Adding the results, we arrive at

W ab
W =

G2M2

4r2

(

Ω〈ab〉 +
1

3
δab

)

+ · · ·

after discarding (as we are free to do) all terms involving R.
We express our final answer as

W ab
W =

G2M2

4r2
ΩaΩb + · · · . (4.4.34)

The post-Newtonian order of this contribution to W ab is 3
2pn. To see this, we

multiply W ab
W

by c−4 to form hab, and we divide by h00 ∼ GM/(c2r) to obtain a
quantity of the form GM/(c2r). We next notice that the Newtonian acceleration
GM/r2

c is of order rc/t2c , which makes GM of order r3
c/t2c . Setting r ∼ λc ∼ ctc,

we finally get hab/h00 ∼ r3
c/(c3t3c) ∼ (vc/c)3, and we conclude that Eq. (4.4.34) is

indeed a contribution of 3
2pn order.

4.4.6 Computation of W ab: Final answer

Adding Eq. (4.4.34) to Eq. (4.4.32) yields

W ab = G

[
1

2

Ïab

r
︸ ︷︷ ︸

1pn

− 1

6
∂c

(
Ïabc + 2J̇acb + 2J̇bca

r

)

︸ ︷︷ ︸
3

2
pn

+
GM2

4r2
ΩaΩb

︸ ︷︷ ︸
3

2
pn

+ · · ·
]

, (4.4.35)

our final expression for the tensor potential. Its trace is given by

W = G

[
1

2

Ïcc

r
− 1

6
∂a

(
Ïacc + 4J̇cac

r

)

+
GM2

4r2
+ · · ·

]

. (4.4.36)
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4.4.7 Summary: Wave-zone potentials

We may finally collect the results obtained in this section and construct the wave-
zone expressions for the gravitational potentials. Combining Eqs. (4.1.29)–(4.1.31),
(4.4.16), (4.4.18), (4.4.22), (4.4.35), and (4.4.36), we have

h00 =
4G

c2

[
M

r
︸︷︷︸

0pn+1pn

+
1

2
∂ab

(
Iab

r

)

︸ ︷︷ ︸

1pn

− 1

6
∂abc

(
Iabc

r

)

︸ ︷︷ ︸
3

2
pn

+
7

4

GM2

c2r2
︸ ︷︷ ︸

3

2
pn

− ∂a

(
MZa

r

)

︸ ︷︷ ︸

=0

+ · · ·
]

, (4.4.37)

h0a =
4G

c3

[
1

2
Jab Ωb

r2
︸ ︷︷ ︸

1pn

− 1

2
∂b

(
İab

r

)

︸ ︷︷ ︸

1pn

+ · · ·
]

, (4.4.38)

hab =
4G

c4

[
1

2

Ïab

r
︸ ︷︷ ︸

1pn

− 1

6
∂c

(
Ïabc + 2J̇acb + 2J̇bca

r

)

︸ ︷︷ ︸
3

2
pn

+
GM2

4r2
ΩaΩb

︸ ︷︷ ︸
3

2
pn

+ · · ·
]

.(4.4.39)

The potentials are expressed in terms of Ωa = xa/r, and in terms of multipole
moments that depend on retarded time τ = t−r/c; overdots indicate differentiation
with respect to τ . It is instructive to compare these expressions with Eqs.(1.5.18)
and (1.5.19), which give the gravitational potentials for a static and spherically-
symmetric mass distribution; notice the agreement between all terms that involve
the total mass M .

The multipole moments were defined by Eqs. (4.4.8)–(4.4.13): We have the total
gravitational mass

M =
∑

A

(

1 +
1

2

v2
A

c2
− 1

2

⌊U⌋A

c2

)

+ O(c−4), (4.4.40)

the barycentre’s position vector

Z =
1

M

∑

A

mAzA

(

1 +
1

2

v2
A

c2
− 1

2

⌊U⌋A

c2

)

+ O(c−4), (4.4.41)

the mass quadrupole moment

Iab(τ) =
∑

A

mAza
Azb

A + O(c−2), (4.4.42)

the mass octupole moment

Iabc(τ) =
∑

A

mAza
Azb

Azc
A + O(c−2), (4.4.43)

the angular-momentum tensor

Jab =
∑

A

mA

(
va

Azb
A − za

Avb
A

)
+ O(c−2), (4.4.44)

and the current moment

Jabc(τ) =
∑

A

mA

(
va

Azb
A − za

Avb
A

)
zc
A + O(c−2). (4.4.45)
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We recall that M , Z, and Jab are conserved quantities, and that ⌊U⌋A is defined
by Eq. (4.1.13).

The multipole moments must be differentiated a number of times with respect
to τ when they are substituted into the gravitational potentials. These operations
produce terms involving the acceleration vectors aA = dvA/dt = d2zA/dt2. These
can be expressed in terms of the position vectors via Eq. (4.3.2),

aA = −
∑

B 6=A

GmB(zA − zB)

|zA − zB |3 + O(c−2), (4.4.46)

the Newtonian expression for the acceleration of each body.
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In this chapter we import the near-zone potentials calculated in Chapter 4 and
derive the equations of motion for a system of N bodies moving under their mu-
tual gravitational attraction. We follow the general method devised by Itoh, Fu-
tamase, and Asada (2002), which is based on conservation identities formulated
on a spherical boundary surrounding each body. Our final expression for the ac-
celeration vector includes the leading-order, Newtonian term, as well as the first
post-Newtonian correction, which is smaller by a numerical factor of order (v/c)2.
The general framework is described in Sec. 5.1, and its implementation is carried
out in Secs. 5.2–5.4; the final answer for the acceleration vector of each body is dis-
played in Eq. (5.4.17). In Sec. 5.5 we specialize our results to a two-body system,
and formulate the equations of motion in terms of barycentric and relative-position
variables.

5.1 Conservation identities and laws of motion

Let VA be a spherical, three-dimensional ball centered on body A, bounded by a
two-sphere SA described by

SA : |x − zA| =: sA = constant. (5.1.1)

The two-sphere moves rigidly with body A, with a velocity vA = dzA/dt, and our
central goal in this chapter is to find equations of motion for zA(t), the position
vector of body A.

Adopting the general strategy developed in Sec. 1.2, we define a momentum
four-vector Pα

A associated with body A by

Pα
A :=

1

c

∫

VA

(−g)
(
T 0α + t0α

LL

)
d3x, (5.1.2)

where Tαβ is the material energy-momentum tensor and tαβ
LL the Landau-Lifshitz

pseudotensor. Following the developments leading to Eq. (1.2.2), we use the Einstein
field equations in their Landau-Lifshitz form of Eq. (1.1.4) to express this as

Pα
A =

c3

16πG

∮

SA

∂µHαµ0c dSc, (5.1.3)

63
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where
Hαµβν = g

αβ
g

µν − g
αν

g
βµ, (5.1.4)

and where dSc is an outward-directed surface element on SA. We recall that the
gravitational potentials are related to the “gothic inverse metric” by Eq. (1.3.2),
g

αβ = ηαβ − hαβ , where ηαβ is the Minkowski metric.
In a time interval dt the volume VA(t) moves to a new volume VA(t + dt).

In the course of this motion, an element of area dS on SA sweeps out a volume
dV = (vAdt) · dS, because SA moves with a velocity vA. It follows that in the
course of this motion, any quantity defined by

F (t) :=

∫

VA

f(t,x) d3x (5.1.5)

will change according to

dF

dt
=

∫

VA

∂f

∂t
d3x +

∮

SA

fvA · dS; (5.1.6)

the first term on the right-hand side accounts for the changes intrinsic to the function
f(t,x), while the second term accounts for the change in the domain of integration.

We apply Eq. (5.1.6) to the momentum four-vector of Eq. (5.1.2). Recalling that
x0 = ct, we have

dPα
A

dx0
=

1

c

∫

VA

∂0

[

(−g)
(
T 0α + t0α

LL

)]

d3x +
1

c2

∮

SA

(−g)
(
T 0α + t0α

LL

)
vc

AdSc,

and invoking the conservation statement of Eq. (1.1.7),

∂β

[

(−g)
(
Tαβ + tαβ

LL

)]

= 0,

we replace the volume integral by another boundary integral. Because Tαβ = 0 on
SA, we arrive at

dPα
A

dt
= −

∮

SA

(−g)

(

tαc
LL − t0α

LL

vc
A

c

)

dSc, (5.1.7)

a generalization of Eq. (1.2.3) for moving boundaries. Notice that vA is constant
over SA, and that it can be taken outside the integral.

We next define a dipole-moment vector DA associated with body A by

Da
A :=

1

c2

∫

VA

(−g)
(
T 00 + t00LL

)(
xa − za

A

)
d3x. (5.1.8)

Using the field equations, as well as the symmetry properties of Hαµβν , we write

(−g)
(
T 00 + t00LL

)
=

c4

16πG
∂µνH0µ0ν =

c4

16πG
∂cdH

0c0d

and we integrate by parts. This leads to the alternative expression

Da
A =

c2

16πG

∮

SA

[(
∂dH

0c0d
)(

xa − za
A

)
− H0a0c

]

dSc (5.1.9)

for the dipole moment, which involves a surface integral instead of a volume integral.
Returning to Eq. (5.1.8), we differentiate Da

A with respect to x0 and involve
Eq. (5.1.6). We have

dDa
A

dx0
=

1

c2

∫

VA

∂0

[

(−g)
(
T 00 + t00LL

)](
xa − za

A

)
d3x

− va
A

c3

∫

VA

(−g)
(
T 00 + t00LL

)
d3x

+
1

c3

∮

SA

(−g)
(
T 00 + t00LL

)(
xa − za

A

)
vc

A dSc,
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and we convert the first volume integral into a surface integral by invoking the
conservation statement of Eq. (1.1.7) and integrating by parts. This produces

dDa
A

dx0
= − 1

c2

∮

SA

(−g)
(
T 0c + t0c

LL

)(
xa − za

A

)
dSc +

1

c2

∫

VA

(−g)
(
T 0a + t0a

LL

)
d3x

− va
A

c3

∫

VA

(−g)
(
T 00 + t00LL

)
d3x

+
1

c3

∮

SA

(−g)
(
T 00 + t00LL

)(
xa − za

A

)
vc

A dSc.

In the first volume integral we recognize cP a
A, the spatial component of Eq. (5.1.2),

and in the second volume integral we recognize P 0
A, its time component.

At this stage we may set Tαβ = 0 within all boundary integrals, and we have
obtained the identity

P a
A = MAva

A + Qa
A + Ḋa

A, (5.1.10)

in which MA := c−1P 0
A is a mass parameter associated with body A, and

Qa
A :=

1

c

∮

SA

(−g)

(

t0b
LL − t00LL

vb
A

c

)
(
xa − za

A

)
dSb. (5.1.11)

The overdot in Eq. (5.1.10) indicates differentiation with respect to t (instead of
x0 = ct).

Equation (5.1.10) is a formal identity that relates a momentum-like quantity PA

to a product of a mass-like quantity MA with a velocity vA, the time derivative of
a dipole-like quantity DA, and an additional vector QA that possesses no useful
interpretation; each one of these quantities is a function of time only. There is
nothing physically meaningful about this identity, but it nevertheless plays a useful
mathematical role. We differentiate it with respect to t, and directly obtain a law
of motion for each body A:

MAaA = ṖA − ṀAvA − Q̇A − D̈A. (5.1.12)

Here, MA are the mass parameters defined by Eq. (5.1.3),

MA :=
c2

16πG

∮

SA

∂cH
0c0b dSb, (5.1.13)

and these change with time according to Eq. (5.1.7),

ṀA = −1

c

∮

SA

(−g)

(

t0b
LL − t00LL

vb
A

c

)

dSb, (5.1.14)

while

Ṗ a
A = −

∮

SA

(−g)

(

tab
LL − t0a

LL

vb
A

c

)

dSb (5.1.15)

is the rate of change of the spatial momentum vector. Finally, Q̇a
A and D̈a

A are ob-
tained by differentiating Eqs. (5.1.11) and (5.1.8) with respect to time, respectively.

In the following sections we will endeavour to turn Eq. (5.1.12) into something
more explicit. At the end of this calculation, the formal laws of motion will have
become concrete equations of motion for our system of N bodies; these are listed in
Sec. 5.4.4, below.
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5.2 Internal and external potentials

To proceed with our calculations we focus on a specific body, the one labeled by
A = 1, and to simplify the notation we let m := m1, z := z1, v := v1, and so
on. In addition, we introduce the vector s := x − z, and decompose it as s = sn,
in terms of its length s := |s| and the unit vector n := s/s. As was indicated in
Eq. (5.1.1), the two-sphere S that surrounds our body is described by the equation
s = constant. The surface element on S is dSa = s2na dΩ, in which dΩ is the usual
element of solid angle.

We list some useful identities involving s, n, and their derivatives:

ṡ = −n · v, (5.2.1)

∂as = na, (5.2.2)

ṅa = −1

s

(
δab − nanb

)
vb, (5.2.3)

∂anb =
1

s

(
δab − nanb

)
, (5.2.4)

s̈ = −n · a +
1

s

[
v2 − (n · v)2

]
, (5.2.5)

∂as̈ = −1

s

(
δab − nanb

)
ab

− 1

s2

(
naδbc + 2δabnc − 3nanbnc

)
vbvc. (5.2.6)

Here, a := a1 is the body’s acceleration vector, and v2 := v1 · v1.
The near-zone gravitational potentials were calculated in Sec. 4.2. According to

Eqs. (4.2.32)–(4.2.34), they are given by

h00 =
4

c2
U +

4

c4

(

ψ +
1

2

∂2X

∂t2
− P + 2U2

)

+ O(c−5), (5.2.7)

h0a =
4

c3
Ua + O(c−5), (5.2.8)

hab =
4

c4
P ab + O(c−5), (5.2.9)

where P = δabP
ab. The potentials U , ψ, X, Ua, and P ab are displayed in Eqs. (4.2.35)–

(4.2.44). For our purposes it is useful to decompose them into “internal potentials”
that diverge at x = z, and “external potentials” that are smooth at x = z. We
write

U =
Gm

s
+ Uext, (5.2.10)

ψ =
Gmµ

s
+ ψext, (5.2.11)

X = Gms + Xext, (5.2.12)

P =
1

4
U2 + P̃ , (5.2.13)

P̃ =
Gmν

s
+ P̃ext, (5.2.14)

Ua =
Gmva

s
+ Ua

ext, (5.2.15)

where we have introduced

µ :=
3

2
v2 −

∑

A 6=1

GmA

|z − zA|
(5.2.16)
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and

ν := v2 − 1

2

∑

A 6=1

GmA

|z − zA|
. (5.2.17)

The tensor potential P ab also can be decomposed into internal and external parts,
but this is not required in the following computations. In Eq. (5.2.13) we have
indicated that since P approaches G2m2/(4s2) as s → 0, it can neatly be expressed
as 1

4U2 plus a less-singular quantity P̃ , whose behaviour near s = 0 is given by
Eq. (5.2.14). We also remark that while X does not diverge as s → 0, it is its
second time derivative that appears within h00, and Eq. (5.2.5) reveals this is indeed
singular at s = 0.

The external potentials are given by

Uext =
∑

A 6=1

GmA

|x − zA|
, (5.2.18)

ψext =
3

2

∑

A 6=1

GmAv2
A

|x − zA|
−

∑

A 6=1

G2mmA

|z − zA||x − zA|

−
∑

A 6=1

∑

B>A

G2mAmB

|zA − zB |

(
1

|x − zA|
+

1

|x − zB |

)

, (5.2.19)

Xext =
∑

A 6=1

GmA|x − zA|, (5.2.20)

P̃ext =
∑

A 6=1

GmAv2
A

|x − zA|

− 1

2

∑

A 6=1

∑

B>A

G2mAmB

|zA − zB |

(
1

|x − zA|
+

1

|x − zB |

)

, (5.2.21)

Ua
ext =

∑

A 6=1

GmAva
A

|x − zA|
. (5.2.22)

It is interesting to observe that by virtue of the nonlinearity of the Einstein field
equations, the “external part” of ψ still carries a dependence on m and z.

We shall be interested in the behaviour of the external potentials in the imme-
diate vicinity of our reference body, near s = 0. Because the external potentials are
all differentiable at s = 0, this behaviour is best expressed as a Taylor expansion.
We shall write, for example,

Uext(x) = Uext(z) + s∂aUext(z)na +
1

2
s2∂abUext(z)nanb + O(s3). (5.2.23)

The relevant derivatives of the external potentials will be evaluated at a later stage.

5.3 Computation of M , Ṁ , Ṗ a, Qa, and Da

5.3.1 Computation of M

We begin with the evaluation of M := M1, the mass parameter associated with our
reference body, as defined by Eq. (5.1.13). After substituting Eqs. (5.2.7)–(5.2.9)
into Eq. (5.1.4), we find that

∂bH
0b0a = − 4

c2
∂aU − 4

c4

(

∂aψ +
1

2
∂aẌ − ∂aP + 4U∂aU + U̇a

)

+ O(c−4).
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Substitution into Eq. (5.1.13) gives

M = − 1

G

〈〈
s2na∂aU

〉〉
− 1

Gc2

〈〈
s2na

(
∂aψ + 1

2∂aẌ − ∂aP̃ + 7
2U∂aU + U̇a

)〉〉

+ O(c−4), (5.3.1)

where we return to the notation of Sec. 1.8.4 and let 〈〈 · · · 〉〉 := (4π)−1
∫

(· · ·) dΩ
denote an average over a two-sphere s = constant. To get to Eq. (5.3.1) we wrote
dSa = s2na dΩ and involved Eq. (5.2.13) to eliminate P in favour of P̃ .

To proceed we express each potential in terms of its “internal” and “exter-
nal” parts, as in Eqs. (5.2.10)–(5.2.15), we use Eqs. (5.2.1)–(5.2.6) to compute
the derivatives of the internal contributions, we Taylor-expand the external con-
tributions in powers of s, and finally, we involve Eqs. (1.8.18)–(1.8.21) to carry
out the angular averages. For example, from U = Gm/s + Uext we find that
∂aU = −Gmna/s2 + ∂aUext, so that s2na∂aU = −Gm + O(s2), which leads to
〈〈s2na∂aU〉〉 = −Gm + O(s2). In this fashion we obtain

〈〈
s2na∂aU

〉〉
= −Gm + O(s2),

〈〈
s2na∂aψ

〉〉
= −Gmµ + O(s2),

〈〈
s2na∂aẌ

〉〉
= −2

3
Gmv2 + O(s),

〈〈
s2na∂aP̃

〉〉
= −Gmν + O(s2),

〈〈
s2naU̇a

〉〉
=

1

3
Gmv2 + O(s),

〈〈
s2naU∂aU

〉〉
= −G2m2

s
− GmUext + O(s).

Notice that the last equation includes a leading term that scales as s−1, and an
s-independent term proportional to

Uext(x = z) =
∑

A 6=1

GmA

|z − zA|
. (5.3.2)

Recalling the notation employed in Chapter 4, this is ⌊U⌋1, the Newtonian potential
evaluated at the position of the reference body, excluding the infinite contribution
coming from this very body. Notice that in the context of this chapter, ⌊U⌋1 occurs
naturally, and not as a result of an ad-hoc regularization prescription.

Inserting these results into Eq. (5.3.1), we arrive at

M = m

{

1 +
1

c2

[
1

2
v2 + 3Uext +

7

2

Gm

s
+ O(s)

]

+ O(c−4)

}

. (5.3.3)

This is the mass parameter of the reference body.

5.3.2 Computation of Ṁ

To compute Ṁ := Ṁ1 we refer back to Eq. (5.1.14), which expresses it in terms of
the Landau-Lifshitz pseudotensor integrated over the two-sphere S. The relevant
components of the pseudotensor were calculated in Sec. 4.1.3, and the results are
displayed in Eqs. (4.1.17) and (4.1.18). After substitution of Eqs. (5.2.7)–(5.2.9),
we find that

(−g)

(

t0a
LL − t00LL

va

c

)

=
1

4πGc

[

3U̇∂aU + 4
(
∂aU b − ∂bUa

)
∂bU +

7

2
va∂cU∂cU

]

+ O(c−3).
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Substitution into Eq. (5.1.14) gives

Ṁ = − 1

Gc2

〈〈
s2na

[
3U̇∂aU +4(∂aU b−∂bUa)∂bU + 7

2va∂cU∂cU
]〉〉

+O(c−4). (5.3.4)

This expression can be evaluated with the same techniques that were employed in
the preceding subsection. We obtain, for example,

〈〈
s2naU̇∂aU

〉〉
=

1

3
Gmva∂aUext − GmU̇ext + O(s),

〈〈
s2na(∂aU b − ∂bUa)∂bU

〉〉
= −2

3
Gmva∂aUext + O(s),

〈〈
s2nava∂cU∂cU

〉〉
= −2

3
Gmva∂aUext + O(s),

in which the external potential Uext is evaluated at x = z after differentiation.
Notice that after integration, there are no surviving terms of order s−2, in spite of
the fact that something like s2naU̇∂aU contains a contribution that scales as s−2;
such a terms disappears because it involves an odd number of unit vectors n, which
leads to a vanishing integral.

Inserting these results into Eq. (5.3.4), we arrive at

Ṁ =
m

c2

[

4va∂aUext + 3U̇ext + O(s)
]

+ O(c−4), (5.3.5)

where, as we indicated before, the derivatives of the external Newtonian potential
Uext are to be evaluated at x = z, the position of the reference body.

It is an instructive exercise to differentiate Eq. (5.3.3) with respect to t and to
verify that the result is compatible with Eq. (5.3.5). This calculation requires an
expression for a, the acceleration vector of our reference body. Because this is the
very quantity that we are in the process of calculating, this exercise must, as a
matter of principle, be postponed until the information becomes available. Regard-
less, anticipating that the leading-order term in the acceleration vector will be the
Newtonian acceleration of Eq. (4.3.2), one can easily show that our expressions for
M and Ṁ are indeed compatible.

5.3.3 Computation of Ṗ a

The computation of Ṗ a := Ṗ a
1 begins with Eq. (5.1.15), which once more involves a

surface integration of the Landau-Lifshitz pseudotensor. The relevant components
are displayed in Eqs. (4.1.18) and (4.1.20), and after substitution of Eqs. (5.2.7)–
(5.2.9), we find the lengthy expression

(−g)

(

tab
LL − t0a

LL

vb

c

)

=
1

16πG

{

4∂aU∂bU − 2δab∂cU∂cU
}

+
1

16πGc2

{

8∂(aU∂b)ψ + 4∂(aU∂b)Ẍ + 32∂(aUU̇ b)

− 16
(
∂aUc − ∂cU

a
)(

∂bU c − ∂cU b
)

− δab
[

6U̇2 + 4∂cU∂cψ + 2∂cU∂cẌ + 16∂cUU̇ c − 8∂cUd(∂
cUd − ∂dU c)

]

− vb
[

12U̇∂aU + 16(∂aU c − ∂cUa)∂cU
]}

+ O(c−4).

Substitution into Eq. (5.1.15) gives

Ṗ a = − 1

4G

〈〈
s2

{
4nb∂

aU∂bU − 2na∂cU∂cU
}〉〉
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− 1

4Gc2

〈〈

s2
{

8nb∂
(aU∂b)ψ − 4na∂cU∂cψ + 4nb∂

(aU∂b)Ẍ − 2na∂cU∂cẌ

+ 32nb∂
(aUU̇ b) − 16na∂cUU̇ c − 16nb

(
∂aUc − ∂cU

a
)(

∂bU c − ∂cU b
)

+ 8na∂cUd(∂
cUd − ∂dU c) − 6naU̇2

− 12nbv
bU̇∂aU − 16nbv

b(∂aU c − ∂cUa)∂cU
}〉〉

+ O(c−4). (5.3.6)

The relevant angular averages are

〈〈
s2nb∂

aU∂bU
〉〉

= −4

3
Gm∂aUext + O(s),

〈〈
s2na∂cU∂cU

〉〉
= −2

3
Gm∂aUext + O(s),

〈〈
s2nb∂

aU∂bψ
〉〉

= −Gmµ∂aUext −
1

3
Gm∂aψext + O(s),

〈〈
s2nb∂

aψ∂bU
〉〉

= −1

3
Gmµ∂aUext − Gm∂aψext + O(s),

〈〈
s2na∂cU∂cψ

〉〉
= −1

3
Gmµ∂aUext −

1

3
Gm∂aψext + O(s),

〈〈
s2nb∂

aU∂bẌ
〉〉

= −2

3
Gmv2∂aUext −

1

3
Gm∂aẌext + O(s),

〈〈
s2nb∂

aU∂bẌ
〉〉

= −2

3
Gmv2∂aUext −

1

3
Gm∂aẌext + O(s),

〈〈
s2nb∂

aẌ∂bU
〉〉

=
2

3

G2m2

s
aa − 2

15
Gm

(
v2∂aUext + 2vavb∂bUext

)

− Gm∂aẌext + O(s),
〈〈
s2na∂cU∂cẌ

〉〉
= − 2

15
Gm

(
v2∂aUext + 2vavb∂bUext

)
− 1

3
Gm∂aẌext + O(s),

〈〈
s2nb∂

aUU̇ b
〉〉

= −1

3

G2m2

s
aa +

1

3
Gmv2∂aUext −

1

3
GmU̇a

ext + O(s),

〈〈
s2nbU̇

a∂bU
〉〉

= −G2m2

s
aa +

1

3
Gmvavb∂bUext − GmU̇a

ext + O(s),

〈〈
s2na∂cUU̇ c

〉〉
= −1

3

G2m2

s
aa +

1

3
Gmvavb∂bUext −

1

3
GmU̇a

ext + O(s),
〈〈
s2nb

(
∂aUc − ∂cU

a
)(

∂bU c − ∂cU b
)〉〉

= −Gmvb

(
∂aU b

ext − ∂bUa
ext

)
+ O(s),

〈〈
s2na∂cUd

(
∂cUd − ∂dU c

)〉〉
= −2

3
Gmvb

(
∂aU b

ext − ∂bUa
ext

)
+ O(s),

〈〈
s2naU̇2

〉〉
=

2

3
GmvaU̇ext + O(s),

〈〈
s2nbv

bU̇∂aU
〉〉

=
1

3
Gmv2∂aUext −

1

3
GmvaU̇ext + O(s),

〈〈
s2nbv

b
(
∂aU c − ∂cUa

)
∂cU

〉〉
= −1

3
Gmvb

(
∂aU b

ext − ∂bUa
ext

)
+ O(s).

Inserting these results within Eq. (5.3.6), we arrive at

Ṗ a = m
[

∂aUext + O(s)
]

+
m

c2

[(
3

2
v2 − Uext

)

∂aUext + ∂aψext +
1

2
∂aẌext

+ 4U̇a
ext − 4

(
∂aU b

ext − ∂bUa
ext

)
vb +

11

3

Gm

s
aa + O(s)

]

+ O(c−4), (5.3.7)

in which the external potentials and their derivatives are evaluated at x = z, the
position of the reference body.



5.3 Computation of M , Ṁ , Ṗ a, Qa, and Da 71

5.3.4 Computation of Qa

The computation of Qa := Qa
1 begins with Eq. (5.1.11), in which we substitute

xa − za = sna, dSb = s2nb dΩ, as well as the components of the Landau-Lifshitz
pseudotensor that were obtained at the beginning of Sec. 5.3.2. This gives

Qa =
1

Gc2

〈〈
s3nanb

[
3U̇∂bU +4(∂bU c−∂cU b)∂cU + 7

2vb∂cU∂cU
]〉〉

+O(c−4). (5.3.8)

We have

〈〈
s3nanbU̇∂bU

〉〉
= −1

3

G2m2

s
va + O(s),

〈〈
s3nanb(∂

bU c − ∂cU b)∂cU
〉〉

= O(s),

〈〈
s3nanbv

b∂cU∂cU
〉〉

=
1

3

G2m2

s
va + O(s),

and this gives

Qa =
m

c2

Gm

6s
va + O(s) + O(c−4). (5.3.9)

From this we immediately obtain

Q̇a =
m

c2

Gm

6s
aa + O(s) + O(c−4), (5.3.10)

because s is set equal to a constant during the integration over S.

5.3.5 Computation of Da

We return to Eq. (5.1.9), which we write in the form

Da =
c2

4G

〈〈
s2nb

(
sna∂cH

0b0c − H0a0b
)〉〉

.

This becomes

Da =
1

G

〈〈
s2na

(
U − snb∂

bU
)〉〉

+
1

Gc2

〈〈

s2na
[(

ψ − snb∂
bψ

)
+ 1

2

(
Ẍ − snb∂

bẌ
)
−

(
P̃ − snb∂

bP̃
)

+ 7
4

(
U2 − snb∂

bU2
)]〉〉

− 1

Gc2

〈〈
s2nb

(
P ab − sna∂cP

bc
)〉〉

+ O(c−4) (5.3.11)

after inserting Eqs. (5.2.7)–(5.2.9) into Eq. (5.1.4). Evaluation of the angular inte-
grals reveals that there are no surviving terms of order s−1 or s0, and we conclude
that

Da = O(s) + O(c−4). (5.3.12)

This conclusion is a consequence of the fact that the internal contributions to the
potentials U , ψ, Ẍ, and P̃ are spherically symmetric. Consider, for example, the
Newtonian potential U = Gm/s + Uext. The combination of terms that appears
within the angular integral is U−snb∂

bU = 2Gm/s+Uext− 1
2s2nbnc∂bcUext+O(s3),

in which Uext and its derivatives are evaluated at s = 0. After multiplication by
s2na and angular integration, we get a result of order s5. Examination of the terms
in U2 reveals that these contribute a result of order s2. The terms in P ab must be
examined more carefully. According to Eq. (4.2.41), the most singular term in the
tensor potential is equal to G2m2nanb/(4s2), and this vanishes after multiplication



72 Equations of motion

by s2nb and angular integration; less singular terms would give a O(s) contribution
to Da. Finally, the term involving ∂cP

bc can be written in terms of U̇ b by invoking
the harmonic gauge conditions, and this contribution also can be shown to be of
order s. All in all, we arrive at Eq. (5.3.12).

It follows immediately from Eq. (5.3.12) that

D̈a = O(s) + O(c−4). (5.3.13)

5.4 First post-Newtonian equations of motion

5.4.1 Acceleration in terms of external potentials

The results obtained in the preceding section, namely Eqs. (5.3.3), (5.3.5), (5.3.7),
(5.3.10), and (5.3.13), may now be substituted into Eq. (5.1.12), which we write in
the specialized form Ma = Ṗ −Ṁv− Q̇− D̈ that applies to the reference body. On
each side of the equation we have terms of order s−1, terms independent of s, and
terms of higher order in s that have not been calculated. Because the equation is
an identity, and because s has been set equal to an arbitrary constant, the equality
must be true order-by-order in s. It is easy to verify that as expected, all terms
of order s−1 cancel out of the equation. It is then clear that an expression for
the acceleration vector will come from the s-independent terms, and that the O(s)
terms would generate redundant information.

In this way, we obtain

aa = ∂aUext +
1

c2

[

(v2 − 4Uext)∂
aUext − 4vavb∂bUext − 3vaU̇ext + ∂aψext

+
1

2
∂aẌext + 4U̇a

ext − 4
(
∂aU b

ext − ∂bUa
ext

)
vb

]

+ O(c−4), (5.4.1)

an expression for the acceleration vector of the reference body, in terms of the
external potentials of Eqs. (5.2.18)–(5.2.22); it is understood that these are to be
evaluated at x = z, the position of the reference body. To arrive at Eq. (5.4.1) we
have moved the factor 1 + c−2( 1

2v2 + 3Uext) + O(c−4), which originates from the
mass parameter M , from the left-hand side of the equation to its right-hand side.
We recognize, in Eq. (5.4.1), the Newtonian acceleration field ∂aUext; the terms of
order c−2 are 1pn corrections to the acceleration vector.

5.4.2 Geodesic equation

It is instructive to work out the geodesic equations for a test mass moving in a
spacetime whose geometry is determined by our original system of N bodies. The
metric of this spacetime is determined by the gravitational potentials of Eqs. (5.2.7)–
(5.2.9), and Eq. (1.6.4) allows us to obtain an explicit expression. To the appropriate
post-Newtonian order, we have

g00 = −1 +
2

c2
U +

2

c4

(

ψ +
1

2
Ẍ − U2

)

+ O(c−5), (5.4.2)

g0a = − 4

c3
Ua + O(c−5), (5.4.3)

gab = δab +
2

c2
Uδab +

2

c4

[

2Pab +

(

ψ +
1

2
Ẍ − 2P + U2

)

δab

]

+ O(c−5), (5.4.4)

in which x0 = ct and an overdot indicates differentiation with respect to t. The
potentials U , ψ, X, Ua, and P ab were introduced in Sec. 4.2, and explicit expressions
are given in Eqs. (4.2.35)–(4.2.44).
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An action functional for geodesic motion is

S = −c

∫ √

−gαβ
dxα

dλ

dxβ

dλ
dλ, (5.4.5)

in which the parametric relations xα(λ) give a description of the particle’s world
line. The action is invariant under reparameterizations, and we choose t as the
parameter λ. This gives us the Lagrangian

L = −c
√

−gαβvαvβ , (5.4.6)

in which vα = dxα/dt = (c,v) is the velocity four-vector of the test mass. More
explicitly, using the metric of Eqs. (5.4.2)–(5.4.4), we have

L = −c2 +
1

2
v2 + U +

1

c2

(
1

8
v4 +

3

2
Uv2 − 4Uava + ψ +

1

2
Ẍ − 1

2
U2

)

+ O(c−4), (5.4.7)

after truncation at the appropriate post-Newtonian order.
Substitution of L into the Euler-Lagrange equations produces

[

1 +
1

c2

(
1

2
v2 + 3U

)

+ O(c−4)

]

aa = ∂aU +
1

c2

[(
3

2
v2 − U

)

∂aU − vavba
b

−− 3vavb∂bU − 3vaU̇ + ∂aψ +
1

2
∂aẌ + 4U̇a − 4

(
∂aU b − ∂bUa

)
vb

]

+ O(c−4).

After moving the factor multiplying aa from the left-hand side to the right-hand
side of the equation (as we did in the preceding subsection), and after substituting
aa = ∂aU +O(c−2) within the 1pn term on the right-hand side, we finally arrive at

aa = ∂aU +
1

c2

[

(v2 − 4U)∂aU − 4vavb∂bU − 3vaU̇ + ∂aψ

+
1

2
∂aẌ + 4U̇a − 4

(
∂aU b − ∂bUa

)
vb

]

+ O(c−4). (5.4.8)

This is the acceleration vector of a test mass moving on a geodesic in the post-
Newtonian spacetime.

Equation (5.4.8) looks virtually identical to Eq. (5.4.1), and for this reason it
might be said that the reference body moves on a geodesic in a spacetime whose
geometry is determined by all remaining (external) bodies; the metric of this space-
time would be given by Eqs. (5.4.2)–(5.4.4), with all potentials replaced by the
external potentials of Eqs. (5.2.18)–(5.2.22). This interpretation of Eq. (5.4.1) is
attractive and perhaps technically correct, but it is also misleading. It gives the in-
correct impression that the acceleration of the reference body should be determined
by the external masses only, and should not contain a dependence on m itself. This
is indeed incorrect: As Eq. (5.2.19) reveals, the “external potential” ψext does, in
fact, depend explicitly on m and z. The nonlinear nature of Einstein’s theory im-
plies that the reference body exerts a force on itself, and this effect appears at the
first post-Newtonian order; one must therefore be careful with the geodesic-equation
interpretation of Eq. (5.4.1).

5.4.3 Derivatives of the external potentials

The external potentials Uext, ψext, Xext, and Ua
ext were listed in Sec. 5.2, Eqs. (5.2.18)–

(5.2.22), and their derivatives may be computed by involving Eqs. (5.2.1)–(5.2.6),
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in which we change the identity of s from its old value |x − z| to a new value
s := |x − zA|. After evaluating the results at x = z := z1, we obtain

Uext =
∑

A 6=1

GmA

z1A
,

∂aUext = −
∑

A 6=1

GmA

z2
1A

na
1A,

U̇ext =
∑

A 6=1

GmA

z2
1A

(
n1A · vA

)
,

∂aψext = −3

2

∑

A 6=1

GmAv2
A

z2
1A

na
1A +

∑

A 6=1

G2mmA

z3
1A

na
1A

+
∑

A 6=1

∑

B>A

G2mAmB

zAB

(
na

1A

z2
1A

+
na

1B

z2
1B

)

,

∂aẌext = −
∑

A 6=1

GmA

z1A

[

aa
A −

(
n1A · aA

)
na

1A

]

−
∑

A 6=1

GmA

z2
1A

[

v2
A − 3

(
n1A · vA

)2
]

na
1A

− 2
∑

A 6=1

GmA

z2
1A

(
n1A · vA

)
va

A,

U̇a
ext =

∑

A 6=1

GmA

z1A
aa

A +
∑

A 6=1

GmA

z2
1A

(
n1A · vA

)
va

A,

∂aU b
ext = −

∑

A 6=1

GmA

z2
1A

na
1Avb

A,

where z1A := |z − zA| and na
1A := (z − zA)a/|z − zA|.

Substitution of these results into Eq. (5.4.1) leads to an explicit expression for
a, the acceleration vector of our reference body. At the leading order we get

aa = ∂aUext + O(c−2) = −
∑

A 6=1

GmA

z2
1A

na
1A + O(c−2),

the expected expression for the Newtonian acceleration. At the next order we
obtain the 1pn corrections to the acceleration vector. At this stage it is useful to
take our attention away from the reference body A = 1, and to start writing down
general expressions that are valid for each mass within the N -body system. We
shall therefore rewrite our previous result as

aA = −
∑

B 6=A

GmB

z2
AB

nAB + O(c−2). (5.4.9)

This is the acceleration vector of body A, accurate to 0pn order, and expressed
in terms of the interbody distance zAB := |zA − zB | and the unit vector nAB :=
(zA − zB)/|zA − zB |.

To obtain the post-Newtonian corrections to this result we must perform a sim-
ilar change of notation in the derivatives of the external potentials (which are now
external to body A). We will also insert Eq. (5.4.9), written as

aB =
GmA

z2
AB

nAB −
∑

C 6=A,B

GmC

z2
BC

nBC + O(c−2)
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to isolate the term C = A in the original sum over C 6= B (notice that nAB =
−nBA), within our previous expressions for ∂aẌ and U̇a. After some simple algebra,
we obtain

Uext =
∑

C 6=A

GmC

zAC
, (5.4.10)

∂aUext = −
∑

B 6=A

GmB

z2
AB

na
AB , (5.4.11)

U̇ext =
∑

B 6=A

GmB

z2
AB

(
nAB · vB

)
, (5.4.12)

∂aψext = −3

2

∑

B 6=A

GmBv2
B

z2
AB

na
AB +

∑

B 6=A

G2mAmB

z3
AB

na
AB

+
∑

B 6=A

∑

C 6=A,B

G2mBmC

z2
ABzBC

na
AB , (5.4.13)

∂aẌext = −
∑

B 6=A

∑

C 6=A,B

G2mBmC

zABz2
BC

(
nAB · nBC

)
na

AB

+
∑

B 6=A

∑

C 6=A,B

G2mBmC

zABz2
BC

na
BC

−
∑

B 6=A

GmB

z2
AB

[

v2
B − 3

(
nAB · vB

)2
]

na
AB

− 2
∑

B 6=A

GmB

z2
AB

(
nAB · vB

)
va

B, (5.4.14)

U̇a
ext =

∑

B 6=A

G2mAmB

z3
AB

na
AB −

∑

B 6=A

∑

C 6=A,B

G2mBmC

zABz2
BC

na
BC

+
∑

B 6=A

GmB

z2
AB

(
nAB · vB

)
va

B, (5.4.15)

∂aU b
ext = −

∑

B 6=A

GmB

z2
AB

na
ABvb

B . (5.4.16)

The derivatives of the external potentials are now written explicitly in terms of
the masses mA, the position vectors zA, and the velocity vectors vA. We recall
that zAB := |zA − zB | is the distance between bodies A and B, and that nAB :=
(zA − zB)/|zA − zB | is a unit vector that points from body B to body A.

5.4.4 Equations of motion: Final answer

It is now straightforward to substitute Eqs. (5.4.10)–(5.4.16) into Eq. (5.4.1) for
aA. Noting that we must also let v become vA in this equation, we obtain our final
expression

aA = −
∑

B 6=A

GmB

z2
AB

nAB

+
1

c2

{

−
∑

B 6=A

GmB

z2
AB

[

v2
A + 2v2

B − 4
(
vA · vB

)
− 3

2

(
nAB · vB

)2

− 5GmA

zAB
− 4GmB

zAB
− 4

∑

C 6=A,B

GmC

zAC
−

∑

C 6=A,B

GmC

zBC
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+
1

2

∑

C 6=A,B

GmCzAB

z2
BC

(
nAB · nBC

)
]

nAB

+
∑

B 6=A

GmB

z2
AB

nAB ·
(
4vA − 3vB

)(
vA − vB

)

− 7

2

∑

B 6=A

∑

C 6=A,B

G2mBmC

zABz2
BC

nBC

}

+ O(c−4), (5.4.17)

where

zAB := |zA − zB | (5.4.18)

is the distance between bodies A and B, and

nAB :=
zA − zB

|zA − zB | (5.4.19)

is a unit vector that points from body B to body A.
Equations (5.4.17) are the standard post-Newtonian equations of motion for a

system of N point masses. These equations were first obtained in 1917 by Lorentz
and Droste, and they were made famous by Einstein, Infeld, and Hoffmann, who
rederived them in 1938. Our expression in Eq. (5.4.17) differs only superficially
from the equation displayed in Exercise 39.15 of Misner, Thorne, and Wheeler; it
is easy to show that these are equivalent by rearranging some of the double sums.

5.4.5 Post-Newtonian barycentre

In Sec. 4.4.1 we introduced

M :=
∑

A

mA

(

1 +
1

2

v2
A

c2
− 1

2

⌊U⌋A

c2

)

+ O(c−4) (5.4.20)

as the total post-Newtonian gravitational mass of the N -body system, and

Z :=
1

M

∑

A

mA

(

1 +
1

2

v2
A

c2
− 1

2

⌊U⌋A

c2

)

zA + O(c−4) (5.4.21)

as the position vector of the post-Newtonian barycentre. Here,

⌊U⌋A :=
∑

B 6=A

GmB

zAB
(5.4.22)

is the Newtonian potential external to body A.
It is easy to show that M is conserved by virtue of the Newtonian equations of

motion,

Ṁ = O(c−4). (5.4.23)

It is also possible to show that the barycentre’s acceleration vanishes by virtue of
the post-Newtonian equations of motion,

Z̈ = O(c−4). (5.4.24)

The barycentre therefore moves freely, and Z can be set equal to zero by placing
the origin of the coordinate system at the post-Newtonian barycentre.

To see how Eq. (5.4.24) comes about, we differentiate Eq. (5.4.21) with respect
to time and replace, within the terms of order c−2, all occurrences of the acceleration
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vector aA by its Newtonian expression. This produces the equation

MŻ =
∑

A

mavA +
1

c2

{

1

2

∑

A

mAv2
AvA

− 1

2

∑

A

∑

B 6=A

GmAmB

zAB

[

vA +
(
nAB · vA

)
nAB

]
}

+ O(c−4) (5.4.25)

for the barycentre’s velocity vector. An additional differentiation gives MZ̈, and
substitution of Eq. (5.4.17) reveals (after a long computation) that indeed, Z̈ van-
ishes at 1pn order.

5.5 Two-body dynamics

5.5.1 Two-body equations

In the special case in which the system contains only two bodies, Eq. (5.4.17) reduces
to

a1 = −Gm2

z2
n

+
1

c2

{

−Gm2

z2

[

v2
1 + 2v2

2 − 4
(
v1 · v2

)
− 3

2

(
n · v2

)2 − 5Gm1

z
− 4Gm2

z

]

n

+
Gm2

z2
n ·

(
4v1 − 3v2

)(
v1 − v2

)

}

+ O(c−4), (5.5.1)

and

a2 =
Gm1

z2
n

+
1

c2

{

Gm1

z2

[

v2
2 + 2v2

1 − 4
(
v1 · v2

)
− 3

2

(
n · v1

)2 − 4Gm1

z
− 5Gm2

z

]

n

+
Gm1

z2
n ·

(
4v2 − 3v1

)(
v1 − v2

)

}

+ O(c−4), (5.5.2)

where
z := z1 − z2 (5.5.3)

is the position of body 1 relative to body 2,

z := |z| = |z1 − z2| (5.5.4)

is the distance between the two bodies, and

n :=
z

z
=

z1 − z2

|z1 − z2|
(5.5.5)

is a unit vector that points from body 2 to body 1.
In this two-body context, Eq. (5.4.20) becomes

M = m1 + m2 +
1

c2

{
1

2

(
m1v

2
1 + m2v

2
2

)
− Gm1m2

z

}

+ O(c−4), (5.5.6)

and Eq. (5.4.21) reduces to

MZ = m1z1 + m2z2 +
1

c2

{
1

2

(
m1v

2
1z1 + m2v

2
2z2

)
− Gm1m2

2z

(
z1 + z2

)
}

+ O(c−4). (5.5.7)
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5.5.2 Dynamics of the relative system

It is useful at this stage to impose the barycentre condition

Z = 0, (5.5.8)

and to express z1 and z2 in terms of z := z1 − z2, the relative separation vector.
At Newtonian order we get the usual relations z1 = (m2/m)z + O(c−2) and z2 =
−(m1/m)z + O(c−2), where m := m1 + m2. These imply v1 = (m2/m)v + O(c−2)
and v2 = −(m1/m)v + O(c−2), where v := dz/dt = v1 − v2 is the relative velocity
vector. These Newtonian relations can be inserted within the post-Newtonian terms
in Eqs. (5.5.6) and (5.5.7), and this produces

M = m

{

1 +
1

c2

[
1

2
ηv2 − Gηm

z

]

+ O(c−4)

}

(5.5.9)

for the total gravitational mass, and

0 = m1z1 + m2z2 −
η∆m

2c2

(

v2 − Gm

z

)

z + O(c−4) (5.5.10)

for the barycentre condition.
We have introduced the mass parameters

m := m1 + m2 : total mass, (5.5.11)

η :=
m1m2

(m1 + m2)2
: dimensionless reduced mass, (5.5.12)

∆ :=
m1 − m2

m1 + m2
: dimensionless mass difference. (5.5.13)

The solutions to Eq. (5.5.10) and z = z1 − z2 are

z1 =
m2

m
z +

η∆

2c2

(

v2 − Gm

z

)

z + O(c−4) (5.5.14)

and

z2 = −m1

m
z +

η∆

2c2

(

v2 − Gm

z

)

z + O(c−4). (5.5.15)

We recall the definitions

z := z1 − z2, v := v1 − v2 (5.5.16)

for the relative position and velocity vectors, respectively.
Subtracting Eq. (5.5.2) from Eq. (5.5.1) produces an expression for

a := a1 − a2, (5.5.17)

the relative acceleration vector. After some simple manipulations, we obtain

a = −Gm

z2
n

+
1

c2

{

−Gm

z2

[

(1 + 3η)v2 − 3

2
η(n · v)2 − 2(2 + η)

Gm

z

]

n

+ 2(2 − η)
Gm

z2
(n · v)v

}

+ O(c−4). (5.5.18)

This, together with the definition a = d2z/dt2, gives us an evolution equation for
z, the relative position vector. Once z(t) is known, the position of each body is
determined by Eqs. (5.5.14) and (5.5.15).
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5.5.3 Lagrangian and conserved quantities

The post-Newtonian equations of motion for z, given by Eq. (5.5.18), can be repro-
duced on the basis of the Lagrangian L = ηmL̃, where

L̃ =
1

2
v2 +

Gm

z

+
1

c2

{

1

8
(1 − 3η)v4 +

1

2
(3 + η)

Gm

z
v2 +

Gηm

2z
(n · v)2 − G2m2

2z2

}

+ O(c−4) (5.5.19)

is the Lagrangian per unit of reduced mass ηm.

The generalized momentum p := ∂L̃/∂v associated with this Lagrangian is

p = v +
1

c2

[
1

2
(1 − 3η)v2 + (3 + η)

Gm

z

]

v +
Gηm

c2z
(n · v)n + O(c−4), (5.5.20)

and it follows that

dp

dt
= a − Gm

c2z2

[
1

2
(1 − 5η)v2 + 3ηż2 + (3 + 2η)

Gm

z

]

n − Gm

c2z2
(4 − 3η)żv

+ O(c−4), (5.5.21)

where ż := dz/dt = n · v. To arrive at Eq. (5.5.21) we involved the identity
ṅa = (va − żna)/z and inserted the Newtonian expression for the acceleration,
a = −Gmn/z2 + O(c−2), within the post-Newtonian terms; as a consequence of
this equation, we have that z̈ = (v2 − ż2 − Gm/z)/z + O(c−2), and this also was
required to obtain Eq. (5.5.21).

On the other hand,

∂L̃

∂z
= −Gm

z2
n − Gm

c2z2

[
1

2
(3 + η)v2 +

3

2
ηż2 − Gm

z

]

n +
Gηm

c2z2
ṙv + O(c−4), (5.5.22)

and Eq. (5.5.18) follows directly from the Euler-Lagrange equations, dp/dt = ∂L̃/∂z.

The conserved energy associated with L̃ is Ẽ = p · v − L̃, and according to
Eqs. (5.5.19) and (5.5.20), this is

Ẽ =
1

2
v2 − Gm

z

+
1

c2

{

3

8
(1 − 3η)v4 +

Gm

2z

[

(3 + η)v2 + η(n · v)2
]

+
G2m2

2z2

}

+ O(c−4). (5.5.23)

The system’s actual conserved energy is E = ηmẼ, and this excludes the rest-mass
energy of each body. The angular momentum associated with L̃ is J = z × p, and
this is given by

J =

{

1 +
1

c2

[
1

2
(1 − 3η)v2 + (3 + η)

Gm

z

]

+ O(c−4)

}

z × v; (5.5.24)

this must be multiplied by ηm to obtain the actual angular-momentum vector of
the two-body system. It is a straightforward exercise to show that dJ/dt = 0, so
that the angular-momentum vector is a constant of the post-Newtonian motion.
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5.5.4 Orbital equations

The facts that J , as defined by Eq. (5.5.24), is a constant vector, and that it is at
all times orthogonal to both z and v, imply that the motion of each body must
take place within a fixed orbital plane. We take this plane to be the x-y plane, and
we use polar coordinates z and ψ to describe the orbital motion (z should not be
confused with the third coordinate of the Cartesian system; it continues to stand
for the distance between the two bodies). We write z = [z cos ψ, z sin ψ, 0], and
we resolve all vectors in the basis n = [cos ψ, sin ψ, 0] and ψ = [− sin ψ, cos ψ, 0]
associated with the polar coordinates. We have

z = zn, (5.5.25)

v = żn + (zψ̇)ψ, (5.5.26)

a =
(
z̈ − zψ̇2

)
n +

1

z

d

dt
(z2ψ̇)ψ, (5.5.27)

and Eq. (5.5.18) gives rise to the set of equations

z̈−zψ̇2+
Gm

z2
=

Gm

c2z2

[(

3− 7η

2

)

ż2−(1+3η)
(
zψ̇

)2
+2(2+η)

Gm

z

]

+O(c−4) (5.5.28)

and
d

dt
(z2ψ̇) = 2(2 − η)

Gm

c2
żψ̇ + O(c−4). (5.5.29)

In Newtonian theory, the right-hand sides of Eqs. (5.5.28) and (5.5.29) are zero, and
the orbital equations are those of Kepler’s problem. In post-Newtonian theory, the
orbital equations contain small corrections of fractional order (v/c)2 ∼ Gm/(c2z),
and the motion is no longer Keplerian. Because the corrections are small, the equa-
tions can be handled by any suitable perturbation technique of celestial mechanics.
This leads, for example, to the well-known prediction that the angular position of
the post-Newtonian periastron advances by an amount equal to 6πGm/(c2p) per
orbit, where p is the semilatus rectum of the Keplerian orbit.
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In this chapter we formulate a post-Newtonian theory of gravitational waves.
We follow closely the general methods devised by Will and Wiseman (1996), and
rely on many results obtained in preceding chapters. We begin in Sec. 6.1 with an
examination of the gravitational potentials in the far-away wave zone. We show
that it is always possible to refine the harmonic gauge into a transverse-tracefree
(TT) gauge that is ideally suited to the description of gravitational radiation, and
we introduce efficient techniques to carry out the TT projection. In Sec. 6.2 we
launch a calculation of the gravitational-wave field to 3

2pn order beyond the leading,
Newtonian expression. This calculation is extremely lengthy, and it occupies the
bulk of the chapter, from Sec. 6.3 to Sec. 6.10. The results obtained in these sections
apply to a general N -body system, but they are stated in somewhat abstract terms.
In Sec. 6.11 we convert them into more concrete expressions by specializing to a
two-body system, and in Sec. 6.12 we specialize them even further to the case of
circular orbits. At this stage our results are fully explicit, and expressions for h+

and h×, the two gravitational-wave polarizations, are given in Eqs. (6.12.17) and
(6.12.18), respectively.

6.1 Far-away wave zone and TT gauge

6.1.1 Gravitational potentials in the far-away wave zone

The notion of a wave zone was introduced back in Sec. 2.2; this is the region of
three-dimensional space in which r := |x| is much larger than λc, the characteristic
wavelength of the gravitational-wave field. The notion of a far-away wave zone
was introduced back in Sec. 2.4.1; this is a neighbourhood of future null infinity
in which the r−1 part of the gravitational potentials hαβ dominates over the parts

81
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that fall off as r−2 and faster. As we shall see below, the gravitational-wave field is
the transverse-tracefree (TT) piece of these r−1 potentials; this is what we aim to
calculate in this chapter.

We constructed wave-zone potentials back in Sec. 4.4 (in the second post-
Minkowskian approximation), and from the summary provided in Sec. 4.4.7 we
gather that their behaviour in the far-away wave zone is given by

h00 =
4GM

c2r
+

G

c4r
C(τ,Ω) + O(r−2), (6.1.1)

h0a =
G

c4r
Da(τ,Ω) + O(r−2), (6.1.2)

hab =
G

c4r
Aab(τ,Ω) + O(r−2). (6.1.3)

Here, M is the total gravitational mass of Eq. (4.4.40), while C, Da, and Aab are
functions of retarded-time

τ := t − r/c (6.1.4)

and of the unit vector Ω := x/r. The functions C, Da, and Aab were calculated
in the second post-Minkowskian approximation in Sec. 4.4, but we shall not need
their precise form here. In fact, the validity of Eqs. (6.1.1)–(6.1.3) extends beyond
the post-Minkowskian domain of Sec. 4.4. Indeed, it is easy to show that these
equations provide solutions to the wave equations ¤hαβ = 16πGταβ/c4 provided
only that ταβ , the effective energy-momentum pseudotensor, falls off at least as fast
as r−2. The impact of the harmonic gauge conditions ∂βhαβ = 0 on these solutions
will be examined below.

6.1.2 Decomposition into irreducible components

To proceed it is useful to decompose the vector Da and the tensor Aab into their
irreducible components. We write

Da = DΩa + Da
T, (6.1.5)

with DΩa representing the longitudinal part of Da, and Da
T its transverse part; this

is required to satisfy
ΩaDa

T = 0. (6.1.6)

The three components of Da are therefore partitioned into one longitudinal com-
ponent D, and two transverse components contained in Da

T; these are functions of
τ and Ω. Similarly, we write

Aab =
1

3
δabA +

(

ΩaΩb − 1

3
δab

)

B + ΩaAb
T + ΩbAa

T + Aab
TT, (6.1.7)

which is a breakdown of Aab into a trace part 1
3δabA, a longitudinal-tracefree part

(ΩaΩb − 1
3δab)B, a longitudinal-transverse part ΩaAb

T + ΩbAa
T, and a transverse-

tracefree part Aab
TT; these also are functions of τ and Ω. We impose the constraints

ΩaAa
T = 0 (6.1.8)

and
ΩaAab

TT = 0 = δabA
ab
TT, (6.1.9)

so that the six independent components of Aab are contained in two scalars A and
B, two components of a transverse vector Aa

T, and two components a transverse-
tracefree tensor Aab

TT. The last term in Eq. (6.1.7) is called the transverse-tracefree
part, or TT part, of Aab. As we shall see, the radiative part of the gravitational
potentials are contained entirely within Aab

TT.
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6.1.3 Harmonic gauge conditions

The harmonic gauge conditions are

c−1ḣ00 + ∂bh
0b = 0, c−1ḣ0a + ∂bh

ab = 0,

in which an overdot indicates differentiation with respect to τ . Spatial derivatives
have a simple structure in the far-away wave zone. Going back to Eq. (1.8.5), we
see that ∂ar−1 = O(r−2) and ∂aΩb = O(r−1), but that ∂ar = Ωa. It follows that
when ∂a is acting on the gravitational potentials of Eq. (6.1.1)–(6.1.3), the only
term that survives comes from

∂aτ = −c−1Ωa. (6.1.10)

We therefore have ∂ahαβ = −c−1ḣαβΩa + O(r−2), and the gauge conditions reduce
to

ḣ00 − Ωbḣ
0b = 0, ḣ0a − Ωbḣ

ab = 0 (6.1.11)

in the far-away wave zone.
After substituting Eqs. (6.1.5) and (6.1.7) into Eqs. (6.1.1)–(6.1.3), and these

into Eqs. (6.1.11), we find that the harmonic gauge conditions imply

C = D, (6.1.12)

D =
1

3
A +

2

3
B, (6.1.13)

Da
T = Aa

T. (6.1.14)

We have set the constants of integration to zero, because an eventual τ -independent
term in C would correspond to an unphysical shift in the gravitational mass M ,
while a τ -independent term in Da would be incompatible with Eq. (4.4.38) —
the time-independent part of h0a is associated with the spacetime’s total angular
momentum, and it must fall off as r−2.

Incorporating these constraints, the gravitational potentials become

h00 =
4GM

c2r
+

G

c4r

1

3

(
A + 2B

)
+ O(r−2), (6.1.15)

h0a =
G

c4r

[
1

3
(A + 2B)Ωa + Aa

T

]

+ O(r−2), (6.1.16)

hab =
G

c4r

[
1

3
δabA +

(

ΩaΩb − 1

3
δab

)

B + ΩaAb
T + ΩbAa

T + Aab
TT

]

+ O(r−2), (6.1.17)

in which A, B, Aa
T, and Aab

TT are functions of τ and Ω. We have now a total of six
independent quantities: one in A, another in B, two in Aa

T, and two more in Aab
TT.

The harmonic gauge conditions have eliminated four redundant quantities.

6.1.4 Transformation to the TT gauge

It is possible, in the far-away wave zone, to specialize the harmonic gauge even fur-
ther, and to eliminate four additional redundant quantities. We wish to implement
a gauge transformation that is generated by a four-vector field ξα(t,x). It is well-
known that if the spacetime metric is expressed as gαβ = ηαβ + δgαβ , where ηαβ

is the Minkowski metric and δgαβ is a perturbation, then the gauge transformation
produces the change

δgαβ → δgαβ − ∂αξβ − ∂βξα,
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where ξα := ηαβξβ . In the far-away wave zone we can neglect terms quadratic in
hαβ (because they fall off as r−2), and Eq. (1.6.4) reduces to

gαβ = ηαβ + hαβ − 1

2
hηαβ + O(r−2),

where hαβ = ηαµηβνhµν and h = ηµνhµν . It follows that hαβ = δgαβ − 1
2δgηαβ ,

where δg = ηµνδgµν , and that the gauge transformation produces the change

hαβ → hαβ − ∂αξβ − ∂βξα +
(
∂µξµ

)
ηαβ (6.1.18)

in the gravitational potentials. It follows from Eq. (6.1.18) that the harmonic gauge
conditions will be preserved whenever the vector field satisfies the wave equation
¤ξα = 0, because ∂βhαβ → ∂βhαβ − ¤ξα.

We wish to preserve the harmonic gauge, and we construct a solution to the
wave equation by writing

ξ0 =
G

c3r
α(τ,Ω) + O(r−2), (6.1.19)

ξa =
G

c3r
βa(τ,Ω) + O(r−2), (6.1.20)

where α and βa are arbitrary functions of their arguments. As before we decompose
the vector in terms of its irreducible components,

βa = βΩa + βa
T, Ωaβa

T = 0. (6.1.21)

We differentiate ξ0 and ξa using the rules spelled out in Sec. 6.1.3, and we insert the
results within Eq. (6.1.18). After also involving Eqs. (6.1.15)–(6.1.17), we eventually
deduce that the gauge transformation produces the changes

A → A + 3α̇ − β̇, (6.1.22)

B → B + 2β̇, (6.1.23)

Aa
T → Aa

T + β̇a
T, (6.1.24)

Aab
TT → Aab

TT (6.1.25)

in the irreducible pieces of the gravitational potentials.
We see that the transverse-tracefree part of Aab is invariant under the gauge

transformation. We see also that α, β, and βa
T can be chosen so as to set A, B,

and Aa
T equal to zero. Implementing this gauge transformation, we arrive at the

simplest expressions for the gravitational potentials in the far-away wave zone:

h00 =
4GM

c2r
+ O(r−2), (6.1.26)

h0a = O(r−2), (6.1.27)

hab =
G

c4r
Aab

TT(τ,Ω) + O(r−2). (6.1.28)

By virtue of the conditions imposed in Eq. (6.1.9),

ΩaAab
TT = 0 = δabA

ab
TT,

the number of time-dependent quantities has been reduced to two. The gravitational
potentials of Eqs. (6.1.26)–(6.1.28) are said to be in the transverse-tracefree gauge,
or TT gauge, a specialization of the harmonic gauge that can be achieved in the far-
away wave zone. It is clear that the radiative degrees of freedom of the gravitational
field must be contained in the two independent components of Aab

TT.
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6.1.5 Geodesic deviation

This conclusion, that Aab
TT contains the radiative degrees of freedom, is reinforced

by the following argument. Suppose that a gravitational-wave detector consists of
two test masses that are moving freely in the far-away wave zone. The masses are
separated by a spacetime vector ηα, and they move with a four-velocity uα. As-
suming that the distance between the masses is small compared with the radiation’s
characteristic wavelength (this defines a short gravitational-wave detector such as
the LIGO instrument), the behaviour of the separation vector is governed by the
equation of geodesic deviation

D2ηα

ds2
= −Rα

βγδu
βηγuδ,

in which D/ds indicates covariant differentiation in the direction of uα, and where
Rα

βγδ is the Riemann tensor. Assuming in addition that the test masses are moving
slowly, this equation reduces to

d2ηa

dt2
= −c2Ra

0b0η
b,

which involves ordinary differentiations with respect to t = x0/c, as well as the
spatial components of the separation vector.

It is a straightforward exercise to compute the Riemann tensor associated with
the metric gαβ = ηαβ + hαβ − 1

2hηαβ , even when the gravitational potentials are
expressed in their general form of Eqs. (6.1.15)–(6.1.17). Alternatively, one can
proceed instead from Eqs. (6.1.26)–(6.1.28) and appeal to the fact that the Riemann
tensor is invariant under gauge transformations. In any event, the computation
reveals that

c2Ra
0b0 = − G

2c4r
Äab

TT + O(r−2),

and the equation of geodesic deviation becomes

d2ηa

dt2
=

G

2c4r
Äab

TTηb + O(r−2) =
1

2
ḧab

TT + O(c−2).

We conclude that our gravitational-wave detector is driven by the TT part of the
gravitational potentials, and that the other pieces of the potentials contain no ra-
diative information.

6.1.6 Extraction of the TT part

Given gravitational potentials presented in the general form of Eq. (6.1.3),

hab =
G

c4r
Aab(τ,Ω) + O(r−2), (6.1.29)

the radiative pieces can be extracted by isolating the transverse-tracefree part of
Aab. This can be done efficiently by introducing the TT projector (tt)ab

cd, and by
writing

Aab
TT = (tt)ab

cdA
cd. (6.1.30)

The TT projector is constructed as follows. We first introduce the transverse pro-
jector

P a
b := δa

b − ΩaΩb, (6.1.31)

which removes the longitudinal components of vectors and tensors. For example,
for a vector Aa = AΩa + Aa

T with ΩaAa
T = 0, we have that P a

bA
b = Aa

T. The
transverse projector satisfies

P a
bΩ

b = 0, P a
a = 2, P a

cP
c
b = P a

b. (6.1.32)
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The TT projector is obtained by acting with the transverse projector twice and
removing the trace:

(tt)ab
cd := P a

cP
b
d − 1

2
P abPcd. (6.1.33)

It is easy to see that this possesses the required properties. First, (tt)ab
cdΩ

d = 0;
second, (tt)ab

cdδ
cd = 0; and third, (tt)ab

cdA
cd
TT = Aab

TT if the tensor Aab
TT is already

transverse and tracefree. For a general symmetric tensor Aab decomposed as in
Eq. (6.1.7), it is easy to verify that

(tt)ab
cdA

cd = Aab
TT. (6.1.34)

This equation informs us that the TT part of any symmetric tensor Aab can be
extracted by acting with the TT projector defined by Eq. (6.1.33).

It is useful to introduce a vectorial basis in the transverse subspace. Having
previously introduced

Ω := [sin θ cos φ, sin θ sinφ, cos θ] (6.1.35)

as the unit vector that points in the longitudinal direction, we introduce now the
unit vectors

θ := [cos θ cos φ, cos θ sinφ,− sin θ] (6.1.36)

and
φ := [− sin φ, cos φ, 0], (6.1.37)

which are both orthogonal to Ω, and also orthogonal to each other. The vector
θ points in the direction of increasing θ on the two-sphere, while φ points in the
direction of increasing φ; they span the transverse subspace orthogonal to Ω, which
points in the direction of increasing r. The basis gives us the completeness relations

δab = ΩaΩb + θaθb + φaφb, (6.1.38)

and it follows from Eq. (6.1.31) that the transverse projector is given by

P ab = θaθb + φaφb. (6.1.39)

This can be inserted within Eq. (6.1.33) to form the TT projector.
Any symmetric, transverse, and tracefree tensor Aab

TT can be decomposed in a
tensorial basis that is built entirely from the vectors θ and φ. Such a tensor has
two independent components, which we denote A+ and A×. We write

Aab
TT = A+

(
θaθb − φaφb

)
+ A×

(
θaφb + φaθb

)
, (6.1.40)

so that A+ represents the θ-θ component of the tensor (and also minus the φ-φ
component, in order to satisfy the tracefree condition), while A× represents its θ-φ
component. It is easy to check that Eq. (6.1.40) implies

A+ =
1

2

(
θaθb − φaφb

)
Aab

TT,

A× =
1

2

(
θaφb + φaθb

)
Aab

TT.

Because the tensorial operators acting on Aab
TT are already transverse and tracefree,

this can also be written as

A+ =
1

2

(
θaθb − φaφb

)
Aab, (6.1.41)

A× =
1

2

(
θaφb + φaθb

)
Aab, (6.1.42)
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in which the projection operators are acting on the original tensor Aab instead of
its TT part Aab

TT.
Equations (6.1.41) and (6.1.42), together with the definitions of Eqs. (6.1.36) and

(6.1.37), provide an efficient way of extracting the transverse-tracefree components
of a general tensor Aab. With A+ and A× known, the TT part of the original tensor
can be constructed with the help of Eq. (6.1.40).

6.2 Computation of hab: Strategy and

requirements

We wish to integrate the wave equation

¤hab = −16πG

c4
τab (6.2.1)

for the spatial components of the gravitational potentials, and evaluate the solution
in the far-away wave zone. Here,

τab = (−g)
(
T ab + tab

LL + tab
H

)
(6.2.2)

are the spatial components of the effective energy-momentum pseudotensor first
introduced in Sec. 1.3, decomposed into a material contribution T ab, the Landau-
Lifshitz pseudotensor tαβ

LL, and the harmonic-gauge contribution tab
H . We wish to

integrate the wave equation to a degree of accuracy that surpasses what was achieved
in Chapter 4, and we wish to extract from hab the transverse-tracefree pieces that
truly represent the gravitational-wave field.

Techniques to integrate Eq. (6.2.1) were developed in Chapter 2. In Sec. 2.3 we
learned to express the solution as

hab = hab
N + hab

W , (6.2.3)

in terms of a near-zone retarded integral hab
N

and a wave-zone integral hab
W

. In
Sec. 2.4.1 we derived an expression for hab

N
that is valid in the far-away wave zone;

this is given by Eq. (2.4.5), which we copy as

hab
N =

4G

c4r

∞∑

q=0

1

q!
ΩQ

(
∂

∂u

)q ∫

M

τab(u,x′)x′Q d3x′ + O(r−2), (6.2.4)

where u := ct − r = c(t − r/c) =: cτ is a retarded-time variable, ΩQx′Q :=
Ωa1

Ωa2
· · ·Ωaq

x′a1x′a2 · · ·x′aq = (Ω · x′)q, and where the domain of integration
M is defined by r′ := |x′| < R, with r′ = R representing the boundary ∂M of the
near and wave zones. And in Sec. 2.5.2 we devised a method to calculate hab

W
when

τab can be expressed as a sum of terms of the form

τab[ℓ, n] =
1

4π

f(u)

rn
Ω〈L〉, (6.2.5)

in which f is an arbitrary function of u, n is an arbitrary integer, and Ω〈L〉 is an
angular STF tensor of degree ℓ, of the sort introduced in Sec. 1.8.1. According to
Eq. (2.5.16), hab

W
is a sum of terms of the form

hab
W [ℓ, n] =

4G

c4r
Ω〈L〉

{∫ R

0

dsf(u − 2s)A(s, r) +

∫ ∞

R

dsf(u − 2s)B(s, r)

}

, (6.2.6)

where

A(s, r) =

∫ r+s

R

Pℓ(ξ)

pn−1
dp, B(s, r) =

∫ r+s

s

Pℓ(ξ)

pn−1
dp, (6.2.7)
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in which Pℓ is a Legendre polynomial of argument ξ = (r + 2s)/r − 2s(r + s)/(rp).
We shall return to hab

W
at a later stage. For the time being we focus our attention

on the near-zone contribution hab
N

, and we write Eq. (6.2.4) in a form that reveals
the early terms of the sum:

hab
N =

4G

c4r

{∫

M

τab d3x′ + Ωc
∂

∂u

∫

M

τabx′c d3x′ +
1

2
ΩcΩd

∂2

∂u2

∫

M

τabx′cx′d d3x′

+
1

6
ΩcΩdΩe

∂3

∂u3

∫

M

τabx′cx′dx′d d3x′ + [q ≥ 4]

}

+ O(r−2),

in which [q ≥ 4] stands for the remaining terms in the sum over q. To evaluate the
first two integrals we invoke the conservation identities of Sec. 1.4. According to
Eq. (1.4.3), for example,

τab =
1

2

∂2

∂u2

(
τ00xaxb

)
+

1

2
∂c

(
τacxb + τ bcxa − ∂dτ

cdxaxb
)

and τab can be replaced by 1
2τ00xaxb inside the volume integral, at the price

of adding an integral over ∂M to account for the total divergence. We involve
Eq. (1.4.4),

τabxc =
1

2

∂

∂u

(
τ0axbxc + τ0bxaxc − τ0cxaxb

)
+

1

2
∂d

(
τadxbxc + τ bdxaxc − τ cdxaxb

)
,

in a similar way.
Introducing some notation to simplify the writing, we have

hab
N =

2G

c4r

∂2

∂τ2

{

Qab + QabcΩc + QabcdΩcΩd +
1

3
QabcdeΩcΩdΩe + [q ≥ 4]

}

+
2G

c4r

{

P ab + P abcΩc

}

+ O(r−2), (6.2.8)

in which the radiative multipole moments are defined by

Qab :=
1

c2

∫

M

τ00x′ax′b d3x′, (6.2.9)

Qabc :=
1

c2

∫

M

(
τ0ax′bx′c + τ0bx′ax′c − τ0cx′ax′b

)
d3x′, (6.2.10)

Qabcd :=
1

c2

∫

M

τabx′cx′d d3x′, (6.2.11)

Qabcde :=
1

c3

∂

∂τ

∫

M

τabx′cx′dx′e d3x′, (6.2.12)

and where

P ab :=

∮

∂M

(
τacx′b + τ bcx′a − ∂′

dτ
cdx′ax′b

)
dSc, (6.2.13)

P abc :=
1

c

∂

∂τ

∮

∂M

(
τadx′bx′c + τ bdx′ax′c − τ cdx′ax′b

)
dSd. (6.2.14)

In the volume integrals, the components of the effective energy-momentum pseu-
dotensor are expressed as functions of τ := t− r/c and x′. The same is true within
surface integrals, except for the fact that x′a is now set equal to RΩ′a; the surface
element on ∂M is dSa := R2Ω′

adΩ′. The multipole moments Qab, Qabc, Qabcd, and
Qabcde, as well as the surface integrals P ab and P abc, are functions of τ only.

In the following sections we will endeavour to calculate the quantities that appear
within Eq. (6.2.8), and we will extract the transverse-tracefree part of hab. In
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Chapter 4 (see Sec. 4.4.7 for a summary) we saw that at leading order in a post-
Newtonian expansion,

hab =
2G

c4r
Ïab,

where Iab is the Newtonian quadrupole moment of the mass distribution, and an
overdot indicates differentiation with respect to τ . This leading term was labeled as
a 1pn term, and it could be calculated on the basis of the leading-order (Newtonian)
contribution to the effective mass density τ00. For our purposes in this chapter, it
is useful to reset the post-Newtonian counter, and to call the leading term in hab

the Newtonian contribution to the gravitational potentials; additional terms will be
labeled 1

2pn, 1pn, 3
2pn, and so on. This new convention will have the virtue of

keeping the post-Newtonian orders of the solution in step with those of the source,
and those of the multipole moments.

In this new post-Newtonian counting, we wish to compute hab accurately to 3
2pn

order. Schematically, we want

hab =
G

c4r

(

c0 + c−1 + c−2 + c−3 + · · ·
)

,

in which the leading term is called a 0pn contribution, the correction of order c−1

a 1
2pn term, and so on. To achieve this we need to calculate:

τ00 = c2 + c0 + · · · to obtain Qab = c0 + c−2 + · · · ,
τ0a = c + c−1 + · · · to obtain Qabc = c−1 + c−3 + · · · ,

and

τab = c0 + · · · to obtain Qabcd = c−2 + · · · and Qabcde = c−3 + · · · .

And on ∂M we need to calculate

τab = c0 + c−2 + · · · to obtain P ab = c0 + c−2 + · · · and P abc = c−1 + c−3 + · · · .

All in all, this will give us the 3
2pn accuracy that we demand for hab.

Our considerations have so far excluded hab
W

. We postpone a detailed discus-
sion until Sec. 6.10, in which this contribution to the gravitational potentials is
computed. For the time being it will suffice to say that hab

W
contributes to the

gravitational potentials at 3
2pn order. It is therefore needed to achieve the required

level of accuracy for hab.
The calculations that follow are lengthy. They are considerably simplified by

the observation that ultimately, we wish to extract the transverse-tracefree part
of hab. It is therefore not necessary to calculate any term that will not survive
the TT projection introduced in Sec. 6.1.6. For example, a term in hab that is
proportional to δab, or to Ωa, will not survive the projection, and does not need to
be computed (there are many such terms, and ignoring them will be a substantial
time saver). As another example, terms in Qabcd that are proportional to δac, or
δbc, or δad, or δbd (but not δcd!), can all be ignored because they will produce
contributions to hab that are proportional to Ωa or Ωb, and these will not survive
the TT projection. To indicate equality modulo terms that do not survive the
transverse-tracefree projection, we introduce the notation

tt

=, so that

Aab tt

= Bab

whenever

(tt)ab
cdA

cd = (tt)ab
cdB

cd;
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in other words, Aab and Bab differ by a tensor Cab that contains no TT part:
(tt)ab

cdC
cd = 0.

An additional source of simplification — an important one — was exploited
previously, back in Sec. 4.4.4, with a justification provided in Sec. 2.3: We are free
to ignore all R-dependent terms in hab

N
, and all R-dependent terms in hab

W
, because

any dependence on the arbitrary cutoff parameter R (the radius of the artificial
boundary between the near zone and the wave zone) is guaranteed to cancel out
after hab

N
and hab

W
are added together to form the complete potentials hab. We shall,

therefore, feel completely free to drop all R-dependent terms from our expressions,
and this is another significant time saver.

6.3 Integration techniques for field integrals

In the course of our calculations we shall encounter a number of field integrals, an
example of which is

Eab :=
1

4π

∫

M

U∂aUxb d3x, (6.3.1)

where M is the domain of integration r := |x| < R, and where

U :=
∑

A

GmA

|x − zA|
(6.3.2)

is the Newtonian potential. In this section we introduce techniques to evaluate such
integrals. We will examine the specific case of Eq. (6.3.1), but the techniques are
quite general, and they will apply equally well to many similar field integrals.

6.3.1 Explicit form of Eab; Change of integration variables

After evaluating ∂aU we find that the field integral can be expressed in the more
explicit form

Eab = −
∑

A

G2m2
AEab

A −
∑

A

∑

B 6=A

G2mAmBEab
AB , (6.3.3)

where

Eab
A :=

1

4π

∫

M

(x − zA)axb

|x − zA|4
d3x (6.3.4)

and

Eab
AB :=

1

4π

∫

M

(x − zB)axb

|x − zA||x − zB |3 d3x. (6.3.5)

To evaluate the first integral we make the substitution

x = zA + y, (6.3.6)

and integrate with respect to the new variables y. This leads to

Eab
A =

1

4π

∫

M

yayb

y4
d3y +

zb
A

4π

∫

M

ya

y4
d3y, (6.3.7)

where y := |y|. To evaluate the second integral we use instead

x = zB + y (6.3.8)

and integrate with respect to y. This leads to

Eab
AB =

1

4π

∫

M

1

|y − zAB |
yayb

y3
d3y +

zb
B

4π

∫

M

1

|y − zAB |
ya

y3
d3y, (6.3.9)

where zAB := zA − zB .
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6.3.2 Translation of the domain of integration

The schematic form of each integral that appears in Eqs. (6.3.7) and (6.3.9) is
∫

M

f(y) d3y,

where f is a function of the vector y, which is related to the original set of variables
x by a relation of the form x = y + z, with z independent of x. The domain of
integration M is defined by |x| < R, or |y + z| < R, and it will be convenient to
replace it by the simpler domain My defined by y := |y| < R.

To effect this replacement we note that the cutoff radius R can be assumed to
be large compared with z := |z|. (Recall the discussion of Sec. 2.3, in which R is
chosen to be comparable to λc, the characteristic wavelength of the gravitational
radiation. Recall also the discussion of Sec. 3.3.3, in which λc is shown to be
large compared with both |zA| and |zAB |, because in a slow-motion situation the
matter distribution is always situated deep within the near zone. Conclude from
these observations that z/R ≪ 1, as claimed.) The condition that defines M is
y2 + 2z · y + z2 < R2, and this can be expressed more simply as

y < R− z cos γ + O(z2/R)

when z/R ≪ 1; here γ is the angle between the vectors y and z, defined by the
statement zy cos γ := z · y.

Switching to the spherical polar coordinates (y, θ, φ) associated with the vector
y, the integral is

∫

M

f(y) d3y =

∫

dΩ

∫ R−z cos γ+···

0

f(y, θ, φ) y2dy

=

∫

dΩ

∫ R

0

f(y, θ, φ) y2dy +

∫

dΩ

∫ R−z cos γ+···

R

f(y, θ, φ) y2dy,

where dΩ = sin θ dθdφ is the element of solid angle. In the second line, the first
integral is over the domain My, while the second integral is estimated as

∫

(−z cos γ)R2f(R, θ, φ) dΩ = −
∮

∂My

f(y)z · dS

to first order in z/R, where dSa := R2Ωa dΩ (with Ω := y/y) is the surface element
on ∂My, the boundary of My described by the equation y = R.

We have obtained the useful approximation
∫

M

f(y) d3y =

∫

My

f(y) d3y −
∮

∂My

f(y)z · dS + · · · , (6.3.10)

in which the domain of integration My is defined by y := |y| < R, and ∂My is its
boundary at y = R. In Eq. (6.3.10), the integration variables y are related to the
original variables x by the translation x = z + y, and M is the original domain of
integration defined by |x| < R. It is clear that the surface integral in Eq. (6.3.10)
is smaller than the volume integral by a factor of order |z|/R ≪ 1; the neglected
terms are smaller still.

6.3.3 Evaluation of Eab
A

We now return to the field integral of Eq. (6.3.7). We begin by working on the first
term, which we copy as

1

4π

∫

M

yayb

y4
d3y.
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Inserting this within Eq. (6.3.10), we find that the volume integral is

1

4π

∫

My

yayb

y4
d3y =

1

4π

∫

My

ΩaΩb dydΩ =
〈〈
ΩaΩb

〉〉
∫ R

0

dy =
1

3
δabR,

in which 〈〈 · · · 〉〉 := (4π)−1
∫
(· · ·) dΩ denotes an angular average; the identity 〈〈ΩaΩb〉〉 =

1
3δab was established back in Sec. 1.8.4, along with other similar results. This con-
tribution to Eab

A can be discarded, because it is proportional to R, and it was agreed
near the end of Sec. 6.2 that all R-dependent terms can indeed be ignored. With
the understanding that z stands for zA, the surface integral is

− 1

4π

∮

∂My

yayb

y4
z · dS = − 1

4π

∫

ΩaΩbzcΩ
c dΩ = −zc

〈〈
ΩaΩbΩc

〉〉
= 0.

The neglected terms in Eq. (6.3.10) are of order R−1 and smaller, and because they
depend on R, they can be freely discarded. We conclude that the first term in
Eq. (6.3.7) evaluates to zero.

We next set to work on the second term, which involves the integral

1

4π

∫

M

ya

y4
d3y.

Inserting this within Eq. (6.3.10), we find that the volume integral is

1

4π

∫

My

ya

y4
d3y =

〈〈
Ωa

〉〉
∫ R

0

dy

y
= 0.

The volume integral is zero, and it is a fortunate outcome that the logarithmic
divergence at y = 0 (which occurs because the matter distribution is modeled as a
collection of point masses) requires no explicit regularization, because the angular
integration vanishes identically. The surface integral is

− 1

4π

∮

My

ya

y4
z · dS = −zc

R
〈〈
ΩaΩc

〉〉
= −1

3

za

R ,

in which z stands for zA. The additional terms in Eq. (6.3.10) are smaller by
additional powers of z/R ≪ 1, and because they all depend on R, they can be
freely discarded. We conclude that the second term in Eq. (6.3.7) evaluates to zero.

We have arrived at

Eab
A = 0, (6.3.11)

modulo R-dependent terms that can be freely discarded.

6.3.4 Evaluation of Eab
AB

To evaluate the right-hand side of Eq. (6.3.9) we continue to make use of Eq. (6.3.10)
to express an integral over the domain M in terms of a volume integral over My

and a surface integral over ∂My. We also make use of the addition theorem for
spherical harmonics,

1

|y − zAB | =
∞∑

ℓ=0

ℓ∑

m=−ℓ

4π

2ℓ + 1

rℓ
<

rℓ+1
>

Ȳℓm(nAB)Y ℓm(Ω), (6.3.12)

in which r< := min(y, zAB), r> = max(y, zAB), Ω := y/y, and nAB := zAB/zAB .
We recall that zAB := zA − zB .
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We insert Eq. (6.3.12) within the first integral on the right-hand side of Eq. (6.3.9).
Recalling Eq. (6.3.10), we approximate this by

1

4π

∫

My

1

|y − zAB |
yayb

y3
d3y =

1

4π

∫

My

1

|y − zAB |Ω
aΩby dydΩ

=
∑

ℓ

1

2ℓ + 1

∫ R

0

dy y
rℓ
<

rℓ+1
>

∑

m

∫

Ȳℓm(nAB)Y ℓm(Ω)ΩaΩb dΩ.

To evaluate the angular integral we express ΩaΩb as

ΩaΩb = Ω〈ab〉 +
1

3
δab,

where Ω〈ab〉 is an STF tensor of the sort introduced in Sec. 1.8.1, and we invoke the
identity displayed in Eq. (1.8.16),

ℓ∑

m=−ℓ

Ȳℓm(nAB)

∫

Yℓm(Ω)Ω〈L′〉 dΩ = δℓℓ′ n
〈L〉
AB . (6.3.13)

This produces

1

4π

∫

My

1

|y − zAB |
yayb

y3
d3y =

1

5
K(2, 1)n

〈ab〉
AB +

1

3
K(0, 1) δab,

where the radial integrals

K(ℓ, n) :=

∫ R

0

yn rℓ
<

rℓ+1
>

dy (6.3.14)

will be evaluated in the next subsection. This expression must be corrected by the
surface integral of Eq. (6.3.10). We have

1

4π

∮

∂My

1

|y − zAB |
yayb

y3
z · dS =

Rzc

4π

∫
1

|y − zAB |Ω
aΩbΩc dΩ,

in which z stands for zB . Because the leading term of |y−zAB |−1 in an expansion
in powers of zAB/R ≪ 1 is equal to R−1, the surface integral potentially gives rise
to an R-independent contribution to Eab

AB . But this leading term is proportional to
〈〈ΩaΩbΩc〉〉 = 0, and we find that the surface integral does not actually contribute.
At this stage we have obtained

1

4π

∫

M

1

|y − zAB |
yayb

y3
d3y =

1

5
K(2, 1)n

〈ab〉
AB +

1

3
K(0, 1) δab

for the first integral on the right-hand side of Eq. (6.3.9).
We next set to work on the second integral, and we begin by evaluating

1

4π

∫

My

1

|y − zAB |
ya

y3
d3y =

1

4π

∫

My

1

|y − zAB |Ω
a dydΩ

=
∑

ℓ

1

2ℓ + 1

∫ R

0

dy
rℓ
<

rℓ+1
>

∑

m

∫

Ȳℓm(nAB)Y ℓm(Ω)Ωa dΩ.

Using Eqs. (6.3.13) and (6.3.14), this is

1

4π

∫

My

1

|y − zAB |
ya

y3
d3y =

1

3
K(1, 0)na

AB .
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This must be corrected by the surface integral of Eq. (6.3.10), and it is easy to show
that in this case also, the result scales as R−1 and does not contribute. We have
therefore obtained

1

4π

∫

M

1

|y − zAB |
ya

y3
d3y =

1

3
K(1, 0)na

AB

for the second integral on the right-hand side of Eq. (6.3.9).
Altogether we find that

Eab
AB =

1

5
K(2, 1)n

〈ab〉
AB +

1

3
K(0, 1) δab +

1

3
K(1, 0)na

ABzb
B, (6.3.15)

where

nAB =
zAB

zAB
=

zA − zB

|zA − zB | (6.3.16)

is a unit vector that points from body B to body A, and where n
〈ab〉
AB := na

ABnb
AB −

1
3δab is an STF tensor.

6.3.5 Radial integrals

To complete the computation we must now evaluate the radial integrals defined by
Eq. (6.3.14),

K(ℓ, n) :=

∫ R

0

yn rℓ
<

rℓ+1
>

dy, (6.3.17)

in which r< := min(y, z) and r> = max(y, z), with z standing for zAB := |zA−zB |.
Excluding the case n = ℓ, which never occurs in applications, we have

K(ℓ, n) =
1

zℓ+1

∫ z

0

yℓ+n dy + zℓ

∫ R

z

yn−ℓ−1 dy

=
zn

ℓ + n + 1
− zn

n − ℓ

[

1 − (z/R)ℓ−n
]

.

We discard the last term, because it depends on the cutoff radius R, and we conclude
that

K(ℓ, n) =
2ℓ + 1

(ℓ − n)(ℓ + n + 1)
|zAB |n, (ℓ 6= n). (6.3.18)

In particular, K(2, 1) = 5
4zAB , K(0, 1) = − 1

2zAB , and K(1, 0) = 3
2 .

6.3.6 Eab: Final answer

Substituting Eq. (6.3.18) into Eq. (6.3.15), we find that Eab
AB becomes

Eab
AB =

1

4
zABn

〈ab〉
AB − 1

6
zABδab +

1

2
na

ABzb
B.

This, together with Eq. (6.3.11) for Eab
A , can now be inserted within Eq. (6.3.3).

We arrive at

Eab = −
∑

A

∑

B 6=A

G2mAmB

(
1

4
zABn

〈ab〉
AB − 1

6
zABδab +

1

2
na

ABzb
B

)

,

and this can also be expressed as

Eab = −
∑

A

∑

B 6=A

G2mAmB

(
1

4
zABn

〈ab〉
AB − 1

6
zABδab − 1

2
na

ABzb
A

)
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if we interchange the identities of A and B and recall that nBA = −nAB . When
we add these expressions and divide by two, we obtain the symmetrized form

Eab = −
∑

A

∑

B 6=A

G2mAmB

(
1

4
zABn

〈ab〉
AB − 1

6
zABδab − 1

4
zABna

ABnb
AB

)

.

This becomes

Eab =
1

4
δab

∑

A

∑

B 6=A

G2mAmB |zA − zB | (6.3.19)

after simplification, and this is our final answer.

6.3.7 Summary

To sum up, let us retrace the main steps that led us from the definition

Eab =
1

4π

∫

M

U∂aUxb d3x,

to its evaluation

Eab =
1

4
δab

∑

A

∑

B 6=A

G2mAmB |zA − zB |.

These steps will allow us, in the following sections, to evaluate many similar field
integrals.

After inserting the Newtonian potential and its derivative within the integral,
we change the variables of integration from x to y = x − z, in which z stands
for either zA or zB , depending on the context. We also translate the domain of
integration from M (defined by |x| < R) to My (defined by |y| < R), and we make
use of the identity

∫

M

f(y) d3y =

∫

My

f(y) d3y −
∮

∂My

f(y)z · dS + · · · , (6.3.20)

in which the surface integral is smaller than the volume integral by a factor of order
|z|/R ≪ 1 (and the dotted terms are smaller still).

Next we invoke the addition theorem for spherical harmonics,

1

|y − zAB | =

∞∑

ℓ=0

ℓ∑

m=−ℓ

4π

2ℓ + 1

rℓ
<

rℓ+1
>

Ȳℓm(nAB)Y ℓm(Ω), (6.3.21)

in which zAB = zA − zB , r< := min(y, zAB), r> = max(y, zAB), Ω := y/y, and
nAB := zAB/zAB . After expressing all factors such as ΩL in terms of STF tensors,
the angular integrations are carried out with the help of the identity

ℓ∑

m=−ℓ

Ȳℓm(nAB)

∫

Yℓm(Ω)Ω〈L′〉 dΩ = δℓℓ′ n
〈L〉
AB . (6.3.22)

This leaves us with a number of radial integrations to work out, and these are given
by

K(ℓ, n) :=

∫ R

0

yn rℓ
<

rℓ+1
>

dy =
2ℓ + 1

(ℓ − n)(ℓ + n + 1)
|zAB |n, (6.3.23)

provided that ℓ 6= n.
And at last, after simplification, we obtain our final expression for the field

integral. All the while we are justified to throw away any term that contains an
explicit dependence on the arbitrary cutoff radius R.
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6.4 Computation of Qab

We launch our calculation of the gravitational-wave field with a computation of
Qab, the radiative quadrupole moment. According to Eq. (6.2.9), this is defined by

Qab(τ) :=
1

c2

∫

M

τ00(τ,x)xaxb d3x, (6.4.1)

in which τ := t − r/c is retarded time, and where we suppress the primes on the
integration variables to simplify the notation. (It should be kept in mind that r is
the distance from the origin to the field point, which is very distinct from the source
point now identified by the vector x.)

According to the discussion of Sec. 6.2, to calculate Qab to the required degree
of accuracy we need an expression for c−2τ00 that includes terms of order c0 (New-
tonian, or 0pn) and terms of order c−2 (1pn). Such an expression was obtained in
Sec. 4.1, and it can be read off the right-hand side of Eq. (4.1.26). We have

c−2τ00 =
∑

A

mA

(

1+
v2

A

2c2
+

3⌊U⌋A

c2

)

δ
(
x−zA

)
− 14

16πGc2
∂cU∂cU +O(c−4), (6.4.2)

where we used the fact that in the near zone, and at this order of accuracy, the
gravitational potential Φ defined by Eq. (4.1.25) can be set equal to the Newtonian
potential

U =
∑

A

GmA

|x − zA|
. (6.4.3)

We recall that

⌊U⌋A :=
∑

B 6=A

GmB

|zA − zB | (6.4.4)

is the potential external to body A, evaluated at x = zA. In Eqs. (6.4.2)–(6.4.4),
the position vectors zA and velocity vectors vA evaluated at the retarded time τ .

The quadrupole moment contains both a matter contribution that comes from
the δ-functions in τ00, and a field contribution that comes from the term involving
∂cU∂cU . The matter contribution can be calculated at once:

Qab[M] =
∑

A

mA

(

1 +
v2

A

2c2
+

3⌊U⌋A

c2

)

za
Azb

A. (6.4.5)

The field contribution is

Qab[F] = − 14

16πGc2

∫

M

∂cU∂cUxaxb d3x, (6.4.6)

and its computation requires a lot more work. The complete radiative quadrupole
moment is

Qab = Qab[M] + Qab[F] + O(c−4), (6.4.7)

and it will be calculated accurately through 1pn order.

To evaluate the field integral of Eq. (6.4.6) we first express the integrand in the
equivalent form

∂cU∂cUxaxb = ∂c

(
U∂cUxaxb

)
− 1

2
∂a

(
U2xb

)
− 1

2
∂b

(
U2xa

)

+ U2δab − U(∇2U)xaxb,
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which allows us to integrate by parts. We may discard the term U2δab on the
grounds that it will not survive the TT projection introduced in Sec. 6.1.6. We may
also replace ∇2U by −4πG

∑

A mAδ(x − zA), and write
∫

M

∂cU∂cUxaxb d3x
tt

=

∮

∂M

U∂cUxaxb dSc −
∮

∂M

U2x(adSb)

+ 4πG
∑

A

mA⌊U⌋Aza
Azb

A,

where the notation
tt

= was introduced near the end of Sec. 6.2, and where dSa =
R2Ωa dΩ is the surface element on ∂M . Making this substitution, we obtain

Qab[F]
tt

= − 7

2Gc2

(

R4
〈〈
U∂cUΩaΩbΩc

〉〉
−R3

〈〈
U2ΩaΩb

〉〉)

− 7

2c2

∑

A

mA⌊U⌋Aza
Azb

A,

in which the angular brackets denote an average over the unit two-sphere.
We must now think of evaluating the surface integrals, on which x is set equal

to RΩ. Recalling that R is large compared with zA (refer back to Sec. 6.3.2), it
is appropriate to expand U in powers of r−1 before we insert it within the surface
integrals. We have

U =
Gm

r
+

1

2
GIab∂abr

−1 + O(r−3), (6.4.8)

where m :=
∑

A mA is the total mass, and Iab :=
∑

A mAza
Azb

A is the Newtonian
quadrupole moment of the mass distribution. It is important to notice that the
Newtonian dipole moment, Ia :=

∑

A mAza
A, has been set equal to zero. This is

allowed, because I = mZ + O(c−2), where Z is the post-Newtonian barycentre
(refer back to Sec. 5.4.5), and we work in a coordinate system such that Z ≡ 0.
From Eq. (6.4.8) we also get

∂aU = Gm∂ar−1 +
1

2
GIbc∂abcr

−1 + O(r−4). (6.4.9)

These results indicate that on ∂M , the potential and its gradient are given schemat-
ically by U = R−1+R−3+· · · and ∂aU = R−2+R−4+· · ·. This implies, for example,
that R4U∂cU = R + R−1 + · · · and R3U2 = R + R−1 + · · ·. This reveals, finally,
that the surface integrals produce no R-independent contributions to Qab[F].

We have obtained

Qab[F]
tt

= − 7

2c2

∑

A

mA⌊U⌋Aza
Azb

A, (6.4.10)

and combining this with Eqs. (6.4.5) and (6.4.7), we conclude that the radiative
quadrupole moment is given by

Qab tt

=
∑

A

mA

(

1 +
1

2

v2
A

c2
− 1

2

⌊U⌋A

c2

)

za
Azb

A + O(c−4). (6.4.11)

This expression leaves out a term proportional to δab that would not survive the
action of the transverse-tracefree projector (tt)ab

cd, as well as R-dependent terms
that can be freely discarded.

6.5 Computation of Qabc

6.5.1 Definition of auxiliary quantities

We turn next to the computation of Qabc, the radiative octupole moment. According
to Eq. (6.2.10), this is defined by

Qabc := Aabc + Abac − Acab, (6.5.1)
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where

Aabc(τ) :=
1

c2

∫

M

τ0a(τ,x)xbxc d3x, (6.5.2)

in which τ := t − r/c is retarded time, and where we suppress the primes on the
integration variables to simplify the notation.

According to the discussion of Sec. 6.2, to calculate Qabc to the required degree
of accuracy we need an expression for c−2τ0a that includes terms of order c−1 ( 1

2pn)
and terms of order c−3 ( 3

2pn). Such an expression was worked out in Sec. 4.1, and
it can be obtained by adding the contributions provided by Eqs. (4.1.11), (4.1.18),
and (4.1.22). After inserting h00 = 4U/c2 + O(c−4) and h0a = 4Ua/c3 + O(c−5)
within Eq. (4.1.18), we find that

c−2τ0a =
1

c

∑

A

mAva
A

(

1 +
v2

A

2c2
+

3⌊U⌋A

c2

)

δ
(
x − zA

)

+
1

16πGc3

[

12U̇∂aU + 16
(
∂aUd − ∂dUa

)
∂dU

]

+ O(c−5). (6.5.3)

Here, U is the Newtonian potential of Eq. (6.4.3), U̇ is its derivative with respect
to τ , ⌊U⌋A is its regularized value at x = zA, and

Ua :=
∑

A

GmAva
A

|x − zA|
(6.5.4)

is the gravitational vector potential. We recall that the potentials satisfy the Poisson
equations ∇2U = −4πG

∑

A mAδ(x−zA) and ∇2Ua = −4πG
∑

A mAva
Aδ(x−zA).

The octupole moment contains a contribution Qabc[M] that comes directly from
the matter distribution, and another contribution Qabc[F] that comes from the
gravitational field. They are obtained from Aabc = Aabc[M] + Aabc[F] + O(c−5),
which is then substituted into Eq. (6.5.1). We have introduced

Aabc[M] :=
1

c

∑

A

mAva
A

(

1 +
v2

A

2c2
+

3⌊U⌋A

c2

)

zb
Azc

A (6.5.5)

and

Aabc[F] :=
1

16πGc3

∫

M

[

12U̇∂aU + 16
(
∂aUd − ∂dUa

)
∂dU

]

xbxc d3x, (6.5.6)

and the remainder of this section will be mostly devoted to the computation of
Aabc[F].

6.5.2 Computation of the field integral: Organization

To simplify our computations, we invoke the harmonic gauge conditions, specifically
its near-zone consequence U̇+∂dU

d = 0, to eliminate U̇ from Eq. (6.5.6). It becomes

Aabc[F] = − 3

Gc3
Babc

1 +
4

Gc3
Babc

2 − 4

Gc3
Babc

3 , (6.5.7)

where

Babc
1 :=

1

4π

∫

M

∂aU∂dU
dxbxc d3x, (6.5.8)

Babc
2 :=

1

4π

∫

M

∂dU∂aUdxbxc d3x, (6.5.9)

Babc
3 :=

1

4π

∫

M

∂dU∂dUaxbxc d3x. (6.5.10)
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After integration by parts, which is designed to leave one factor of U undifferen-
tiated, we find that each field integral Babc breaks down into a volume integral
Babc[M ] and a surface integral Babc[∂M ]. A number of terms are found to be
proportional to δab, or δac, or δbc. All such terms will not survive the transverse-
tracefree projection effected by Eq. (6.1.34), and according to our discussion near
the end of Sec. 6.2, they can all be dropped. For example, if Babc contains a term
δabBc, then its contribution to Qabc will be of the form 2δabBc − δacBb. The first
term is a pure trace, and the second term is longitudinal, because it becomes pro-
portional to Ωa after Qabc is multiplied by Ωc; in each case the contribution does
not survive the TT projection.

After eliminating all such terms, we find that

Babc
1

tt

= Babc
1 [M ] + Babc

1 [∂M ], (6.5.11)

Babc
1 [M ] := − 1

4π

∫

M

U∂a
dU

d xbxc d3x, (6.5.12)

Babc
1 [∂M ] :=

1

4π

∮

∂M

U∂dU
d xbxc dSa, (6.5.13)

that

Babc
2

tt

= Babc
2 [M ] + Babc

2 [∂M ], (6.5.14)

Babc
2 [M ] := − 1

4π

∫

M

U
(
∂a

dU
d xbxc + ∂aU b xc + ∂aU c xb

)
d3x, (6.5.15)

Babc
2 [∂M ] :=

1

4π

∮

∂M

U∂aUd xbxc dSd, (6.5.16)

and that

Babc
3

tt

= Babc
3 [M ] + Babc

3 [∂M ], (6.5.17)

Babc
3 [M ] := − 1

4π

∫

M

U
(
∇2Ua xbxc + ∂bUa xc + ∂cUa xb

)
d3x, (6.5.18)

Babc
3 [∂M ] :=

1

4π

∮

∂M

U∂dUa xbxc dSd. (6.5.19)

We recall that M is the domain r := |x| ≤ R, with a boundary ∂M described by
r = R, and that dSa = R2Ωa dΩ is the surface element on ∂M .

There are many volume integrals to evaluate, but they are all of the form of

Cmnpbc := − 1

4π

∫

M

U∂mnUp xbxc d3x (6.5.20)

and

Dmnp := − 1

4π

∫

M

U∂mUn xp d3x. (6.5.21)

Specifically,

Babc
1 [M ] = Ca dbc

d ,

Babc
2 [M ] = Ca dbc

d + Dabc + Dacb, (6.5.22)

Babc
3 [M ] = Cd abc

d + Dbac + Dcab.

Similarly, the surface integrals are of the form of

Emnbcp :=
1

4π

∮

∂M

U∂mUn xbxc dSp, (6.5.23)
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with

Babc
1 [∂M ] = E dbca

d , Babc
2 [∂M ] = Eadbc

d, Babc
3 [∂M ] = Edabc

d. (6.5.24)

The key is therefore the evaluation of the generic volume integrals of Eqs. (6.5.20)
and (6.5.21), as well as the evaluation of the surface integral of Eq. (6.5.23). Once
these are in hand, the computation of Babc

1 , Babc
2 , and Babc

3 is soon completed, and
Eq. (6.5.7) gives us Aabc[F]. Adding the Aabc[M] of Eq. (6.5.5) produces Aabc, and
from Eq. (6.5.1) we get our final answer for Qabc.

6.5.3 Computation of Cmnpbc

We follow the general methods described in Sec. 6.3. We begin by differentiating
Eq. (6.5.4) twice, which gives

∂mnUp = −
∑

B

GmBvp
B

[

−3
(x − zB)m(x − zB)n

|x − zB |5 +
δmn

|x − zB |3 +
4π

3
δmnδ(x− zA)

]

after inserting the distributional term to ensure that Up satisfies the appropriate
Poisson equation. After insertion of Eq. (6.4.3) and some algebra, Eq. (6.5.20)
becomes

Cmnpbc =
∑

A

G2m2
Avp

A

(

δmnF bc
A − 3Fmnbc

A

)

+
∑

A

∑

B 6=A

G2mAmBvp
B

(

δmnF bc
AB − 3Fmnbc

AB +
1

3
δmn zb

Bzc
B

zAB

)

, (6.5.25)

where

Fmnbc
A :=

1

4π

∫

M

(x − zA)m(x − zA)n

|x − zA|6
xbxc d3x (6.5.26)

and

Fmnbc
AB :=

1

4π

∫

M

1

|x − zA|
(x − zB)m(x − zB)n

|x − zB |5 xbxc d3x, (6.5.27)

and where
F bc

A := δmnFmnbc
A , F bc

AB := δmnFmnbc
AB . (6.5.28)

The term involving zb
Bzc

B/zAB in Eq. (6.5.25), where zAB := |zA − zB |, originates
from the distributional term in ∂mnUp; a similar term that would involve zb

Azc
A/zAA

has been set equal to zero by invoking the regularization prescription of Eq. (4.1.12),
according to which δ(x − zA)/|x − zA| ≡ 0.

We first set to work on Fmnbc
A . Following the general strategy summarized in

Sec. 6.3.7, we substitute x = y + zA inside the integral, and get

Fmnbc
A =

1

4π

∫

M

ymynybyc

y6
d3y +

zb
B

4π

∫

M

ymynyc

y6
d3y

+
zc
B

4π

∫

M

ymynyb

y6
d3y +

zb
Bzc

B

4π

∫

M

ymyn

y6
d3y.

According to Eq. (6.3.20), each integral over M can be expressed as a volume
integral over the simpler domain My defined by y := |y| < R, plus a correction of
fractional order |bmzB |/R given by a surface integral over ∂My.

The first integral produces

1

4π

∫

My

ymynybyc

y6
d3y =

〈〈
ΩmΩnΩbΩc

〉〉
∫ R

0

dy

=
1

15
R

(
δmnδbc + δmbδnc + δmcδnb

)
,



6.5 Computation of Qabc 101

where we involved Eq. (1.8.21). Because it is proportional to R, this contribution
to Fmnbc

A can be discarded. The surface integral that corrects this will potentially
give rise to an R-independent contribution, and it must be evaluated carefully. It
turns out, however, that it is proportional to zd

B〈〈ΩmΩnΩbΩcΩd〉〉, and it vanishes
because the angular average of an odd number of vectors Ω is necessarily zero. The
neglected terms in Eq. (6.3.21) are of order R−1 and higher, and we conclude that
the first integral in Fmnbc

A makes no contribution to Cmnpbc.
The second and third integrals produce terms such as

1

4π

∫

My

ymynyc

y6
d3y =

〈〈
ΩmΩnΩc

〉〉
∫ R

0

dy

y
,

and this vanishes by virtue of Eq. (1.8.20); the logarithmic divergence of the radial
integration requires no explicit regularization. The surface integral that corrects
this is easily shown to be of order R−1, and we conclude that the second and third
integrals do not contribute to Cmnpbc.

The fourth integral produces

1

4π

∫

My

ymyn

y6
d3y =

〈〈
ΩmΩn

〉〉
∫ R

0

dy

y2
=

1

3
δmn

∫ R

0

dy

y2
,

and this involves a radial integration that is formally divergent. Once more the
surface integral does not contribute, and we have obtained

Fmnbc
A =

1

3
δmnzb

Azc
A

∫ R

0

dy

y2
(6.5.29)

for the field integral of Eq. (6.5.26), modulo R-dependent terms that can be freely
discarded. It is disturbing to see that Fmnbc

A is proportional to a diverging integral,
but it is a fortunate outcome that the combination δmnF bc

A − 3Fmnbc
A that appears

into Cmnbc happens to vanish by virtue of the fact that Fmnbc
A is also proportional

to δmn. The divergence does not require explicit regularization, and all in all we
find that Fmnbc

A makes no contribution to Cmnbc.
We next set to work on Fmnbc

AB . Once more we follow the general strategy
summarized in Sec. 6.3.7, and we substitute x = y +zB inside the integral. We get

Fmnbc
AB =

1

4π

∫

M

1

|y − zAB |
ymynybyc

y5
d3y +

zb
B

4π

∫

M

1

|y − zAB |
ymynyc

y5
d3y

+
zc
B

4π

∫

M

1

|y − zAB |
ymynyb

y5
d3y +

zb
Bzc

B

4π

∫

M

1

|y − zAB |
ymyn

y5
d3y.

Relying once more on Eq. (6.3.20), each one of the four integrals over M is approxi-
mated as a volume integral over My, and this is evaluated by utilizing Eqs. (6.3.21),
(6.3.22), and (6.3.23). This expression is then corrected by evaluating the corre-
sponding surface integral over ∂My.

We begin with the first integral, which produces

1

4π

∫

My

1

|y − zAB |
ymynybyc

y5
d3y.

To evaluate this we involve Eq. (6.3.21), and we express ΩmΩnΩbΩc as

ΩmΩnΩbΩc = Ω〈mnbc〉 +
1

7

(

δmnΩ〈bc〉 + δmbΩ〈nc〉 + δmcΩ〈nb〉 + δnbΩ〈mc〉

+ δncΩ〈mb〉 + δbcΩ〈mn〉
)

+
1

15

(

δmnδbc + δmbδnc + δmcδnb
)

,
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in terms of the angular STF tensors Ω〈abcd〉 and Ω〈ab〉. We evaluate the angular
integrations with the help of Eq. (6.3.22), and the remaining radial integrations are
in the form of Eq. (6.3.23). After some algebra, we obtain the expression

1

9
K(4, 1)n

〈mnbc〉
AB +

1

35
K(2, 1)

(

δmnn
〈bc〉
AB + permutations

)

+
1

15
K(0, 1)

(

δmnδbc + δmbδnc + δmcδnb
)

for the volume integral. The corresponding surface integral is easily seen to be of
order R−1, and we arrive at

1

4π

∫

M

1

|y − zAB |
ymynybyc

y5
d3y =

1

18
zABn

〈mnbc〉
AB +

1

28
zAB

(

δmnn
〈bc〉
AB

+ δmbn
〈nc〉
AB + δmcn

〈nb〉
AB + δnbn

〈mc〉
AB + δncn

〈mb〉
AB + δbcn

〈mn〉
AB

)

− 1

30
zAB

(

δmnδbc + δmbδnc + δmcδnb
)

after using Eq. (6.3.23) to evaluate the radial integrals.
We next turn to the second and third integrals, which are both approximated

by
1

4π

∫

My

1

|y − zAB |
ymynyb

y5
d3y.

To evaluate this we involve Eq. (6.3.21), and we express ΩmΩnΩb as

ΩmΩnΩb = Ω〈mnb〉 +
1

5

(

δmnΩb + δmbΩn + δnbΩm
)

,

in terms of the angular STF tensor Ω〈mnb〉. We carry out the angular integrations
with the help of Eq. (6.3.22), and the remaining radial integrations are in the form
of Eq. (6.3.23). After some algebra, we obtain the expression

1

7
K(3, 0)n

〈mnb〉
AB +

1

15
K(1, 0)

(

δmnnb
AB + δmbnn

AB + δnbnm
AB

)

for the volume integral. The corresponding surface integral is once more of order
R−1, and we arrive at

1

4π

∫

M

1

|y − zAB |
ymynyb

y5
d3y =

1

12
n
〈mnb〉
AB +

1

10

(

δmnnb
AB + δmbnn

AB + δnbnm
AB

)

after using Eq. (6.3.23) to evaluate the radial integrals.
The final step in the computation of Fmnbc

AB is the evaluation of the fourth inte-
gral, which is approximated by

1

4π

∫

My

1

|y − zAB |
ymyn

y5
d3y.

After following the familiar steps, this becomes

1

5
K(2,−1)n

〈mn〉
AB +

1

3
K(0,−1)δmn,

and the corresponding surface integral is of order R−2. We arrive at

1

4π

∫

M

1

|y − zAB |
ymyn

y5
d3y =

1

6zAB
n
〈mn〉
AB +

1

3
K(0,−1)δmn,
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and we note that K(0,−1) is formally a divergent integral of the same sort that
was encountered in Eq. (6.5.29). We shall see that this divergence requires no
explicit regularization, because (as it happened before) it eventually drops out of
the calculation.

Collecting results, we have obtained

Fmnbc
AB =

1

18
zABn

〈mnbc〉
AB +

1

28
zAB

(

δmnn
〈bc〉
AB + δmbn

〈nc〉
AB + δmcn

〈nb〉
AB + δnbn

〈mc〉
AB

+ δncn
〈mb〉
AB + δbcn

〈mn〉
AB

)

− 1

30
zAB

(

δmnδbc + δmbδnc + δmcδnb
)

+
1

12
n
〈mnb〉
AB zc

B +
1

10

(

δmnnb
AB + δmbnn

AB + δnbnm
AB

)

zc
B

+
1

12
n
〈mnc〉
AB zb

B +
1

10

(

δmnnc
AB + δmcnn

AB + δncnm
AB

)

zb
B

+
1

6zAB
n
〈mn〉
AB zb

Bzc
B +

1

3
K(0,−1)δmnzb

Bzc
B (6.5.30)

for the field integral of Eq. (6.5.27), modulo R-dependent terms that can be freely
discarded. The trace of this is

F bc
AB =

1

4
zABn

〈bc〉
AB − 1

6
zABδbc +

1

2
nb

ABzc
B +

1

2
nc

ABzb
B + K(0,−1)zb

Bzc
B , (6.5.31)

and we see that, as claimed, the terms involving K(0,−1) cancel out in the com-
bination δmnF bc

AB − 3Fmnab
AB that appears in Eq. (6.5.25); these terms make no

contribution to Cmnpbc.
We may now substitute Eqs. (6.5.29)–(6.5.31) into Eq. (6.5.25). After simplifi-

cation, our final result is

Cmnpbc =
∑

A

∑

B 6=A

G2mAmBvp
B

[

−1

6
zABn

〈mnbc〉
AB

− 3

28
zAB

(

δmbn
〈nc〉
AB + δmcn

〈nb〉
AB + δnbn

〈mc〉
AB + δncn

〈mb〉
AB + δbcn

〈mn〉
AB

)

+ zABδmn
(1

7
n
〈bc〉
AB − 1

15
δbc

)

+
1

10
zAB

(

δmbδnc + δmcδnb
)

− 1

4
n
〈mnb〉
AB zc

B − 1

4
n
〈mnc〉
AB zb

B − 3

10

(

δmbnn
AB + δnbnm

AB

)

zc
B

− 3

10

(

δmcnn
AB + δncnm

AB

)

zb
B +

1

5
δmn

(

nb
ABzc

B + nc
ABzb

B

)

+
1

zAB

(

−1

2
n
〈mn〉
AB +

1

3
δmn

)

zb
Bzc

B

]

. (6.5.32)

We recall that zAB := |zA − zB | is the distance between bodies A and B, and that
nAB := (zA − zB)/|zA − zB | is a unit vector that points from body B to body A.

6.5.4 Computation of Dmnp

After inserting U from Eq. (6.4.3) and Up from Eq. (6.5.4) within Eq. (6.5.21), we
obtain

Dmnp =
∑

A

G2m2
Avn

AEmp
A +

∑

A

∑

B 6=A

G2mAmBvn
BEmp

AB , (6.5.33)

where

Emp
A :=

1

4π

∫

M

(x − zA)mxp

|x − zA|4
d3x (6.5.34)
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and

Emp
AB :=

1

4π

∫

M

(x − zB)mxp

|x − zA||x − zB |3 d3x (6.5.35)

were already introduced in Eqs. (6.3.4) and (6.3.5), respectively. These integrals
were evaluated in Secs. 6.3.3 and 6.3.4, respectively, and we obtained

Emp
A = 0 (6.5.36)

and

Emp
AB =

1

4
zABn

〈mp〉
AB − 1

6
zABδmp +

1

2
nm

ABzp
B ; (6.5.37)

these are Eqs. (6.3.11) and (6.3.15), respectively. Making the substitutions, we
arrive at

Dmnp =
∑

A

∑

B 6=A

G2mAmBvn
B

(
1

4
zABn

〈mp〉
AB − 1

6
zABδmp +

1

2
nm

ABzp
B

)

. (6.5.38)

6.5.5 Computation of Emnbcp

The surface integrals

Emnbcp =
1

4π

∮

∂M

U∂mUn xbxc dSp

are evaluated at r := |x| = R, and to do this we may substitute Eq. (6.4.8) for U ,
which has the schematic form U = R−1 + R−3 + · · ·. Similarly, we may expand
Eq. (6.5.4) in powers of r−1, and express the result schematically as Ua = R−2 +
R−3 + · · ·, which implies that ∂aU b = R−3 + R−4 + · · ·. We recall that U does
not include a term in R−2 because the Newtonian dipole moment Ia :=

∑

A mAza
A

can be set equal to zero, and similarly, Un does not contain a term in R−1 because
İa =

∑

A mAva
A = 0. With xa = RΩa and dSa = R2Ωa dΩ, we find that the leading

term in the surface integral is of order R0, and that it must be evaluated carefully.
Further investigation reveals that at this order, ∂aU b involves an even number of
angular vectors Ωa, which implies that the surface integral involves an odd number
of such vectors. This guarantees that

Emnbcp = 0, (6.5.39)

modulo R-dependent terms that can be freely discarded.

6.5.6 Computation of Aabc[F]

It is now a straightforward task to substitute Eq. (6.5.32) for Cmnpbc, Eq. (6.5.38) for
Dmnp, and Eq. (6.5.39) for Emnbcp into Eqs. (6.5.22) and (6.5.24). These results,
in turn, can be inserted within Eq. (6.5.11) for Babc

1 , Eq. (6.5.14) for Babc
2 , and

Eq. (6.5.17) for Babc
3 . The final step is to substitute these expressions into the

right-hand side of Eq. (6.5.7). The end result, after much simplification, and after
discarding terms that will not survive the TT projection, is

Aabc[F]
tt

=
1

c3

∑

A

∑

B 6=A

GmAmB

{

zAB

[

−1

6

(
nAB · vB

)
na

ABnb
ABnc

AB

+
11

12
na

AB

(
nb

ABvc
B + vb

Bnc
AB

)
− 11

6
va

Bnb
ABnc

AB

]

− 1

4

(
nAB · vB

)
na

AB

(
nb

ABzc
B + zb

Bnc
AB

)
+

7

4
na

AB

(
vb

Bzc
B + zb

Bvc
B

)
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− 7

4
va

B

(
nb

ABzc
B + zb

Bnc
AB

)
− 1

zAB

[
1

2

(
nAB · vB

)
na

ABzb
Bzc

B

+
7

2
va

Bzb
Bzc

B

]}

. (6.5.40)

6.5.7 Qabc: Final answer

Equation (6.5.40) for Aabc[F] and Eq. (6.5.5) for Aabc[M] can finally be combined
to form Aabc, as defined by Eq. (6.5.2). After inserting

∑

B 6=A GmB/zAB for ⌊U⌋A,
and after additional simplification, we obtain

Aabc tt

=
1

c

∑

A

mA

(

1 +
v2

A

2c2

)

va
Azb

Azc
A

− 1

2c3

∑

A

∑

B 6=A

GmAmB

zAB

[
(
nAB · vA

)
na

ABzb
Azc

A + va
Azb

Azc
A

]

+
1

2c3

∑

A

∑

B 6=A

GmAmB

[
(
nAB · vA

)
na

ABn
(b
ABz

c)
A − 7na

ABv
(b
A z

c)
A

+ 7va
An

(b
ABz

c)
A

]

− 1

6c3

∑

A

∑

B 6=A

GmAmBzAB

[
(
nAB · vA

)
na

ABnb
ABnc

AB − 11na
ABn

(b
ABv

c)
A

+ 11va
Anb

ABnc
AB

]

+ O(c−5). (6.5.41)

To arrive at this result we have rearranged the sums in Eq. (6.5.40), and switched
the identities of bodies A and B; this permutation affects the signs of some terms,
because nBA = −nAB .

The final expression for Qabc is obtained by inserting Eq. (6.5.41) within Eq. (6.5.1),
which we copy as

Qabc = Aabc + Abac − Acab. (6.5.42)

We shall not display this result here, as it is more convenient to perform the sub-
stitution at a later stage.

In Eq. (6.5.41), all position and velocity vectors are evaluated at the retarded
time τ := t− r/c, and Aabc is a function of τ only. We recall that zAB = |zA − zB |
is the distance between bodies A and B, and that nAB = (zA − zB)/zAB is a unit
vector that points from body B to body A.

6.6 Computation of Qabcd

Our next step is the computation of Qabcd, the radiative 4-pole moment. This is
defined by Eq. (6.2.11),

Qabcd(τ) :=
1

c2

∫

M

τab(τ,x)xcxd d3x, (6.6.1)

in which τ := t − r/c is retarded time, and where we suppress the primes on the
integration variables to simplify the notation.

According to the discussion of Sec. 6.2, to calculate Qabcd to the required degree
of accuracy we need an expression for c−2τab that includes terms of order c−2 (1pn



106 Gravitational waves

terms), but we do not need higher-order terms. Such an expression was obtained
in Sec. 4.1, and it can be read off the right-hand side of Eq. (4.1.28). We have

c−2τab =
1

c2

∑

A

mAva
Avb

Aδ
(
x − zA

)
+

1

4πGc2

(

∂aU∂bU − 1

2
δab∂cU∂cU

)

+ O(c−4),

(6.6.2)
where we used the fact that in the near zone, and at this order of accuracy, the
gravitational potential Φ defined by Eq. (4.1.25) can be set equal to the Newtonian
potential

U =
∑

A

GmA

|x − zA|
. (6.6.3)

The multipole moment contains both a matter contribution that comes from the
δ-functions in τab, and a field contribution that comes from the terms involving the
Newtonian potential. The matter contribution can be calculated at once:

Qabcd[M] =
1

c2

∑

A

mAva
Avb

Azc
Azd

A. (6.6.4)

The field contribution is

Qabcd[F] =
1

4πGc2

∫

M

∂aU∂bUxcxd d3x − 1

8πGc2
δab

∫

M

∂eU∂eUxcxd d3x, (6.6.5)

and the second integral, because it comes with a factor δab in front, will not survive
a TT projection; it does not need to be evaluated. The complete 4-pole moment is
Qabcd = Qabcd[M] + Qabcd[F] + O(c−4).

To evaluate the first integral we employ our usual strategy of integrating by
parts so as to leave one factor of U undifferentiated. We find that the integral splits
into a volume integral over the domain M and a surface integral over ∂M , and
that Eq. (6.6.5) becomes

Qabcd[F]
tt

= Qabcd[F,M ] + Qabcd[F, ∂M ], (6.6.6)

where

Qabcd[F,M ] = − 1

4πGc2

∫

M

U∂abU xcxd d3x (6.6.7)

and

Qabcd[F, ∂M ] =
1

4πGc2

∮

∂M

U∂bU xcxd dSa. (6.6.8)

To arrive at Eq. (6.6.6) we have discarded additional terms that will not survive
a TT projection. For example, a contribution to Qabcd of the form δacAbd would
become ΩaAbdΩd after contraction with ΩcΩd, and this would make an irrelevant,
longitudinal contribution to hab.

To evaluate the volume integral in Eq. (6.6.7) we substitute Eq. (6.6.3) for U ,
as well as

∂abU = −
∑

A

GmA

[

−3
(x − zA)a(x − zA)b

|x − zA|5
+

δab

|x − zA|3
+

4π

3
δabδ(x − zA)

]

.

Once more we can ignore the terms in δab, and we find that

Qabcd[F,M ]
tt

= − 3

c2

∑

A

Gm2
AF abcd

A − 3

c2

∑

A

∑

B 6=A

GmAmBF abcd
BA ,

where the field integrals F abcd
A and F abcd

BA were already introduced in Sec. 6.5.3, and
are defined by Eqs. (6.5.26) and (6.5.27), respectively. From Eq. (6.5.29) we learn
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that F abcd
A is proportional to δab and therefore will not survive a TT projection, and

Eq. (6.5.30) gives us an explicit expression for F abcd
BA . After discarding additional

terms that will eventually be projected out, and after some further simplification,
we find that

F abcd
BA

tt

=
1

36
zABna

ABnb
AB

(
2nc

ABnd
AB+δcd

)
− 1

6
na

ABnb
ABn

(c
ABz

d)
A +

1

6zAB
na

ABnb
ABzc

Azd
A.

Inserting these results within Qabcd[F,M ], we arrive at

Qabcd[F,M ]
tt

= − 1

12c2

∑

A

∑

B 6=A

GmAmBzABna
ABnb

AB

(
2nc

ABnd
AB + δcd

)

+
1

2c2

∑

A

∑

B 6=A

GmAmBna
ABnb

ABn
(c
ABz

d)
A

− 1

2c2

∑

A

∑

B 6=A

GmAmB

zAB
na

ABnb
ABzc

Azd
A.

This expression can be simplified. Consider the second line, which we write as

1

4c2

∑

A

∑

B 6=A

GmAmBna
ABnb

ABnc
ABzd

A + (c ↔ d).

By rearranging the sums, we see that this is also

1

4c2

∑

A

∑

B>A

GmAmBna
ABnb

AB

(
nc

ABzd
A + nc

BAzd
B

)
+ (c ↔ d),

or
1

4c2

∑

A

∑

B>A

GmAmBna
ABnb

ABnc
AB

(
zd
A − zd

B

)
+ (c ↔ d).

The term within brackets is zABnd
AB , and we see that the second line in Qabcd[F,M ]

can be joined with the first line. Our final expression is

Qabcd[F,M ]
tt

=
1

12c2

∑

A

∑

B 6=A

GmAmBzABna
ABnb

AB

(
nc

ABnd
AB − δcd

)

− 1

2c2

∑

A

∑

B 6=A

GmAmB

zAB
na

ABnb
ABzc

Azd
A. (6.6.9)

Moving on the surface integral of Eq. (6.6.8), we recall our previous work in
Sec. 6.2, in which U was seen to have the schematic structure U = R−1 +R−3 + · · ·
when evaluated at r = R, while ∂aU is given by ∂aU = R−2 + R−4 + · · ·. With
xa = RΩa and dSa = R2Ωa dΩ, these statements imply that Qabcd[F, ∂M ] contains
terms at orders R, R−1, and so on, but that there is no R-independent contribution.
For this reason, we may set

Qabcd[F, ∂M ] = 0,

modulo R-dependent terms that can be freely discarded.
Collecting results, we find that the radiative 4-pole moment is given by

Qabcd tt

=
1

c2

∑

A

mAva
Avb

Azc
Azd

A

− 1

2c2

∑

A

∑

B 6=A

GmAmB

zAB
na

ABnb
ABzc

Azd
A

+
1

12c2

∑

A

∑

B 6=A

GmAmBzABna
ABnb

AB

(
nc

ABnd
AB − δcd

)

+ O(c−4). (6.6.10)
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In this equation, all position and velocity vectors are evaluated at the retarded time
τ := t − r/c, and Qabcd is a function of τ only. We recall once more that zAB =
|zA −zB | is the distance between bodies A and B, and that nAB = (zA −zB)/zAB

is a unit vector that points from body B to body A.

6.7 Computation of Qabcde

Next on our list of radiative multipole moments is Qabcde, the 5-pole moment defined
by Eq. (6.2.12),

Qabcde(τ) :=
1

c3

∂

∂τ

∫

M

τab(τ,x)xcxdxe d3x. (6.7.1)

To compute this, with the effective stress tensor displayed in Eq. (6.6.2), requires
the same familiar steps that were followed in the preceding sections. We shall not
labour through the details here, and simply present the final answer:

Qabcde tt

=
1

c3

∂

∂τ

[
∑

A

mAva
Avb

Azc
Azd

Aze
A − 1

2

∑

A

∑

B 6=A

GmAmB

zAB
na

ABnb
ABzc

Azd
Aze

A

+
1

4

∑

A

∑

B 6=A

GmAmBzABna
ABnb

ABz
(c
A

(

nd
ABn

e)
AB − δde)

)]

+ O(c−5). (6.7.2)

In the last sum, the index symmetrization is over the trio of indices cde. We shall
leave the differentiation with respect to τ unevaluated for the time being; it is
advantageous to take care of this at a later stage.

6.8 Computation of P ab and P abc

The multipole expansion of Eq. (6.2.8) involves also a pair of surface integrals, P ab

and P abc, which are defined by Eqs. (6.2.13) and (6.2.14), respectively. Our task in
this section is to evaluate them.

We begin with

P ab :=

∮

∂M

(
τacxb + τ bcxa − ∂dτ

cdxaxb
)
dSc, (6.8.1)

in which τab is expressed as a function of τ and x, and where we suppress the primes
on the integration variables to simplify the notation. The effective stress tensor τab

is given to leading order — order c0 — by Eq. (6.6.2), but to achieve the required
degree of accuracy (as specified in Sec. 6.2), we must also incorporate terms of
order c−2. A sufficiently accurate expression can be obtained from Eqs. (4.1.20) and
(4.1.23); there is no need to include also the material contribution of Eq. (4.1.11),
because τab is evaluated on ∂M , away from the matter distribution. In this we
must substitute the near-zone gravitational potentials of Eqs. (5.2.7)–(5.2.9), and
such a computation was already carried out at the beginning of Sec. 5.3.3. We
obtain, finally,

τab tt

=
1

4πG
∂aU∂bU +

1

4πGc2

[

2∂(aU∂b)ψ + ∂(aU∂b)Ẍ + 8∂(aUU̇ b)

− 4
(
∂aUc − ∂cU

a
)(

∂bU c − ∂cU b
)
]

+ O(c−4), (6.8.2)
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after discarding all terms proportional to δab, for the usual reason that they will
not survive a TT projection.

To calculate P ab we also need ∂dτ
cd, which we express as −c−1τ̇0c by involving

the conservation identities ∂βταβ = 0. With Eq. (6.5.3), this is

∂dτ
cd =

1

4πGc2

∂

∂τ

[

3∂dU
d∂cU − 4

(
∂cUd − ∂dU c

)
∂dU

]

, (6.8.3)

where we have also used the gauge condition U̇ = −∂dU
d. The derivative operator

can be taken outside of the surface integral.
From the explicit expressions obtained in Sec. 5.2 for U , Ua, ψ, and Ẍ, we

observe that each one of these quantities has an expansion of the schematic form
r−1 + r−2 + · · ·. It follows that when ∂aU , ∂aψ, ∂aẌ, ∂bUa, and U̇a are evaluated
on ∂M , they each have the schematic form R−2 + R−3 + · · ·. This means that
τab = O(R−4), and it follows that a quantity such as τacxbdSc must scale as R−1;
this will give no R-independent contribution to the surface integral. A similar
argument reveals that ∂dτ

cd = O(R−5), so that ∂dτ
cdxaxbdSc scales as R−1; this

also makes no contribution. We conclude that

P ab = 0, (6.8.4)

modulo R-dependent terms that can be freely discarded.
We next evaluate

P abc :=
1

c

∂

∂τ

∮

∂M

(
τadxbxc + τ bdxaxc − τ cdxaxb

)
dSd, (6.8.5)

using the effective stress tensor displayed in Eq. (6.8.2). Relative to P ab, this surface
integral involves an additional power of x, and therefore an additional power of R;
because P ab was seen to be of order R−1, there is a chance that the surface integral
might contain an R-independent contribution. As we shall see presently, however,
this does not happen, and as a matter of fact,

P abc = 0, (6.8.6)

modulo R-dependent terms that can be freely discarded. This conclusion emerges
as a result of a closer examination of the terms that make up τab. It was stated
previously that at leading order, ∂aU , ∂aψ, ∂aẌ, ∂bUa, and U̇a all scale as R−2

when they are evaluated on ∂M , so that τab = O(R−4). With the four powers
of R that are contained in the position vectors and the surface element, we find
that the integral does indeed scale as R0. It can be verified, however, that ∂aU ,
∂aψ, ∂aẌ, ∂bUa, and U̇a are all proportional to an odd number of angular vectors
Ω := x/R. This implies that τab is proportional to an even number of such vectors,
and this, in turn, implies that the integrand in Eq. (6.8.5) contains an odd number
of angular vectors. Integration gives zero, and we have established the statement
of Eq. (6.8.6).

6.9 Summary: hab
N

Our computation of the near-zone contribution to hab is essentially complete, and for
easy reference we copy our main results in this section. The gravitational potentials
are expressed as a multipole expansion in Eq. (6.2.8),

hab
N =

2G

c4r

∂2

∂τ2

{

Qab + QabcΩc + QabcdΩcΩd +
1

3
QabcdeΩcΩdΩe + O(c−4)

}

, (6.9.1)
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in which the surface integrals P ab and P abc were set equal to zero by virtue of
Eqs. (6.8.4) and (6.8.6).

According to Eqs. (6.4.11), (6.5.41), (6.5.42), (6.6.10), and (6.7.2), respectively,
the radiative multipole moments are given by

Qab tt

=
∑

A

mA

(

1 +
v2

A

2c2

)

za
Azb

A − 1

2c2

∑

A

∑

B 6=A

GmAmB

zAB
za
Azb

A + O(c−4),(6.9.2)

Qabc = Aabc + Abac − Acab, (6.9.3)

Aabc tt

=
1

c

∑

A

mA

(

1 +
v2

A

2c2

)

va
Azb

Azc
A

− 1

2c3

∑

A

∑

B 6=A

GmAmB

zAB

[
(
nAB · vA

)
na

ABzb
Azc

A + va
Azb

Azc
A

]

+
1

2c3

∑

A

∑

B 6=A

GmAmB

[
(
nAB · vA

)
na

ABn
(b
ABz

c)
A − 7na

ABv
(b
A z

c)
A

+ 7va
An

(b
ABz

c)
A

]

− 1

6c3

∑

A

∑

B 6=A

GmAmBzAB

[
(
nAB · vA

)
na

ABnb
ABnc

AB − 11na
ABn

(b
ABv

c)
A

+ 11va
Anb

ABnc
AB

]

+ O(c−5), (6.9.4)

Qabcd tt

=
1

c2

∑

A

mAva
Avb

Azc
Azd

A

− 1

2c2

∑

A

∑

B 6=A

GmAmB

zAB
na

ABnb
ABzc

Azd
A

+
1

12c2

∑

A

∑

B 6=A

GmAmBzABna
ABnb

AB

(
nc

ABnd
AB − δcd

)

+ O(c−4), (6.9.5)

Qabcde tt

=
1

c3

∂

∂τ

[
∑

A

mAva
Avb

Azc
Azd

Aze
A − 1

2

∑

A

∑

B 6=A

GmAmB

zAB
na

ABnb
ABzc

Azd
Aze

A

+
1

4

∑

A

∑

B 6=A

GmAmBzABna
ABnb

ABz
(c
A

(

nd
ABn

e)
AB − δde)

)]

+ O(c−5). (6.9.6)

In these equations, all position and velocity vectors are evaluated at the retarded
time τ := t − r/c, and the multipole moments are functions of τ only. We recall
that

zAB = |zA − zB | (6.9.7)

is the distance between bodies A and B, and that

nAB =
zA − zB

|zA − zB | (6.9.8)

is a unit vector that points from body B to body A.
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6.10 Computation of hab
W

6.10.1 Construction of the source term

The wave-zone contribution to hab is obtained by evaluating the integrals displayed
in Eq. (6.2.6), and this relies on a decomposition of τab into irreducible pieces of the
form of Eq. (6.2.5). Our first order of business, therefore, is to obtain an expression
for the effective stress tensor; this expression must be valid everywhere in the wave
zone.

The source term is constructed from the gravitational potentials, and wave-zone
expressions for these were obtained in Sec. 4.4. According to Eqs. (4.4.37)–(4.4.39),
we have

h00 =
4G

c2

[
M

r
+

1

2
∂ab

(
Iab

r

)

+ O

(
M

r

v3

c3

)]

, (6.10.1)

h0a =
4G

c2

[
1

2c
Jab Ωb

r2
− 1

2c
∂b

(
İab

r

)

+ O

(
M

r

v3

c3

)]

, (6.10.2)

hab =
4G

c2

[
1

2c2

Ïab

r
+ O

(
M

r

v3

c3

)]

. (6.10.3)

The potentials are expressed in terms of Ωa := xa/r, and in terms of multipole
moments that were introduced in Sec. 4.4. We have the total gravitational mass

M =
∑

A

(

1 +
1

2

v2
A

c2
− 1

2

⌊U⌋A

c2

)

+ O(c−4), (6.10.4)

the angular-momentum tensor

Jab =
∑

A

mA

(
va

Azb
A − za

Avb
A

)
+ O(c−2), (6.10.5)

and the Newtonian quadrupole moment

Iab(τ) =
∑

A

mAza
Azb

A + O(c−2). (6.10.6)

We have indicated that the mass and angular momentum are conserved quantities,
while Iab depends on retarded-time τ := t − r/c.

The post-Newtonian order of each term in Eqs. (6.10.1)–(6.10.3) was clearly
indicated in Sec. 4.4.7: Relative to GM/(c2r), each term involving Iab is of 1pn
order, and the term involving the angular-momentum tensor also is of 1pn order;
the expressions are therefore truncated at 1pn order, and the neglected terms are
of 3

2pn order. The rules to count the post-Newtonian order of wave-zone potentials
were derived back in Sec. 3.3.3. It is useful to recall that in the wave zone, r is larger
than λc = ctc, the characteristic wavelength of the gravitational radiation (which
is defined in terms of tc, the characteristic time scale of the source); it follows that
if rc is a characteristic length scale of the source, then rc/r ∼ (rc/tc)/c = vc/c,
where vc is the source’s characteristic velocity. It is also useful to recall that for
gravitationally bound sources, GM/rc ∼ v2

c .
In the wave zone, away from the matter distribution, the effective stress tensor

τab is made up of the Landau-Lifshitz pseudotensor (−g)tab
LL and the harmonic-

gauge contribution (−g)tab
H . Sufficiently accurate expressions for these quantities

were obtained in Secs. 4.1.3 and 4.1.4, respectively. The leading term comes from
the Landau-Lifshitz pseudotensor of Eq. (4.1.19), which is

c4

64πG
∂ah00∂bh00;
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here we ignore the term proportional to δab because, as we observed many times
before, it will not survive a TT projection. Using Eq. (6.10.1), we find that this is
equal to

G

4π

[
M2

r4
ΩaΩa − M

r2
Ω(a∂

b)
cd

(
Icd

r

)

+ · · ·
]

.

It is easy to show that relative to GM2/r4, the second term is of order (vc/c)2, and
the neglected terms are smaller by an additional power of vc/c.

We wish our expression for τab to be as accurate as what was displayed previ-
ously. In particular, we want to be sure that our expression contains all occurrences
of terms that involve a product of M with derivatives of Iab; all such terms will
contribute at order (vc/c)2 relative to GM2/r4, and they must all be included. A
careful examination of Eq. (4.1.20) reveals that the relevant terms are contained in

(−g)tab
LL =

c4

16πG

[
1

4
∂ah00∂bh00 + ∂ah00∂0h

0b + ∂bh00∂0h
0a

+
1

4
∂ah00∂bhc

c +
1

4
∂bh00∂ahc

c + · · ·
]

,

and that the additional terms are smaller by additional powers of vc/c.

A careful examination of Eq. (4.1.24) reveals that

(−g)tab
H =

c4

16πG

[

−h00∂00h
ab + · · ·

]

also is a relevant term. It is easy to see why: After writing ∂00 = c−2∂ττ , we find
that this contribution to τab is schematically

c2

G
h00ḧab ∼ G

c4

MI(4)

r2
,

in which I(4) stands for four derivatives of the quadrupole moment tensor. We have
that Iab ∼ Mr2

c , so that I(4) ∼ Mr2
c/t4c , and in the wave zone r > λc = ctc. All

together, these scalings imply that this term is of order (vc/c)2 relative to GM2/r4,
and that it contributes at the required post-Newtonian order.

This is the first time that (−g)tαβ
H explicitly enters a computation. As we saw

in Sec. 1.3, this contribution to ταβ comes from the difference between ∂µνHαµβν

and −¤hαβ on the left-hand side of the Einstein field equations. It is this term that
informs us that the gravitational waves are propagating not in flat spacetime, but
in a curved spacetime whose metric gαβ must be obtained self-consistently from the
gravitational potentials. It is this contribution to ταβ , therefore, that will reveal
the differences between the light cones of the mathematical flat spacetime, and
those of the physical curved spacetime. And as we shall see, this term will generate
interesting physical consequences.

Collecting results, we find that the appropriate starting expression for the source
term is

τab =
c4

16πG

[
1

4
∂ah00∂bh00 +

1

c
∂ah00ḣ0b +

1

c
∂bh00ḣ0a

+
1

4
∂ah00∂bhc

c +
1

4
∂bh00∂ahc

c −
1

c2
h00ḧab + · · ·

]

. (6.10.7)

In the next subsection we will turn this into something more concrete, a set of
expressions that will be ready for substitution within Eq. (6.2.6).
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6.10.2 Evaluation of the source term

The first step is to insert Eqs. (6.10.1)–(6.10.3) within Eq. (6.10.7). We need

∂ah00 =
4G

c2

[

−M

r2
Ωa +

1

2
∂a

cd

(
Icd

r

)

+ · · ·
]

,

ḣ0a =
4G

c2

[

− 1

2c
∂c

(
Ïac

r

)

+ · · ·
]

,

∂ahc
c =

4G

c2

[

− 1

2c2

Ï

r2
Ωa + · · ·

]

,

ḧab =
4G

c2

[
1

2c2

Iab(4)

r
+ · · ·

]

,

in which Ï := Ïc
c and Iab(4) stands for the fourth derivative of Iab with respect to

τ . After some algebra, we obtain

τab =
GM

4πr2

[
M

r2
ΩaΩa − Ω(a∂

b)
cd

(
Icd

r

)

+
4

c2
Ω(a∂c

(
Ïb)c

r

)

+
1

c2

(
Ï

r2
+

1

c

I(3)

r

)

ΩaΩb − 2

c4
Iab(4) + · · ·

]

. (6.10.8)

The next step is to evaluate the derivatives. From Sec. 1.8.1 we recall that
∂ar = Ωa and ∂aΩb = r−1(δab − ΩaΩb). We recall also that Iab depends on the
spatial coordinates through τ = t − r/c, so that ∂cI

ab = −c−1İabΩc. Using these
rules, we calculate that

∂c

(
Ïac

r

)

= −
(

Ïac

r2
+

1

c

Iac(3)

r

)

Ωc

and

∂a
cd

(
Icd

r

)

= −
(

15
Icd

r4
+

15

c

İcd

r3
+

6

c2

Ïcd

r2
+

1

c3

Icd(3)

r

)

ΩaΩcΩd

+

(

3
Icd

r4
+

3

c

İcd

r3
+

1

c2

Ïcd

r2

)
(
Ωaδcd + δa

cΩd + δa
dΩc

)
.

With these results, Eq. (6.10.8) becomes

τab =
GM2

4πr4
ΩaΩb +

GM

4πr2

[(

15
Icd

r4
+

15

c

İcd

r3
+

6

c2

Ïcd

r2
+

1

c3

Icd(3)

r

)

ΩaΩbΩcΩd

−
(

3
I

r4
+

3

c

İ

r3
− 1

c3

Ï(3)

r

)

ΩaΩb

−
(

3
Iac

r4
+

3

c

İac

r3
+

3

c2

Ïac

r2
+

2

c3

Iac(3)

r

)

ΩbΩc

−
(

3
Ibc

r4
+

3

c

İbc

r3
+

3

c2

Ïbc

r2
+

2

c3

Ibc(3)

r

)

ΩaΩc −
2

c4
Iab(4)

]

. (6.10.9)

The final step is to express the angular dependence of τab in terms of STF tensors
Ω〈L〉. We involve the definitions of Eqs. (1.8.2)–(1.8.4), and write ΩaΩbΩcΩd in
terms of Ω〈abcd〉, ΩaΩbΩc in terms of Ω〈abc〉, and ΩaΩb in terms of Ω〈ab〉. After
discarding all terms proportional to δab, our final expression for the effective stress
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tensor is

τab =
GM2

4πr4
Ω〈ab〉 +

GM

4πr2

[(

15
Icd

r4
+

15

c

İcd

r3
+

6

c2

Ïcd

r2
+

1

c3

I
(3)
cd

r

)

Ω〈abcd〉

+

(

−6

7

I

r4
− 6

7c

İ

r3
+

6

7c2

Ï

r2
+

8

7c3

I(3)

r

)

Ω〈ab〉

+ 2

(
9

7

I
(a

c

r4
+

9

7c

İ
(a

c

r3
− 9

7c2

Ï
(a

c

r2
− 12

7c3

I
(a(3)

c

r

)

Ω〈b)c〉

− 6

5c2

Ï〈ab〉

r2
− 6

5c3

I〈ab〉(3)

r
− 2

c4
I〈ab〉(4)

]

. (6.10.10)

This expression is a sum of terms that have the structure of Eq. (6.2.5),

τab[ℓ, n] =
1

4π

f(u)

rn
Ω〈L〉. (6.10.11)

For example, the first group of terms inside the square brackets has ℓ = 4, and it
consists of four terms with n = −6, n = −5, n = −4, and n = −3; for each of these
contributions we can easily read off the appropriate function f (which is currently
expressed in terms of τ = t − r/c instead of u = ct − r).

We shall keep in mind that it is the last term of Eq. (6.10.10), the one involving
four derivatives of I〈ab〉(τ), that originated from (−g)tab

H . It is this term that will
reveal the differences between the light cones of the mathematical flat spacetime
and those of the physical curved spacetime.

6.10.3 Evaluation of the wave-zone integrals

Each term τab[ℓ, n] in Eq. (6.10.10) makes a contribution to the gravitational-wave
field hab, and according to Eq. (6.2.6), this is given by

hab
W [ℓ, n] =

4G

c4r
Ω〈L〉

{∫ R

0

dsf(u− 2s)A(s, r) +

∫ ∞

R

dsf(u− 2s)B(s, r)

}

, (6.10.12)

where

A(s, r) =

∫ r+s

R

Pℓ(ξ)

pn−1
dp, B(s, r) =

∫ r+s

s

Pℓ(ξ)

pn−1
dp. (6.10.13)

Here, Pℓ is a Legendre polynomial of argument ξ = (r + 2s)/r − 2s(r + s)/(rp).
To begin, we shall work through the specific, but representative, case of ℓ = 0

and n = 3. Extracting this piece of τab from Eq. (6.10.10) and comparing with
Eq. (6.10.11), we find that in this case the function f is given by

f(u) = −6

5
GMI〈ab〉′′′,

in which a prime indicates differentiation with respect to u = cτ .
We must first evaluate the functions A and B. With ℓ = 0 and n = 3, the

computations are elementary, and the results are

A(s, r) =
1

R − 1

r + s

and

B(s, r) =
1

s
− 1

r + s
.
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We next set to work on the integrals that appear in Eq. (6.10.12). The first is

FA :=

∫ R

0

dsf(u − 2s)A(s, r) =

∫ R

0

dsf(u − 2s)

(
1

R − 1

r + s

)

,

and we rewrite it as

FA =
1

R

∫ R

0

f(u − 2s) ds −
∫ R

0

f(u − 2s) d ln(r + s).

After integrating the second term by parts, our final expression is

FA = −f(u − 2R) ln(r + R) + f(u) ln r +
1

R

∫ R

0

f(u − 2s) ds

− 2

∫ R

0

f ′(u − 2s) ln
r + s

s
ds + 2

∫ R

0

f ′(u − 2s) ln s ds.

The second integral is

FB :=

∫ ∞

R

dsf(u − 2s)B(s, r) =

∫ ∞

R

dsf(u − 2s)

(
1

s
− 1

r + s

)

,

and we rewrite it as

FB = −
∫ ∞

R

f(u − 2s) d ln
r + s

s
.

Integration by parts yields

FB = f(u − 2R) ln
r + R
R − 2

∫ ∞

R

f ′(u − 2s) ln
r + s

s
ds,

assuming that f(u − 2s) goes to zero sufficiently rapidly as s → ∞ to ensure that
there is no boundary term at s = ∞. (Physically, this condition implies that the
system is only weakly dynamical in the infinite past.)

The sum of FA and FB is

F = −f(u − 2R) lnR + f(u) ln r +
1

R

∫ R

0

f(u − 2s) ds

+ 2

∫ R

0

f ′(u − 2s) ln s ds − 2

∫ ∞

0

f ′(u − 2s) ln
r + s

s
ds.

This result is exact, but to simplify it we use the fact that we may remove from
this all R-dependent pieces. As a formal tool to achieve this, we express f(u − 2s)
and its derivative as infinite Taylor series in powers of s, and we evaluate the two
integrals from s = 0 to s = R. We find that they combine to give f(u), plus terms
that can be discarded because they come with explicit factors of R. After also
expanding f(u − 2R) in powers of R, we find that

F = f(u)
[

1 + ln(r/R)
]

− 2

∫ ∞

0

f ′(u − 2s) ln
r + s

s
ds,

modulo R-dependent terms that can be freely discarded. This still contains a
logarithmic dependence on R, but it could be removed by writing ln(r/R) =
ln(r/r0) + ln(r0/R) and discarding the second term. This alternate expression
would then contain a dependence on an arbitrary constant r0, and it is perhaps
preferable to stick with the original form, in spite of the residual R-dependence.
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Our final answer is obtained by inserting our expressions for f(u) and F within
Eq. (6.10.12). After also changing the primes into overdots, we get

hab
W [0, 3] =

4GM

c4r

{

− 6G

5c3

[

1 + ln(r/R)
]

I〈ab〉(3) +
12

5
Kab

}

, (6.10.14)

in which the tail integral

Kab(τ, r) :=
G

c4

∫ ∞

0

I〈ab〉(4)(τ − 2s/c) ln
r + s

s
ds (6.10.15)

must be left unevaluated. Notice that the tail integral involves the entire past
history of the system, from the infinite past (at s = ∞) to the current retarded
time (at s = 0). We recall the notation

I〈ab〉(q) =
dq

dτ q
I〈ab〉,

and we shall see what fate awaits the logarithmic term ln(r/R) in Eq. (6.10.14),
when this contribution to hab

W
is combined with others.

The same techniques are employed to calculate all other contributions to hab
W

.
We shall not labour through the details here, but simply list the final results for
hab

W
[ℓ, n]:

hab
W [0, 2] =

4GM

c4r

{

−2Kab

}

, (6.10.16)

hab
W [0, 3] =

4GM

c4r

{

− 6G

5c3

[

1 + ln(r/R)

]

I〈ab〉(3) +
12

5
Kab

}

, (6.10.17)

hab
W [0, 4] =

4GM

c4r

{
6G

5c3

[
3

2
+ ln(r/R)

]

I〈ab〉(3) − 12

5
Kab

}

, (6.10.18)

hab
W [2, 3] =

4GM

c4r

{

− 2G

7c3
Ia(3)

c

}

Ω〈cb〉 + (a ↔ b), (6.10.19)

hab
W [2, 4] =

4GM

c4r

{

− 3G

28c3
Ia(3)

c

}

Ω〈cb〉 + (a ↔ b), (6.10.20)

hab
W [2, 5] =

4GM

c4r

{
G

c3

[
47

700
+

3

35
ln(r/R)

]

Ia(3)
c − 6

35
Ka

c

}

Ω〈cb〉

+ (a ↔ b), (6.10.21)

hab
W [2, 6] =

4GM

c4r

{
G

c3

[

− 97

700
− 3

35
ln(r/R)

]

Ia(3)
c +

6

35
Ka

c

}

Ω〈cb〉

+ (a ↔ b), (6.10.22)

hab
W [4, 3] =

4GM

c4r

{
G

20c3
I
(3)
cd

}

Ω〈abcd〉, (6.10.23)

hab
W [4, 4] =

4GM

c4r

{
G

30c3
I
(3)
cd

}

Ω〈abcd〉, (6.10.24)

hab
W [4, 5] =

4GM

c4r

{
G

42c3
I
(3)
cd

}

Ω〈abcd〉, (6.10.25)

hab
W [4, 6] =

4GM

c4r

{
G

56c3
I
(3)
cd

}

Ω〈abcd〉. (6.10.26)

To arrive at these results we have freely discarded all R-dependent terms, except
when the dependence is logarithmic. In some cases we have also removed terms
that fall off as r−2, r−3, or faster, because these are negligible in the far-away wave
zone.
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From the preceding listing of results we find that the sum of contributions for
ℓ = 0 is

hab
W [ℓ = 0] =

4GM

c4r

{
3G

5c3
I〈ab〉(3) − 2Kab

}

.

Similarly,

hab
W [ℓ = 2] =

4GM

c4r

{

− 13G

28c3
Ia(3)

c Ω〈cb〉 + (a ↔ b)

}

and

hab
W [ℓ = 4] =

4GM

c4r

{
G

8c3
I
(3)
cd Ω〈abcd〉

}

.

Notice that the logarithmic terms have all canceled out, and that the tail integral
appears only within the contribution from ℓ = 0. Tracing the origin of the tail
integral, we see that it comes from τab[0, 2], the term in τab that involves four
derivatives of the Newtonian quadrupole moment with respect to τ . This term,
the last one in Eq. (6.10.10), originates from (−g)tab

H , and it reveals the differences
between the light cones of the mathematical flat spacetime and those of the physical
curved spacetime. The tail integral, therefore, informs us that the gravitational
waves propagate in a curved spacetime instead of the fictitious flat spacetime of the
post-Minkowski expansion.

6.10.4 Final answer

Adding the contributions from ℓ = 0, ℓ = 2, and ℓ = 3, we find that the wave-zone
part of the gravitational-wave field is given by

hab
W =

4GM

c4r

{
3G

5c3
I〈ab〉(3) − 2Kab − 13G

28c3

(

Ia(3)
c Ω〈cb〉 + Ib(3)

c Ω〈ca〉

)

+
G

8c3
I
(3)
cd Ω〈abcd〉

}

.

From this we may remove any term that will not survive a TT projection. In
particular,

Ia(3)
c Ω〈cb〉 = Ia(3)

c

(

ΩcΩb − 1

3
δcb

)

tt

= −1

3
I〈ab〉(3)

and similarly,

I
(3)
cd Ω〈abcd〉 tt

=
2

35
I〈ab〉(3).

Collecting these results, we find that hab
W

reduces to

hab
W

tt

=
4GM

c4r

{
11G

12c3
I〈ab〉(3) − 2Kab

}

.

To arrive at our final expression we substitute Eq. (6.10.15) for the tail integral,
and we clean it up by setting s = 1

2c ζ and adopting ζ as an integration variable.
We obtain, finally,

hab
W

tt

=
4G2M

c7r

{
11

12
I〈ab〉(3)(τ) +

∫ ∞

0

I〈ab〉(4)(τ − ζ) ln
ζ

ζ + 2r/c
dζ

}

. (6.10.27)

To get a useful alternative expression, we differentiate the first term and insert it
within the integral. This produces

hab
W

tt

=
4G2M

c7r

∫ ∞

0

I〈ab〉(4)(τ − ζ)

(

ln
ζ

ζ + 2r/c
+

11

12

)

dζ. (6.10.28)
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The wave-zone contribution to hab depends on r and τ = t−r/c, and we notice that
it is isotropic — the angular dependence has been eliminated by the TT projection.
It is expressed in terms of the total gravitational mass of Eq. (6.10.4),

M =
∑

A

mA + O(c−2), (6.10.29)

as well as the Newtonian quadrupole moment of Eq. (6.10.6),

Iab =
∑

A

mAza
Azb

A + O(c−2). (6.10.30)

Recalling our discussion near the end of Sec. 6.2, we see from Eq. (6.10.28) that hab
W

is a correction of order c−3 relative to the leading term in hab, which is of order c−4.
The wave-zone contribution to the gravitational-wave field is therefore a term of 3

2pn

order. And we recall from the end of Sec. 6.10.3 that the tail integral originates from
(−g)tab

H , the harmonic-gauge contribution to the effective stress tensor; it reveals
the differences between the light cones of the mathematical flat spacetime and those
of the physical curved spacetime.

6.11 Specialization to a two-body system

The gravitational-wave field is given by the sum of hab
N

, given by Eq. (6.9.1) and
the following equations, and hab

W
, given by Eq. (6.10.28). These expressions are

still fairly implicit, and to make the results more concrete we specialize them to a
two-body system.

6.11.1 Motion in the barycentric frame

We shall work in the post-Newtonian barycentric frame (Z = 0), and according to
Eqs. (5.5.14) and (5.5.15), the position vectors of the two bodies are given by

z1 =
m2

m
z +

η∆

2c2

(

v2 − Gm

z

)

z + O(c−4) (6.11.1)

and

z2 = −m1

m
z +

η∆

2c2

(

v2 − Gm

z

)

z + O(c−4). (6.11.2)

They are expressed in terms of the relative position

z := z1 − z2 (6.11.3)

and the relative velocity
v := v1 − v2; (6.11.4)

these vectors have a length z = |z| and v = |v|, respectively. We also have re-
introduced the mass parameters

m := m1 + m2 (6.11.5)

η :=
m1m2

(m1 + m2)2
(6.11.6)

∆ :=
m1 − m2

m1 + m2
. (6.11.7)

Differentiation of Eqs. (6.11.1) and (6.11.2) returns the velocity vectors of each
body:

v1 =
m2

m
v +

η∆

2c2

[(

v2 − Gm

z

)

v − Gm

z
żn

]

+ O(c−4) (6.11.8)
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and

v2 = −m1

m
v +

η∆

2c2

[(

v2 − Gm

z

)

v − Gm

z
żn

]

+ O(c−4), (6.11.9)

where
ż = n · v (6.11.10)

is the radial component of the velocity vector, and

n :=
z

z
=

z1 − z2

|z1 − z2|
(6.11.11)

is a unit vector that points from body 2 to body 1. To arrive at these expressions
we had to involve the relative acceleration of the two bodies, which according to
Eq. (5.5.18) is given by

a = −Gm

z2
n

+
1

c2

{

−Gm

z2

[

(1 + 3η)v2 − 3

2
η(n · v)2 − 2(2 + η)

Gm

z

]

n

+ 2(2 − η)
Gm

z2
(n · v)v

}

+ O(c−4). (6.11.12)

6.11.2 Radiative multipole moments

We make these substitutions into Eqs. (6.9.2)–(6.9.6) and simplify the resulting
expressions. The sums that appear in these equations must be specialized to two
bodies, and in these we set z12 = z21 = z and n12 = −n21 = n. In the course of
these (lengthy, but straightforward) computations we encounter various functions of
m1 and m2 that can be re-written in terms of the mass parameters of Eqs. (6.11.5)–
(6.11.7). For example, it is easy to show that

m2
1 + m2

2

(m1 + m2)2
= 1 − 2η,

m3
1 + m3

2

(m1 + m2)3
= 1 − 3η,

m4
1 − m4

2

(m1 + m2)4
= ∆(1 − 2η),

and we make many such substitutions while simplifying our expressions.
We obtain

Qab = mη

[

1 +
1

2
(1 − 3η)

v2

c2
− 1

2
(1 − 2η)

Gm

c2z
+ O(c−4)

]

zazb, (6.11.13)

Aabc =
mη∆

c

{

−
[

1 +
1

2
(1 − 5η)

v2

c2
+

(7

6
+ 2η

)Gm

c2z

]

vazbzc

+
(1

6
− η

)Gm

c2z
żnazbzc +

5

3

Gm

c2z
zav(bzc) + O(c−4)

}

, (6.11.14)

Qabc =
mη∆

c

{

zazbvc −
(
vazb + zavb

)
zc

−
[
1

2
(1 − 5η)

v2

c2
+

1

6
(7 + 12η)

Gm

c2z

][(
vazb + zavb

)
zc − zazbvc

]

+
1

6
(1 − 6η)

Gm

c2z
żnazbzc + O(c−4)

}

, (6.11.15)

Qabcd =
mη

c2

{

(1 − 3η)vavbzczd − 1

3
(1 − 3η)

Gm

z
nanbzczd

− 1

6

Gm

z
zazbδcd + O(c−2)

}

, (6.11.16)
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Qabcde =
mη∆

c3

∂

∂τ

{

−(1 − 2η)vavbzczdze +
1

4
(1 − 2η)

Gm

z
nanbzczdze

+
1

4

Gm

z
zazbz(cδde) + O(c−2)

}

. (6.11.17)

Equation (6.11.15) is obtained from Eq. (6.11.14) by involving Eq. (6.9.3), Qabc =
Aabc + Abac −Acab. We also observe that to simplify the writing, we have replaced
the qualified equality sign

tt

= (“equal after a TT projection”) by the usual equality
sign.

6.11.3 Computation of retarded-time derivatives

The near-zone contribution to hab is given by Eq. (6.9.1), and in this we must
substitute the radiative multipole moments displayed in the preceding subsection;
the computation involves taking two retarded-time derivatives of these moments.
Similarly, the wave-zone contribution to hab is given by Eq. (6.10.28), and this
involves four retarded-time derivatives of Iab = mηzazb + O(c−2), which is equal
to the Newtonian piece of Qab. Our task in this subsection is to compute these
derivatives.

The general strategy is clear. The radiative multipole moments of Eqs. (6.11.13)–
(6.11.17) are expressed explicitly in terms of the position and velocity vectors, and
these are functions of the retarded time τ . Differentiating one of these moments
with respect to τ therefore involves taking derivatives of the position and velocity
vectors. Differentiating z gives v, and differentiating v gives a, the post-Newtonian
acceleration vector of Eq. (6.11.12). After making this substitution, the result is
once more expressed in terms of z and v, and it is ready for further differentiation.

More concretely, consider the task of computing Q̈ab. The quadrupole moment
is a function of z at order c0, and a function of z and v at order c−2. Taking a
first derivative with respect to τ produces terms in z and v at order c0, and terms
in z, v, and a at order c−2. In the post-Newtonian term we may substitute the
Newtonian expression for the acceleration vector, a = −Gmz/z3 +O(c−2), because
the error incurred occurs at order c−4 in Q̇ab. The end result is a function of z and
v at order c0, another function of z and v at order c−2, and neglected terms at order
c−4. Taking a second derivative introduces the acceleration vector at orders c0 and
c−2. In the Newtonian term we must now substitute the post-Newtonian expression
for the acceleration vector, because its pn term will influence the c−2 piece of Q̈ab;
we are still, however, allowed to insert the Newtonian acceleration within the c−2

piece of the second derivative. The end result for Q̈ab is a function of z and v at
order c0, and another function of z and v at order c−2.

Derivatives of higher multipole moments are computed in a similar way. These
computations are tedious and lengthy, but they are completely straightforward.
They are aided by the identities

vv̇ = −Gm

z2
ż + O(c−2) (6.11.18)

and

zz̈ = v2 − ż2 − Gm

z
+ O(c−2), (6.11.19)

which are consequences of the Newtonian expression for the acceleration vector.
We display the final results:

Q̈ab = mη

{

2

(

vavb − Gm

z
nanb

)}

+
mη

c2

{[

−1

2
(7 + 2η)v2 +

3

2
(1 − 2η)ż2 +

19

2

Gm

z

]
Gm

z
nanb
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+

[

(1 − 3η)v2 − (1 − 2η)
Gm

z

]

vavb + (3 + 2η)
Gm

z
ż
(
vanb + navb

)
}

+ O(c−4), (6.11.20)

Q̈abc =
mη∆

c

{

−3
Gm

z
żnanbnc + 3

Gm

z

(
vanb + navb

)
nc

+
Gm

z
nanbvc − 2vavbvc

}

+
mη∆

c3

{[
3

2
(2 − η)v2 +

9

2
(1 + η)ż2

− 1

3
(31 − 9η)

Gm

z

]
Gm

z

(
vanb + navb

)
nc − (15 + 2η)

Gm

z
ż vavbnc

+

[

−3

2
(4 − 3η)v2 +

5

2
(1 − 3η)ż2 +

2

3
(29 − 3η)

Gm

z

]
Gm

z
ż nanbnc

+

[
1

2
(4 − η)v2 − 3

2
(1 − η)ż2 − 1

3
(25 − 3η)

Gm

z

]
Gm

z
nanbvc

− (3 + 2η)
Gm

z
ż
(
vanb + navb

)
vc

+

[

−(1 − 5η)v2 + (1 − 4η)
Gm

z

]

vavbvc

}

+ O(c−5), (6.11.21)

Q̈abcd =
mη

c2

{

5(1 − 3η)
Gm

z
ż
(
vanb + navb

)
ncnd

+ (1 − 3η)

(

v2 − 5ż2 +
7

3

Gm

z

)
Gm

z
nanbncnd

− 14

3
(1 − 3η)

Gm

z
vavbncnd

− 8

3
(1 − 3η)

Gm

z

(
vanb + navb

)(
vcnd + ncvd

)

+ 2(1 − 3η)vavbvcvd + 2(1 − 3η)
Gm

z
ż nanb

(
vcnd + ncvd

)

− 2

3
(1 − 3η)

Gm

z
nanbvcvd +

1

6

Gm

z

(

v2 − 3ż2 +
Gm

z

)

nanbδcd

+
1

3

Gm

z
ż
(
vanb + navb

)
δcd − 1

3

Gm

z
vavbδcd

}

+ O(c−4), (6.11.22)

Q̈abcde =
mη∆

c3

{

−1

4
(1 − 2η)

(

21v2 − 105ż2 + 44
Gm

z

)
Gm

z

(
vanb + navb

)
ncndne

+
1

4
(1 − 2η)

(

45v2 − 105ż2 + 90
Gm

z

)
Gm

z
ż nanbncndne

− 51

2
(1 − 2η)

Gm

z
ż vavbncndne

− 27

2
(1 − 2η)

Gm

z
ż
(
vanb + navb

)(
vcndne + ncvdne + ncndve

)

− 1

4
(1 − 2η)

(

9v2 − 45ż2 + 28
Gm

z

)
Gm

z
nanb

(
vcndne + ncvdne + ncndve

)

+
29

2
(1 − 2η)

Gm

z
vavb

(
vcndne + ncvdne + ncndve

)

+
15

2
(1 − 2η)

Gm

z

(
vanb + navb

)(
vcndne + ncvdne + ncndve

)

− 6(1 − 2η)vavbvcvdve − 9

2
(1 − 2η)

Gm

z
ż nanb

(
vcvdne + vcndve + ncvdve

)
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+
3

2
(1 − 2η)

Gm

z
nanbvcvdve +

1

4

(

9v2 − 15ż2 + 10
Gm

z

)
Gm

z
ż nanbn(cδde)

− 1

4

(

3v2 − 9ż2 + 4
Gm

z

)
Gm

z

(
vanb + navb

)
n(cδde)

− 1

4

(

3v2 − 9ż2 + 4
Gm

z

)
Gm

z
nanbv(cδde)

− 3

2

Gm

z
ż vavbn(cδde) − 3

2

Gm

z
ż
(
vanb + navb

)
v(cδde) +

3

2

Gm

z
ż vavbv(cδde)

}

+ O(c−5). (6.11.23)

In addition, we have that

Iab(4) = 2mη
Gm

z3

[(

3v2 − 15ż2 +
Gm

z

)

nanb + 9ż
(
vanb + navb

)
− 4vavb

]

+ O(c−2). (6.11.24)

6.11.4 Gravitational-wave field

We may now substitute Eqs. (6.11.20)–(6.11.24) into Eqs. (6.9.1) and (6.10.28) and
obtain the gravitational-wave field. These computations are straightforward, and
we express the result as

hab =
2Gmη

c4r



Hab[n] + Aab[ 12pn] + Aab[1pn] + Aab[ 32pn] + Aab[tail] + O(c−4)



,

(6.11.25)
in which we group terms according to their post-Newtonian order (the last term,
with the label “tail,” is also of 3

2pn order). We have

Aab[n] = 2



vavb − Gm

z
nanb



, (6.11.26)

Aab[12pn] =
∆

c



3
Gm

z
(n · Ω)

(
vanb + navb − ż nanb

)

+ (v · Ω)

(

−2vavb +
Gm

z
nanb

)

, (6.11.27)

Aab[1pn] =
1

c2





1

3

[

3(1 − 3η)v2 − 2(2 − 3η)
Gm

z

]

vavb

+
2

5
(5 + 3η)

Gm

z
ż
(
vanb + navb

)

+
1

3

Gm

z

[

−(10 + 3η)v2 + 3(1 − 3η)ż2 + 29
Gm

z

]

nanb

+
2

3
(1 − 3η)(v · Ω)2

(

3vavb − Gm

z
nanb

)

+
4

3
(1 − 3η)(v · Ω)(z · Ω)

Gm

z

[

−4
(
vanb + navb

)
+ 3żnanb

]

+
1

3
(1 − 3η)(z · Ω)2

Gm

z

[

−14vavb + 15ż
(
vanb + navb

)

+

(

3v2 − 15ż2 + 7
Gm

z

)

nanb

]



, (6.11.28)

Aab[32pn] =
∆

c3





1

12
(v · Ω)

{

−6

[

2(1 − 5η)v2 − (3 − 8η)
Gm

z

]

vavb
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− 6(7 + 4η)
Gm

z
ż
(
vanb + navb

)

+
Gm

z

[

3(7 − 2η)v2 − 9(1 − 2η)ż2 − 4(26 − 3η)
Gm

z

]

nanb

}

+
1

12
(z · Ω)

Gm

z

{

−6(31 + 4η)ż vavb

+

[

3(11 − 6η)v2 + 9(7 + 6η)ż2 − 4(32 − 9η)
Gm

z

]
(
vanb + navb

)

− ż

[

9(7 − 6η)v2 − 15(1 − 6η)ż2 − 2(121 − 12η)
Gm

z

]

nanb

}

+
1

2
(1 − 2η)(v · Ω)3

{

−4vavb +
Gm

z
nanb

}

+
3

2
(1 − 2η)(v · Ω)2(n · Ω)

Gm

z

{

5
(
vanb + navb

)
− 3żnanb

}

+
1

4
(1 − 2η)(v · Ω)(n · Ω)2

Gm

z

{

58vavb − 54ż
(
vanb + navb

)

−
[

9v2 − 45ż2 + 28
Gm

z

]

nanb

}

+
1

12
(1 − 2η)(n · Ω)3

Gm

z

{

−102ż vavb

−
[

21v2 − 105ż2 + 44
Gm

z

]
(
vanb + navb

)

+ 15ż

[

3v2 − 7ż2 + 6
Gm

z

]

nanb

}



, (6.11.29)

Aab[tail] =
4Gm

c3

∫ ∞

0





Gm

z3

[(

3v2 − 15ż2 +
Gm

z

)

nanb + 9ż
(
vanb + navb

)

− 4vavb

]




τ−ζ

[

ln

(
ζ

ζ + 2r/c

)

+
11

12

]

dζ. (6.11.30)

The gravitational-wave field is expressed in terms of the relative position vector
z = z1 − z2, the relative velocity vector v = v1 − v2, the radial velocity ż = z · v,
and the mass parameters m = m1 + m2, η = m1m2/m2, and ∆ = (m1 − m2)/m.
In addition, hab depends on retarded time τ = t− r/c as well as the angular vector
Ω := x/r, which specifies the direction from the barycentre to the field point x.
In the tail integral of Eq. (6.11.30), the terms within the large round brackets are
evaluated at τ − ζ instead of τ , and the integration from ζ = 0 to ζ = −∞ involves
the entire past history of the two-body system.

The expressions listed here are not fully optimal, because it is still necessary
to extract the transverse-tracefree part of hab. While the TT projection has been
invoked repeatedly in the preceding sections to discard irrelevant terms and simplify
expressions, Eqs. (6.11.26)–(6.11.30) still contain unwanted traces and longitudinal
pieces. As was discussed in Sec. 6.1.6, these are removed by subjecting hab to the
TT projection operator of Eq. (6.1.33): We must write

hab
TT = (tt)ab

cdh
cd, (6.11.31)

and subject each post-Newtonian contribution to the TT projection. Because the
final expressions are rather large, we shall not display them here.
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6.12 Specialization to circular orbits

6.12.1 Circular motion

In this section we make a further specialization to circular orbital motion. This is
defined by the condition

ż = 0, (6.12.1)

so that the two bodies move while maintaining a constant relative separation. This
is undoubtedly a restriction on all possible motions, but more than that, Eq. (6.12.1)
is also an approximation, because as the system loses energy to gravitational radi-
ation (an effect that will be examined in Chapter 7), the orbital separation slowly
decreases, and even for circular orbits, ż should actually be negative. But because
this radiation-reaction effect appears at 2

5pn order in the equations of motion, we
are justified to neglect it here.

We refer back to the orbital equations of Sec. 5.5.4, and describe the motion
in terms of the polar coordinates z and ψ, where z is the (now constant) distance
between the two bodies, and ψ is an angular coordinate in the fixed orbital plane
(chosen here to be the x-y plane). The position and velocity vectors are given by
Eqs. (5.5.25) and (5.5.26), respectively:

z = z n, v = ωz ψ, (6.12.2)

where ω := ψ̇ is the angular velocity, and

n = [cos ψ, sin ψ, 0], ψ = [− sin ψ, cos ψ, 0] (6.12.3)

are the basis vectors. Equation (5.5.29) informs us that ω is constant when the
motion is circular, and Eq. (5.5.28) gives rise to a relation between ω and z. After
setting ż = z̈ = 0 and solving for ω2, we obtain

ω2 =
Gm

z3

[

1 − (3 − η)
Gm

c2z
+ O(c−4)

]

, (6.12.4)

the post-Newtonian generalization of the usual Keplerian relation ω2 = Gm/z3.
(When radiation-reaction effects are included, z decreases as time increases, and
this causes ω to increase.)

The orbital velocity is v = ωz, and according to Eq. (6.12.4) we have

v2 =
Gm

z

[

1 − (3 − η)
Gm

c2z
+ O(c−4)

]

. (6.12.5)

Making the substitution into Eq. (5.5.23), we find that the orbital energy per unit
mass is

Ẽ = −Gm

2z

[

1 − 1

4
(7 − η)

Gm

c2z
+ O(c−4)

]

. (6.12.6)

The system’s actual energy is E = ηmẼ; this includes kinetic energy and gravita-
tional potential energy, but excludes the rest-mass energy of each body.

6.12.2 Post-Newtonian expansion parameter

The post-Newtonian expansion is formally an expansion in powers of c−2, but phys-
ically it is an expansion in powers of a dimensionless quantity such as v2/c2. There
are many such quantities that could be adopted as an expansion parameter. Equa-
tion (6.12.5) suggests, for example, that Gm/(c2z) could be selected, and this would
indeed be a valid substitute to v2/c2. Another choice is

x :=

(
Gmω

c3

)2/3

, (6.12.7)
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and this has the important advantage of directly involving ω, a quantity that is
directly measurable in the gravitational-wave signal. As we shall see in Sec. 6.12.4,
the orbital frequency ω is directly related to the frequency of the gravitational
waves, and it can therefore be measured directly. This is unlike v or z, which are
coordinate-dependent and cannot be measured directly. It is easy to show, using
Eqs. (6.12.4) and (6.12.5), that

(v/c)2 = x

[

1 − 2

3
(3 − η)x + O(x2)

]

(6.12.8)

and
Gm

c2z
= x

[

1 +
1

3
(3 − η)x + O(x2)

]

. (6.12.9)

We shall henceforth adopt x as a meaningful post-Newtonian parameter, and reex-
press Eq. (6.11.25) as an expansion in powers of x.

6.12.3 TT projection

The transverse-tracefree projection of hab is accomplished with the techniques de-
veloped in Sec. 6.1.6. We re-introduce the vectorial basis (Ω,θ,φ), with

Ω = [S cos φ, S sin φ,C], (6.12.10)

θ = [C cos φ,C sinφ,−S], (6.12.11)

φ = [− sin φ, cos φ, 0], (6.12.12)

where
C := cos θ, S := sin θ. (6.12.13)

Here, the angles (θ, φ) determine the direction of the field point x at which the
gravitational wave is measured. The polar angle θ refers to the z direction, which
is normal to the orbital plane. The azimuthal angle φ, and also the angular posi-
tion ψ of the relative orbit, refer to the x direction, which is arbitrary within the
orbital plane; as we shall see, the gravitational-wave polarizations depend on the
combination Ψ := ψ−φ, and this is invariant under rotations within the plane. The
unit vector Ω = x/r points in the longitudinal direction, and the transverse space
is spanned by θ and φ. In terms of these, the two independent components of the
transverse-tracefree piece of hab are given by Eqs. (6.1.41) and (6.1.42),

h+ =
1

2

(
θaθb − φaφb

)
hab (6.12.14)

and

h× =
1

2

(
θaφb + φaθb

)
hab. (6.12.15)

The tensorial field is then constructed as in Eq. (6.1.40),

hab
TT = h+

(
θaθb − φaφb

)
+ h×

(
θaφb + φaθb

)
, (6.12.16)

so that h+ represents the θ-θ component of the tensor (and also minus the φ-φ
component, in order to satisfy the tracefree condition), while h× represents the θ-φ
component.

6.12.4 Gravitational-wave polarizations

We take the gravitational-wave field of Eqs. (6.11.25)–(6.11.30) and specialize it to
circular orbits by substituting Eqs. (6.12.1)–(6.12.3). Next we expand it in powers
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of x by involving Eqs. (6.12.8) and (6.12.9). And finally, we extract its TT part by
making use of Eqs. (6.12.10)–(6.12.15). After simplification, and after evaluation of
the tail integrals (as described in the next subsection), we arrive at

h+ =
2Gmη

c2r

(
Gmω

c3

)2/3{

H
[0]
+ + ∆x1/2H

[1/2]
+ + xH

[1]
+ + ∆x3/2H

[3/2]
+

+ x3/2Htail
+ + O(x2)

}

(6.12.17)

and

h× =
2Gmη

c2r

(
Gmω

c3

)2/3{

H
[0]
× + ∆x1/2H

[1/2]
× + xH

[1]
× + ∆x3/2H

[3/2]
×

+ x3/2Htail
× + O(x2)

}

, (6.12.18)

where

H
[0]
+ = −(1 + C2) cos 2Ψ, (6.12.19)

H
[1/2]
+ = −1

8
S(5 + C2) sin Ψ − 9

8
S(1 + C2) sin 3Ψ, (6.12.20)

H
[1]
+ =

1

6

[

(19 + 9C2 − 2C4) − (19 − 11C2 − 6C4)η
]

cos 2Ψ

+
4

3
(1 − 3η)S2(1 + C2) cos 4Ψ, (6.12.21)

H
[3/2]
+ =

1

192
S

[

(57 + 60C2 − C4) − 2(49 − 12C2 − C4)η
]

sin Ψ

+
9

128
S

[

(73 + 40C2 − 9C4) − 2(25 − 8C2 − 9C4)η
]

sin 3Ψ

+
625

384
(1 − 2η)S3(1 + C2) sin 5Ψ, (6.12.22)

Htail
+ = −4(1 + C2)

[
π

2
cos 2Ψ + (γ + ln 4ωr/c) sin 2Ψ

]

(6.12.23)

and

H
[0]
× = −2C sin 2Ψ, (6.12.24)

H
[1/2]
× =

3

4
CS cos Ψ +

9

4
CS cos 3Ψ, (6.12.25)

H
[1]
× =

1

3
C

[

(17 − 4C2) − (13 − 12C2)η
]

sin 2Ψ

+
8

3
(1 − 3η)CS2 sin 4Ψ, (6.12.26)

H
[3/2]
× = − 1

96
CS

[

(63 − 5C2) − 2(23 − 5C2)η
]

cos Ψ

− 9

64
CS

[

(67 − 15C2) − 2(19 − 15C2)η
]

cos 3Ψ

− 625

192
(1 − 2η)CS3 cos 5Ψ, (6.12.27)

Htail
× = −8C

[
π

2
sin 2Ψ − (γ + ln 4ωr/c) cos 2Ψ

]

. (6.12.28)

We recall that m = m1+m2 is the total mass of the two-body system, η = m1m2/m2

is the dimensionless reduced mass, ∆ = (m1 − m2)/m is the dimensionless mass
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difference, r is the distance from the barycentre to the detector, θ and φ give the
angular position of the detector relative to the orbital plane, C = cos θ, S = sin θ,
and x = (Gmω/c3)2/3 is the post-Newtonian expansion parameter, expressed in
terms of ω, the orbital angular velocity. The phase of the wave is determined by

Ψ := ψ − φ = ω(t − r/c) − φ, (6.12.29)

where ψ = ωτ is the (retarded) angular position of the relative orbit. Equations
(6.12.20) and (6.12.24) imply that at leading order, the gravitational-wave signal
oscillates at twice the orbital frequency; the post-Newtonian corrections contribute
additional frequencies and the signal is modulated. Our results for the gravitational-
wave polarizations agree with the expressions listed in Blanchet, Iyer, Will, and
Wiseman (1996), except for a different convention regarding angles and phases.

The tails terms of Eqs. (6.12.23) and (6.12.28) are interesting. They involve the
mathematical constants π and γ ≃ 0.5772 (Euler’s constant), and they also involve
a logarithmic term that depends on ωr/c. The tail terms are best interpreted as
giving rise to a correction to Ψ, the quantity that determines the phase of the
gravitational wave. Indeed, it is a simple matter to show that the Newtonian and
tail contributions to h+ and h× can be combined and expressed as

H
[0]
+ + x3/2Htail

+ = −(1 + C2)
(
1 + 2πx3/2

)
cos 2Ψ∗, (6.12.30)

H
[0]
× + x3/2Htail

× = −2C
(
1 + 2πx3/2

)
sin 2Ψ∗. (6.12.31)

These expressions involve an amplitude correction equal to 2πx3/2, and a new phase
function given by

Ψ∗ = Ψ − 2x3/2(γ + ln 4ωr/c) = ω

(

t − r/c − 2Gm

c3
ln

4ωr

c
+ constant

)

. (6.12.32)

It is this shifted phase function that informs us, at long last, that the radiation
propagates not along the mathematical light cones of Minkowski spacetime, but
along the true, physical light cones of a curved spacetime. Indeed, the logarith-
mic term in Eq. (6.12.32) represents the well known Shapiro time delay, the extra
time required by a light wave, or a gravitational wave, to climb up a gravitational
potential well created by a distribution of matter with total mass m.

6.12.5 Evaluation of the tail integrals

We must still evaluate the tail integrals, and show that they lead to Eqs. (6.12.23)
and (6.12.28). We start with Eq. (6.11.30), which we specialize to circular or-
bits by involving Eqs. (6.12.1)–(6.12.3), and we extract its TT part by making
use of Eqs. (6.12.10)–(6.12.15). After converting Eq. (6.11.25) to the notation of
Eqs. (6.12.17) and (6.12.18), we find that

Htail
+ = 8(1 + C2)ω

∫ ∞

0

cos(2Ψ − 2ωζ)

[

ln
ζ

ζ + 2r/c
+

11

12

]

dζ

and

Htail
× = 16Cω

∫ ∞

0

sin(2Ψ − 2ωζ)

[

ln
ζ

ζ + 2r/c
+

11

12

]

dζ.

We next change the variable of integration to y := 2ωζ and we introduce k := 4ωr/c.
The tail integrals become

Htail
+ = 4(1 + C2)

∫ ∞

0

cos(2Ψ − y)

[

ln
y

y + k
+

11

12

]

dy
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and

Htail
× = 8C

∫ ∞

0

sin(2Ψ − y)

[

ln
y

y + k
+

11

12

]

dy.

Expanding the trigonometric functions, this is

Htail
+ = 4(1 + C2)

(
Jc cos 2Ψ + Js sin 2Ψ

)

and

Htail
× = 8C

(
Jc sin 2Ψ − Js cos 2Ψ

)
,

where

Jc :=

∫ ∞

0

cos(y)

[

ln
y

y + k
+

11

12

]

dy

and

Js :=

∫ ∞

0

sin(y)

[

ln
y

y + k
+

11

12

]

dy.

These integrals are ill-defined, because the function within the square brackets be-
haves as 11

12 − k/y for large y, and the constant term prevents each integral from
converging. This, however, is an artificial problem that comes as a consequence of
our (unphysical) approximation ω = constant. In reality, the two-body system un-
dergoes radiation reaction, and ω slowly decreases as ζ increases toward ∞. (Recall
that z decreases as time increases, which causes ω to increase as time increases; but
recall also that the tail term integrates towards the past, so that ω decreases as ζ
increases.) This effect does not alter substantially the logarithmic portion of the
integral, but it is sufficient to ensure the convergence of the constant term.

The integrals can be defined properly by inserting a convergence factor within
the integrand. Alternatively, and this practice is consistent with what was done
back in Sec. 6.10.3, we can integrate by parts and simply discard an ambiguous
(and unphysical) boundary term at y = ∞. Proceeding along those lines, we find
that our integrals are equivalent to

Jc = −
∫ ∞

0

k sin y

y(y + k)
dy

and

Js =

∫ ∞

0

k(cos y − 1)

y(y + k)
dy,

and we observe that these integrals are indeed well defined. They can be evaluated
in closed form. We have

Jc = −π

2
+

π

2
cos k + Ci(k) sin k − Si(k) cos k

= −π

2
+ O(k−1)

and

Js = −γ − ln k − π

2
sin k + Ci(k) cos k + Si(k) sin k

= −γ − ln k + O(k−2),

where γ is Euler’s constant, Ci(k) is the cosine integral, and Si(k) is the sine integral
(these are defined, for example, in Sec. 5.2 of Abramowitz and Stegun’s Handbook
of mathematical functions). The approximate forms neglect terms of order k−1 =
(4ωr/c)−1 ∼ (λc/r) and smaller, and these are small by virtue of the fact that the
gravitational-wave field is evaluated in the far-away wave zone, where r ≫ λc.
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Collecting results, we find that

Htail
+ = −4(1 + C2)

[
π

2
cos 2Ψ + (γ + ln 4ωr/c) sin 2Ψ

]

and

Htail
× = −8C

[
π

2
sin 2Ψ − (γ + ln 4ωr/c) cos 2Ψ

]

,

and these expressions were already presented in Eqs. (6.12.23) and (6.12.28).
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Chapter 7

Energy radiated and

radiation reaction

7.1 Energy radiated: Landau and Lifshitz 131

7.2 Energy radiated: Bondi and Sachs 133

7.3 Energy radiated: Quadrupole formula and circular

orbits 139

7.4 Radiation-reaction potentials 142

7.5 Radiation-reaction force and energy balance 154

In this final chapter we calculate the energy carried off by gravitational waves,
and we construct a radiation-reaction force that acts on each body within an N -
body system. We begin by constructing an expression for the rate at which energy
is dissipated by gravitational waves. We provide two very distinct derivations. In
Sec. 7.1 we use the Landau-Lifshitz pseudotensor as a basis for the calculation, and
in Sec. 7.2 we recreate the Bondi-Sachs argument, which is based on a careful inte-
gration of the Einstein field equations in the far-away wave zone. Both approaches
lead to the same result, expressed by Eq. (7.1.4) or Eq. (7.1.5). In Sec. 7.3 we
give two applications of this result. First, we derive Eq. (7.3.6) or Eq. (7.3.8), the
celebrated quadrupole formula of gravitational-wave physics. Second, we calculate
the energy radiated by a two-body system in circular, post-Newtonian motion; this
is expressed by Eq. (7.3.18). In Sec. 7.4 we calculate the gravitational potentials
that are required in the computation of the radiation-reaction force, which is car-
ried out in Sec. 7.5. The final result for the radiation-reaction force is given by
Eq. (7.5.32) for the general N -body system, and by Eq. (7.5.49) for a two-body
system. This final section also provides a discussion of energy balance; we show
that the radiation-reaction force does work on the N bodies, and we verify that in
a coarse-grained sense, the work done is equal to the energy radiated.

7.1 Energy radiated: Landau and Lifshitz

The most direct way of calculating the rate at which energy is radiated by a source
of gravitational waves is based on the conservation identities of Sec. 1.2. These, we
recall, are a direct consequence of the Landau-Lifshitz formulation of the Einstein
field equations, which was reviewed in Sec. 1.1.

Recall from Eq. (1.2.2) that

P 0[V ] =
c3

16πG

∮

S

∂µH0µ0c dSc

131



132 Energy radiated and radiation reaction

represents the zeroth component (the energy divided by c) of the total momen-
tum four-vector associated to a three-dimensional volume V bounded by a two-
dimensional surface S; the integrand is related to the gravitational potentials hαβ

via the relations Hαµβν = g
αβ

g
µν − g

αν
g

βµ and g
αβ = ηαβ − hαβ . The rate at

which this quantity changes with time is given by Eq. (1.2.3), which we write as

dE[V ]

dt
= −c

∮

S

(−g)t0c
LL dSc,

having set E[V ] = P 0[V ]c and x0 = ct. In the limit in which V becomes infinitely
large, this must become equal to (minus) the rate at which the gravitational waves
carry energy away, and we have

dEgw

dt
= c

∮

∞

(−g)t0c
LL dSc, (7.1.1)

an equation that relates Ėgw to the surface integral of the normal component of
(−g)t0a

LL, the Landau-Lifshitz flux vector.

We evaluate Eq. (7.1.1) in the far-away wave zone, and we take the limit r → ∞
at the end of the calculation. We work in the TT gauge of Sec. 6.1.4, and we use
the gravitational potentials of Eqs. (6.1.26)–(6.1.28),

h00 =
4GM

c2r
, h0a = 0, hab = hab

TT. (7.1.2)

Here, M is the total gravitational mass of the spacetime, and hab
TT depends on the

retarded time τ := t− r/c, the angular vector Ω := x/r, and falls off as r−1; it also
satisfies the transverse-tracefree conditions

Ωbh
ab
TT = 0 = δabh

ab
TT.

Equation (7.1.2) is valid to leading order in r−1, and the neglected terms are of
order r−2.

We need an expression for (−g)t0c
LL that is sufficiently accurate in the far-away

wave zone. Because the Landau-Lifshitz pseudotensor is dominantly quadratic in
the gravitational potentials, the leading-order terms fall off as r−2, and we may
neglect cubic and higher-order terms that will not survive the limit r → ∞. Going
back to the original definition of Eq. (1.1.5), we substitute g

αβ = ηαβ − hαβ , gαβ =
ηαβ + O(h), and we obtain

(−g)t0c
LL =

c4

16πG

{
1

2
∂0hµν∂chµν − 1

4
∂0h∂ch − ∂0hµν∂νhµc

− ∂chµν∂νh0µ + ∂µh0
ν∂µhνc

}

,

in which indices are lowered with ηµν , and h = ηµνhµν . When we substitute
Eqs. (7.1.2) into this expression, we notice first that h00 does not participate, be-
cause its time derivative is zero, and because its spatial derivatives fall off as r−2.
We notice also that h = 0 in the TT gauge, and we recall that in the far-away wave
zone, spatial derivatives can be expressed in terms of retarded-time derivatives ac-
cording to ∂c = −c−1Ωc∂τ , a statement that follows from Eq. (6.1.10).

With these simplifications, we find that the Landau-Lifshitz flux vector reduces
to

(−g)t0c
LL =

c2

32πG
ḣTT

ab ḣab
TTΩc, (7.1.3)
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in which an overdot indicates differentiation with respect to retarded-time τ . If we
take S to be a surface of constant r, then dSc = r2Ωc dΩ, where dΩ = sin θ dθdφ is
an element of solid angle, and Eq. (7.1.1) becomes

Ėgw =
c3

32πG
lim

r→∞

∮

r2ḣTT
ab ḣab

TT dΩ. (7.1.4)

The energy flux can also be expressed in terms of the gravitational-wave polariza-
tions h+ and h×, by involving Eq. (6.1.40) and the orthonormality of the basis
vectors θ and φ. We obtain

Ėgw =
c3

16πG
lim

r→∞

∮

r2
(

ḣ2
+ + ḣ2

×

)

dΩ. (7.1.5)

It is understood that hab
TT, h+, or h× are expressed as functions of τ and Ω, and

that they fall off as r−1; as a consequence, the factors of r disappear from both
Eqs. (7.1.4) and (7.1.5).

This derivation of Ėgw leaves much room for criticism. To begin, the calculation
is based on the (fairly arbitrary) definitions for momentum and momentum flux
introduced by Landau and Lifshitz. While the conservation identities that follow
from these definitions are perfectly rigourous, the interpretation of cP 0[V ] as a
physical energy is not, and it becomes meaningful only when the spacetime is static,
and when V is infinitely large. There is no guarantee that this quantity should
provide a sound description of total gravitational energy in dynamical situations,
and the current foundation of Eqs. (7.1.4) and (7.1.5) is not as solid as one might
wish. In addition, the calculation of Ėgw was carried out in the TT gauge, and
there is no guarantee that the result should be gauge invariant. In view of this
criticism, we provide in the next section an alternative, more rigourous derivation
of Eqs. (7.1.4) and (7.1.5).

7.2 Energy radiated: Bondi and Sachs

The derivation of Eqs. (7.1.4) and (7.1.5) presented in this section is based on a
careful integration of the Einstein field equations in a neighbourhood of r = ∞, in
the far-away wave zone. The method goes back to the celebrated work of Bondi,
van der Burg, and Metzner (1962), and of Sachs (1962). The presentation here
follows closely the paper by Brown, Lau, and York (1997). We shall establish
Eq. (7.1.5) directly, and this is sufficient, because Eq. (7.1.4) can be recovered from
it by involving the equations that precede Eqs. (6.1.41) and (6.1.42).

7.2.1 Bondi-Sachs metric

We work in a system of coordinates (u, r, θ, φ), with the usual relation to a Cartesian
system (t, x, y, z) given by u = ct − r, x = r sin θ cos φ, y = r sin θ sin φ, and z =
r cos θ. We denote the angular coordinates collectively by θA = (θ, φ), with an index
A that runs from 2 to 3. The metric is put in the form

ds2 = −UV du2 − 2U dudr + r2ΩAB

(
dθA + WA du

)(
dθB + WB du

)
, (7.2.1)

in which U , V , WA, and ΩAB are functions of u, r, and θA. To reduce the number
of independent components from seven to six, we impose the condition

Ω := det[ΩAB ] = sin2 θ. (7.2.2)

This ensures that a two-surface of constant u and r has a proper area equal to
4πr2; Eq. (7.2.2) is therefore a normalization of the radial coordinate r, which is
interpreted as an areal radius.
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The geometrical meaning of the coordinates is revealed by an examination of
the inverse metric, which is given by guu = 0 = guA, gur = −1/U , grr = V/U ,
grA = WA/U , and gAB = ΩAB/r2, in which ΩAB is the inverse to ΩAB . The
vector

kα := −∂αu

is normal to hypersurfaces of constant u, and from the inverse metric we find that
gαβkαkβ = guu = 0; the vector is null, and each surface u = constant is therefore
a null hypersurface. These surfaces are generated by null geodesics to which the
vector kα is tangent. We can show that the angular coordinates θA are constant
along the null generators: kβ∂βθA = gαβkα∂βθA = guA = 0. And we can show
that the change in r along each generator is determined by the metric function U :
kβ∂βr = gαβkα∂βr = gur = −1/U . The meaning of the coordinates is therefore
clear: The retarded-time coordinate u labels a family of null hypersurfaces, the
angular coordinates θA label the null geodesics that generate the hypersurfaces,
and the areal radius r runs along each generator. Because U is positive, r decreases
toward the future (because kα is future directed), and the generators converge
toward r = 0; this implies that the null hypersurfaces are converging light cones.

The metric of Eq. (7.2.1) is required to be asymptotically flat, and this implies
that the metric functions must satisfy the conditions

U → 1, V → 1, WA → 0, ΩAB → diag[1, sin2 θ]

when r → ∞.
To integrate the Einstein field equations in a neighbourhood of r = ∞ we intro-

duce the asymptotic expansions

U = 1 +
A(u, θA)

r
+

B(u, θA)

r2
+ O(r−3), (7.2.3)

V = 1 − 2Gm(u, θA)

c2r
+ O(r−2), (7.2.4)

WA =
CA(u, θA)

r
+

DA(u, θA)

r2
+ O(r−3), (7.2.5)

Ωθθ = 1 +
X(u, θA)

r
+

X2 + Y 2 + P (u, θA)

2r2
+ O(r−3), (7.2.6)

Ωθφ = sin θ

[
Y (u, θA)

r
+

Q(u, θA)

r2
+ O(r−3)

]

, (7.2.7)

Ωφφ = sin2 θ

[

1 − X(u, θA)

r
+

X2 + Y 2 − P (u, θA)

2r2
+ O(r−3)

]

. (7.2.8)

We have introduced a number of functions of u and θA (such as A, B, m, CA, DA,
P , and Q) that will be determined by the field equations. The functions X and
Y will remain free, however, and will be seen to represent the gravitational-wave
degrees of freedom of the solution. The function m(u, θA), called the mass aspect
of the spacetime, will play an important role below. And finally, we remark that
the specific forms introduced in Eqs. (7.2.6)–(7.2.8) for ΩAB are designed to enforce
the normalization condition of Eq. (7.2.2).

7.2.2 Integration of the field equations

The strategy is to substitute the expansions of Eqs. (7.2.3)–(7.2.8) into the metric
of Eq. (7.2.1), and then to use this metric to calculate the Ricci tensor. Because
we wish to construct a solution to the vacuum field equations, we set Rαβ = 0 and
examine the consequences. (These computations are best carried out with a tensor
manipulation package such as GRTensorII running under Maple.)
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The computation returns the Ricci tensor expressed as an expansion in powers
of r−1, and we must set the coefficient of each term equal to zero. The leading terms
are Ruu = O(r−1), Rur = O(r−2), RuA = O(1), Rrr = O(r−3), RrA = O(r−1), and
RAB = O(1).

We begin by enforcing Rrr = 0 at leading order, and this immediately implies
that A = 0. Next we set RrA = 0, and this produces CA = 0. With these
assignments, we find that all the leading terms in Rαβ vanish.

Moving on, we now enforce RrA = 0 at the next order, and we deduce that

Dθ =
1

2

(
∂X

∂θ
+ 2

cos θ

sin θ
X +

1

sin θ

∂Y

∂φ

)

and

Dφ =
1

2 sin θ

(
∂Y

∂θ
+ 2

cos θ

sin θ
Y − 1

sin θ

∂X

∂φ

)

.

Continuing like this, we also produce the relations B = − 1
8 (X2 + Y 2), P = 0, and

Q = 0.
The final piece of information comes from setting the O(r−2) term in Ruu to

zero. This reveals that

∂m

∂u
= − c2

4G

[(
∂X

∂u

)2

+

(
∂Y

∂u

)2
]

+
c2

4G

∂F

∂u
, (7.2.9)

where

F :=
∂2X

∂θ2
+ 3

cos θ

sin θ

∂X

∂θ
− 2X − 1

sin2 θ

∂2X

∂φ2
+

2

sin θ

∂2Y

∂θ∂φ
+ 2

cos θ

sin2 θ

∂Y

∂φ
. (7.2.10)

Equation (7.2.9) determines how the the mass aspect changes with time, assuming
that the functions X(u, θA) and Y (u, θA) are known. Notice that these two functions
are not determined by the field equations; they represent unconstrained degrees of
freedom, and in Sach’s treatment, they are combined into a single complex quantity
known as the news function. It is an important fact then when there is no news,
that is, when X = Y = 0, the mass aspect becomes independent of the retarded-
time u. And what’s more, it can be also shown (by involving additional pieces of
the field equations) that when X = Y = 0, the mass aspect must be independent
of the angles. Under these conditions, m is a constant, the asymptotic spacetime is
spherically symmetric, and m remains as the sole characterization of the spacetime.

7.2.3 Mass-loss formula

Our results in the preceding subsection imply that the time-time component of the
metric tensor is given by

−guu = UV = 1 − 2Gm(u, θA)

c2r
+ O(r−2), (7.2.11)

and the origin of the name “mass aspect” for m(u, θA) becomes clear. As we have
just seen, the interpretation of m as a mass parameter is firm when the functions
X(u, θA) and Y (u, θA) vanish; in these circumstances m is independent of both u
and θA, the asymptotic spacetime is spherically symmetric, and Eq. (7.2.11) informs
us that m is the total gravitational mass of the spacetime.

The angular average of the mass aspect is what is known as the Bondi-Sachs
mass,

MBS(u) =
1

4π

∫

m(u, θ, φ) dΩ. (7.2.12)
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This depends on u only, and its rate of change is obtained by integrating Eq. (7.2.9)
over a unit two-sphere. We shall prove below (in Sec. 7.2.5) that

∫
F dΩ = 0, and

we find that
MBS

du
= − c2

16πG

∫ [(∂X

∂u

)2

+
(∂Y

∂u

)2
]

dΩ. (7.2.13)

This is the celebrated Bondi-Sachs mass-loss formula. We shall attempt to give
an interpretation to this formula in terms of a flux of gravitational-wave energy
(represented by the right-hand side) producing a decrease in the energy function of
the source (represented by the Bondi-Sachs mass).

The interpretation is especially clear when the spacetime proceeds from an ini-
tial stationary state, becomes dynamical for a while, and settles down to a final
stationary state. In the initial stationary state there is no news (X = Y = 0), the
mass aspect m is a constant, and according to Eq. (7.2.12), it is equal to the initial
value M1 := MBS(u1) of the Bondi-Sachs mass (here u1 denotes the initial retarded
time); the initial mass content of the spacetime is therefore measured by M1. Much
of the same is true for the final stationary state: The news has turned off, the mass
aspect m is once again constant, and it is equal to the final value M2 := MBS(u2)
of the Bondi-Sachs mass (u2 is the final retarded time); the final mass content of
the spacetime is therefore measured by M2.

Between u = u1 and u = u2 the spacetime is dynamical, and the functions
X(u, θA), Y (u, θA) are nonzero. According to Eq. (7.2.13), the Bondi-Sachs mass
must decrease while there is news, and we find that M2 is necessarily smaller than
M1. The spacetime has lost some of its mass, and it must be the gravitational
waves (represented by the news) that have transported this energy away from the
source. The rate at which the waves carry energy must therefore be given by the
right-hand side of Eq. (7.2.13).

It is important to notice that we are introducing here a notion of coarse-grained
rate: What we can say with full certainty is that in the time interval ∆u = u2 −u1,
the spacetime has lost an amount of mass given by ∆M = M2 − M1, and that
the averaged rate at which the waves carry energy must be given by ∆M/∆u.
This coarse-grained rate can be calculated by integrating the right-hand side of
Eq. (7.2.13) between u = u1 and u = u2, and dividing the result by ∆u.

The scenario elaborated here is based on the idea that the spacetime is dynam-
ical for a period of time ∆u, and the mass-loss formula allows us to calculate the
accumulated change in mass over that period. The scenario does not allow us to take
the limit ∆u → 0 and to conclude that in this limit, ∆M/∆u becomes dMBS/du
as given by Eq. (7.2.13). The reason is that while the limit is mathematically well
defined, the physical interpretation of the result, in terms of an operationally well-
defined mass function, does not survive the limiting procedure. We must therefore
learn to live with a coarse-grained notion of gravitational-wave energy flux, and
abandon the idea that there might exist a precise, physically meaningful, notion of
fine-grained energy flux in general relativity. This said, we shall nevertheless allow
ourselves to view Eq. (7.2.13) as a plausible expression for the energy flux, keeping
in mind that the interpretation is valid only after coarse graining.

7.2.4 Gravitational-wave flux

The interpretation of Eq. (7.2.13) as an energy-flux formula relies on an identi-
fication of X and Y with the spacetime’s gravitational-wave degrees of freedom.
There are many ways of establishing this connection, but to avoid the many dan-
gers associated with different coordinate systems and gauge conditions, we rely on
the discussion of Sec. 6.1.5, in which hab

TT is related to certain components of the
spacetime’s asymptotic Riemann tensor (a gauge-invariant quantity in the far-away
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wave zone). We recall the relation

ḧTT
ab = −2Rtatb + O(r−2),

in which an overdot indicates differentiation with respect to τ := u/c. This equation
is expressed in harmonic coordinates, but it can easily be written in covariant form
if instead of dealing with the tensor hTT

ab , we work with the polarizations h+ and
h×, which are scalar quantities. Recalling Eqs. (6.1.41) and (6.1.42), we have that

ḧ+ = −
(
θaθb − φaφb

)
Rtatb

and

ḧ× = −
(
θaφb + φaθb

)
Rtatb,

and these equations can be written in fully covariant form as

ḧ+ = −Rµανβtµ
(
θαθβ − φαφβ

)
tν + O(r−2) (7.2.14)

and

ḧ× = −Rµανβtµ
(
θαφβ + φαθβ

)
tν + O(r−2). (7.2.15)

Here, tα is a timelike vector that asymptotically coincides with the timelike Killing
vector of Minkowski spacetime at r = ∞, and θα and φα are vectors that asymp-
totically coincide with unit vectors pointing in the θ and φ directions, respectively.

We are interested in the quantities

A+ := lim
r→∞

rh+, A× := lim
r→∞

rh×,

which can be evaluated with the help of Eqs. (7.2.14) and (7.2.15). Performing
the calculation with the Bondi-Sachs metric of Eqs. (7.2.1)–(7.2.8), we arrive at
Ä+ = Ẍ and Ä× = Ÿ , and we conclude that

A+ = X, A× = Y.

The components of the complex news function do indeed represent the spacetime’s
gravitational-wave degrees of freedom.

We insert these results within Eq. (7.2.13), which we write in terms of the Bondi-
Sachs energy EBS := MBSc2. The result is

dEBS

du
= − c4

16πG

∫

r2

[(∂h+

∂u

)2

+
(∂h×

∂u

)2
]

dΩ.

This is the rate at which the spacetime is losing energy, and this must be equal
to (minus) the rate at which the gravitational waves carry energy away from the
source. Writing u = cτ , we have arrived at

Ėgw =
c3

16πG

∫

r2

[(∂h+

∂τ

)2

+
(∂h×

∂τ

)2
]

dΩ, (7.2.16)

the same statement as Eq. (7.1.5), which was obtained on the basis of the Landau-
Lifshitz pseudotensor. It is comforting that we get the same expression from two
radically different approaches. We shall keep in mind, however, the lesson that was
learned in the preceding subsection, that Eq. (7.2.16) is meant to be involved in a
coarse-graining procedure whereby it is averaged over an interval of time δτ during
which the spacetime is strongly dynamical.
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7.2.5 Integration of F

We still have to show that
∫

F dΩ = 0, where the quantity F is given by Eq. (7.2.10).
Here X and Y are to be viewed as arbitrary functions of θ and φ, and their depen-
dence on u is irrelevant.

We begin with a formal proof of the statement. We first place a metric ΩAB on
a topological two-sphere, with components

Ωθθ = 1 + ǫX + O(ǫ2),

Ωθφ = sin θ
[
ǫY + O(ǫ2)

]
,

Ωφφ = sin2 θ
[
1 − ǫX + O(ǫ2)

]
,

where X and Y are arbitrary functions of θ and φ, and where ǫ ≪ 1 is a parameter
that measures the deformation of the two-sphere relative to a perfectly round shape.
[These equations are the same as Eqs. (7.2.6)–(7.2.8), with the dependence on u
removed and with r−1 replaced by ǫ.] We next calculate the Ricci scalar associated
with this metric,

R = 2 + ǫF + O(ǫ2),

where F is defined by Eq. (7.2.10), and we integrate this over the manifold:
∫

R

√
Ω dθdφ = 8π + ǫ

∫

F dΩ + O(ǫ2).

The Gauss-Bonnet theorem states that the integral of R over the two-dimensional
manifold is a topological invariant; its value depends on the topology of the manifold
(through its Euler characteristic, which depends on the genus of the surface), but
it must independent of the metric. In our case the integral of R must be equal to
8π, the value of the topological invariant that is appropriate for a two-sphere, and
it must be independent of ǫ. We conclude that

∫

F dΩ = 0, (7.2.17)

irrespective of the form of the functions X(θ, φ) and Y (θ, φ).
To see how this “miracle” happens, we examine the specific form of the function

F . Equation (7.2.10) can be written as

F =

(
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ

)

X+2

(
cos θ

sin θ

∂

∂θ
−1

)

X− 1

sin2 θ

∂2X

∂φ2
+

2

sin θ

∂

∂φ

(
∂

∂θ
+

cos θ

sin θ

)

Y,

which is the same as

F =
1

sin θ

∂

∂θ

(

sin θ
∂X

∂θ

)

+
2

sin θ

∂

∂θ

(

cos θX
)

− 1

sin2 θ

∂2X

∂φ2
+

2

sin θ

∂

∂φ

(
∂

∂θ
+

cos θ

sin θ

)

Y.

Integration of all derivatives with respect to φ gives zero, and integration of the
first terms yields

∫ π

0

1

sin θ

∂

∂θ

(

sin θ
∂X

∂θ

)

sin θ dθ = sin θ
∂X

∂θ

∣
∣
∣
∣

π

0

= 0.

The only remaining term is

2

∫ π

0

1

sin θ

∂

∂θ

(

cos θX
)

sin θ dθ = −2
[
X(π, φ) + X(0, φ)

]
.

This is actually independent of φ, because a regular function X(θ, φ) cannot depend
on φ when it is evaluated at the poles (θ = 0 or θ = π). Furthermore, elementary
flatness at the poles requires that X(θ = 0) = X(θ = π) = 0, and we find that the
second integral must vanish also. The statement of Eq. (7.2.17) is therefore verified.



7.3 Energy radiated: Quadrupole formula and circular orbits 139

7.3 Energy radiated: Quadrupole formula and

circular orbits

7.3.1 Quadrupole formula

In this first subsection we calculate Ėgw to leading order in a post-Newtonian ex-
pansion, for an arbitrary source of gravitational waves. Our end result will be the
celebrated quadrupole formula for the energy radiated by gravitational waves.

We recall from Sec. 6.9 that to leading order in a post-Newtonian expansion,
the gravitational potentials are given by

hab =
2G

c4r
Ïab, (7.3.1)

where

Iab =

∫

ρxaxb d3x (7.3.2)

is the Newtonian quadrupole moment of a mass distribution with density ρ :=
T 00/c2. For a system of N bodies with masses mA and positions zA(t), this is Iab =
∑

A mAza
Azb

A. These are Eqs. (6.9.1) and (6.9.2), respectively, with all expressions
truncated at Newtonian order. The transverse-tracefree part of this is

hab
TT = (tt)ab

cdh
cd, (7.3.3)

in which the TT projector

(tt)ab
cd = P a

cP
b
d − 1

2
P abPcd, (7.3.4)

with
P a

b = δa
b − ΩaΩb, (7.3.5)

was first introduced in Sec. 6.1.6. To calculate the energy flux, at this order of
accuracy, we must substitute Eq. (7.3.1) into Eq. (7.3.3), and that into Eq. (7.1.4).

Using the properties P a
cP

c
b = P a

b and P a
a = 2 of the transverse projector, it is

easy to show that

ḣTT
ab ḣab

TT =

(

PacPbd − 1

2
PabPcd

)

ḣabḣcd.

This becomes

ḣTT
ab ḣab

TT =
4G2

c8r2

(

δacδbd − 1

2
δabδcd − δacΩbΩd − δbdΩaΩc

+
1

2
δabΩcΩd +

1

2
δcdΩaΩb +

1

2
ΩaΩbΩcΩd

)

Iab(3)Icd(3)

after substitution of Eqs. (7.3.1) and (7.3.5).
Putting this into Eq. (7.1.4),

Ėgw =
c3

32πG

∫

r2ḣTT
ab ḣab

TT dΩ,

we find that the gravitational-wave luminosity is given by

Ėgw =
G

2c5

(

δacδbd − 1

2
δabδcd − δac

〈〈
ΩbΩd

〉〉
− δbd

〈〈
ΩaΩc

〉〉

+
1

2
δab

〈〈
ΩcΩd

〉〉
+

1

2
δcd

〈〈
ΩaΩb

〉〉
+

1

2

〈〈
ΩaΩbΩcΩd

〉〉
)

Iab(3)Icd(3),
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in which 〈〈 · · · 〉〉 := (4π)−1
∫

(· · ·) dΩ indicates an angular average. Importing the
relevant results from Sec. 1.8.4, we eventually arrive at

Ėgw =
1

5

G

c5

(

Iab(3)I
(3)
ab − 1

3
I(3) 2

)

, (7.3.6)

which expresses Ėgw in terms of the third derivative of the quadrupole moment with
respect to retarded-time τ := t − r/c.

An alternative expression involves

I〈ab〉 := Iab − 1

3
δabI, I := δabI

ab (7.3.7)

the tracefree version of the Newtonian quadrupole moment. It is easy to show that
I〈ab〉I〈ab〉 = IabIab − 1

3I2, so that Eq. (7.3.6) can also be written as

Ėgw =
1

5

G

c5
I〈ab〉(3)I

(3)
〈ab〉. (7.3.8)

Equation (7.3.6), or its alternate form of Eq. (7.3.8), is the well-known quadrupole
formula of gravitational-wave physics.

To illustrate the content of the quadrupole formula, we apply it to a Newtonian
two-body system. Working in the reference frame of the barycentre, we have from
Eq. (6.11.13) that

Iab = mηzazb, (7.3.9)

where m := m1 +m2 is the total mass, η := m1m2/m2 is the dimensionless reduced
mass, and z := z1 − z2 is the relative position vector. The Newtonian relative
acceleration is

a = −Gm

z2
n, (7.3.10)

in which z := |z| and n := z/z. After differentiating three times with the help of
Eq. (7.3.10), Eq. (7.3.9) gives

Iab(3) =
2Gm2η

z2

[

−2
(
vanb + navb

)
+ 3żnanb

]

,

where v := v1−v2 is the relative velocity vector, and ż = n ·v is the radial velocity.
Substitution into Eq. (7.3.6) gives

Ėgw =
8

15

G

c5

(mη)2(Gm)2

z4

(
12v2 − 11ż2

)
. (7.3.11)

This is the quadrupole formula applied to any Newtonian two-body system.
For circular orbits we have ż = 0 and v2 = Gm/z, so that Eq. (7.3.11) becomes

Ėgw =
32η2

5

c5

G
(v/c)10. (7.3.12)

The Newtonian orbital energy is E = −Gm2η/(2z), and the relation Ė = −Ėgw

implies that the orbital radius must decrease according to

ż = −64η

5

G3m3

c5z3
. (7.3.13)

This equation can easily be integrated for z(t). It implies that the orbital velocity
v, and the angular velocity ω =

√

Gm/z3, increase with time. This reaction of the
orbital motion to the emission of gravitational waves will be examined more closely
in Secs. 7.4 and 7.5.
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7.3.2 Post-Newtonian circular orbits

In this subsection we use Eqs. (7.1.5) or (7.2.16) to calculate the energy radiated
by a two-body system in a post-Newtonian circular orbit. The gravitational-wave
polarizations were obtained in Sec. 6.12.4, and according to Eqs. (6.12.17) and
(6.12.18), we have that

h+ =
2Gmη

c2r
xH+, h× =

2Gmη

c2r
xH×, (7.3.14)

where

x :=

(
Gmω

c3

)2/3

(7.3.15)

is the post-Newtonian expansion parameter, written in terms of the total mass
m := m1 +m2 and the orbital angular velocity ω. The functions H+ and H× admit
post-Newtonian expansions of the form

H = H [0] + ∆x1/2H [1/2] + xH
[1]
+ + ∆x3/2H [3/2] + x3/2Htail + O(x2), (7.3.16)

where ∆ := (m1 − m2)/m2, η := m1m2/m2, and the various terms are listed in
Eqs. (6.12.19)–(6.12.28). These depend on θ via C := cos θ and S := sin θ, and they
depend on τ and φ through the phase variable Ψ := ωτ − φ.

Differentiation of h+ and h× with respect to τ involves differentiating H+ and
H× with respect to Ψ, and we indicate this with a prime. After squaring, we get
something of the form

ḣ2 =
4(Gmη)2

c4r2
ω2x2H ′2.

Using Eq. (7.3.15) we express ω2x2 as c6x5/(Gm)2 and rewrite the previous expres-
sion as

ḣ2 =
4c2η2

r2
x5H ′2.

Substitution into Eq. (7.2.16) gives

Ėgw =
c5

4πG
η2x5

∫ [(
H ′

+

)2
+

(
H ′

×

)2
]

sin θdθ dΨ, (7.3.17)

where we have replaced an integration with respect to φ by an integration with
respect to the phase variable Ψ.

The computation of H ′
+ and H ′

× and the evaluation of the integral is tedious
but straightforward. After expanding the result in powers of x and eliminating ∆2

in favour of 1 − 4η, we obtain

Ėgw =
32

5

c5

G
η2x5

[

1 −
(

1247

336
+

35

12
η

)

x + 4πx3/2 + O(x2)

]

. (7.3.18)

We observe that Ėgw contains no correction term at order x1/2, in spite of the fact
that the gravitational-wave polarizations do possess such terms; a 1

2pn correction

to the energy flux would have to come from an interaction between the H [0] and
H [1/2] terms within H, but because these signals are out of phase, the interaction
produces no flux. We observe also that Ėgw contains a term at order x3/2, and such
a term has three possible origins. First, it might have originated from an interaction
between H [0] and H [3/2], but this produces no flux because these signals also are
out of phase. Second, it might have originated from an interaction between H [1]

and H [1/2], but this does not contribute for the same reason. The only remaining
possibility is an interaction between H [0] and Htail; these signals are in phase, and
their interaction does indeed contribute to the energy flux. The 4πx3/2 term within
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Eq. (7.3.16) has its origin in the tail effect; it is a wave-propagation correction to
the Newtonian expression that appears outside the large square brackets.

From Eqs. (6.12.6) and (6.12.9) we find that the orbital energy of the two-body
system is equal to

Eorbital = −1

2
mηc2x

[

1 − 1

12
(9 + η)x + O(x2)

]

. (7.3.19)

This, we recall, includes the kinetic and gravitational potential energies, but ex-
cludes the rest-mass energy of each body. The orbital energy must decrease ac-
cording to Ėorbital = −Ėgw, and inserting Eqs. (7.3.18) and (7.3.19), we obtain a
differential equation for the post-Newtonian parameter x:

ẋ =
64

5

c3

G

η

m
x5

[

1 −
(

743

336
+

11

4
η

)

x + 4πx3/2 + O(x2)

]

. (7.3.20)

This equation governs how the angular velocity ω increases with time; it describes
the reaction of the orbital motion to the emission of gravitational waves. Notice,
however, and this was already pointed out in Sec. 6.12.1, that this radiation reaction
is not incorporated in the 1pn equations of motion that were involved in the deriva-
tion of Eqs. (7.3.18) and (7.3.19). This is an effect of higher post-Newtonian order
— 2

5pn order to be precise — whose existence is (plausibly, but not rigourously)

inferred on the basis of the statement of energy balance, Ėorbital = −Ėgw. A cal-
culation at higher order is required to confirm the result of Eq. (7.3.20), and this
shall be our focus in the following two sections.

7.4 Radiation-reaction potentials

7.4.1 Introduction

As we have seen, a system of N bodies moving under their mutual gravitational
attraction emits gravitational waves, and these waves carry energy away from the
system. It is physically imperative that the system respond to this loss of energy,
and the equations of motion should contain terms that account for the effect. There
should therefore exist a radiation-reaction force that does work on each body within
the system and dissipates a fraction of its energy; the rate at which these forces do
work should be equal to the rate at which the gravitational waves remove energy
from the system. Our purpose in this section and the next is to calculate the
post-Newtonian radiation-reaction force. Equation (7.3.8) indicates that Ėgw scales
as c−5 to leading order in a post-Newtonian expansion, and we expect that the
radiation-reaction force also should scale as c−5. This, then, will make a term of
5
2pn order in the system’s equations of motion. Recall that the equations of motion
were calculated at 0pn and 1pn order in Chapter 5; there is no term at 3

2pn order,
and we shall bypass a calculation of the 2pn corrections in order to focus on the
radiation-reaction term at 5

2pn order.
It is appropriate that the radiation-reaction force, which causes energy dissipa-

tion within the system, would scale as an odd power of c−1; this is in contrast with
lower-order terms, which are conservative and scale as even powers of c−1. This
behaviour can be understood as follows.

We have seen that the Einstein field equations can be cast in the form of

¤hαβ = −16πG

c4
ταβ , (7.4.1)

a wave equation for the gravitational potentials hαβ , and that post-Newtonian the-
ory is based on an iterative solution to this equation. It is appropriate to select the
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retarded solution to the wave equation, to correctly enforce the notion that cause
should precede effect. It is as a result of this choice that the gravitational waves are
outgoing, and that they carry energy out to infinity. Mathematically, we see that
the wave field depends on retarded-time t−r/c, and that Ėgw is a positive quantity
that scales as c−5. And finally, we infer that there will be a radiation-reaction force
that drives a decrease in the system’s energy, so that global energy conservation is
maintained; this force also will scale as c−5.

Suppose now that instead of the retarded solution, we incorrectly select the
advanced solution to the wave equation. We would now find that the waves are
incoming instead of outgoing, and that they bring energy to the system instead
of taking it away. Mathematically we would see that the wave field depends on
advanced-time t + r/c, and that Ėgw — the outward flux of gravitational-wave
energy — is a negative quantity that scales as c−5. And finally, we would infer
that in this situation, the radiation-reaction force should drive an increase in the
system’s energy, which would match the energy input provided by the waves; the
force would still scale as c−5, but it would now come with the opposite sign.

The incorrect solution (advanced potentials, incoming waves, inward flux of
gravitational-wave energy, and increase of system’s energy) is obtained from the
correct solution (retarded potentials, outgoing waves, outward flux of gravitational-
wave energy, and decrease of system’s energy) simply by reversing the sign of c−1.
This reversal must change the sign of the radiation-reaction force, and it follows
directly that this force must scale as an odd power of c−1. On the other hand,
the conservative terms in the equations of motion are not sensitive to the choice
of boundary conditions (retarded versus advanced), and they therefore scale as an
even power of c−1. The radiation-reaction force must therefore be associated with a
fractional post-Newtonian order, and as we have seen, it first makes an appearance
at 5

2pn order.
In this section we construct the gravitational potentials that are required in the

evaluation of the radiation-reaction force; these necessarily come with an odd power
of c−1, and they are easily identified. In the following section we will involve these
potentials in a calculation of the equations of motion at 5

2pn order, skipping 0pn
and 1pn orders (which were handled previously in Chapter 5) and bypassing 2pn
order (which would require many additional computations).

Before we proceed it is useful briefly to review the situation in flat-spacetime
electrodynamics. (We consider the slow-motion limit, and ignore all relativistic
effects.) It is well known that the radiation-reaction force acting on a point particle
of electric charge q is given by Frr = kq2ȧ, where k−1 := 6πǫ0c

3, and a is the
particle’s acceleration vector. Notice that as we might expect, the force scales as
an odd power of c−1. As the charge moves with velocity v, the force does work at
a rate Ẇ = Frr · v = kq2ȧ · v. We next write ȧ · v = d(a · v)/dt − |a|2 and obtain
the fine-grained conservation statement

Ẇ + Ėwaves = − d

dt
Ebound,

where Ėwaves := kq2|a|2 is the rate at which the electromagnetic waves carry energy
to infinity, as calculated in the electric dipole approximation. We also have intro-
duced Ebound := −kq2a·v as the piece of the electromagnetic field energy that stays
bound to the particle. Averaging over a time interval ∆t produces a coarse-grained
statement of energy conservation:

〈Ẇ 〉 + 〈Ėwaves〉 = −∆Ebound

∆t
,

where ∆Ebound is the net change in Ebound during the time interval. In situations
in which the motion is periodic with period ∆t, or when it begins and ends with a
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vanishing acceleration, we find that ∆Ebound = 0 and the conservation statement
becomes

〈Ẇ 〉 = −〈Ėwaves〉.

Under these conditions, and in a coarse-grained sense, we have energy balance: The
work done by the radiation-reaction force matches the energy taken away by the
electromagnetic waves. We recall that coarse-graining was an essential aspect of
the Bondi-Sachs derivation of the energy lost by radiating sources, and we should
anticipate that coarse-graining will be involved also in a statement of gravitational
energy balance (to be written down in Sec. 7.5.8). It is interesting to find that
coarse-graining plays an important role even in the relatively mundane context of
flat-spacetime electrodynamics.

7.4.2 Post-Newtonian expansion of the potentials in the near zone

We introduce the notation

h00 :=
4

c2
V, h0a :=

4

c3
V a, hab :=

4

c4
W ab, (7.4.2)

as well as

τ00 := ρc2, τ0a := jac, τab = τab, (7.4.3)

and we write the wave equation of Eq. (7.4.1) as the set

¤V = −4πGρ, ¤V a = −4πGja, ¤W ab = −4πGτab. (7.4.4)

A method to integrate the wave equation was developed in Chapter 2. The solution
in the near zone is written as an integral over the past light cone of the field
point x, which is decomposed into contributions from a near-zone domain N and
a complementary wave-zone domain W . It was shown in Sec. 4.2.8 that in the near
zone, hαβ

W
first appears at 3pn order, and because our considerations in this section

are limited to the 5
2pn order, it makes no contribution to our near-zone potentials.

An expression for hαβ
N

can be found in Sec. 2.4.2, and Eq. (2.4.7) reveals that this
takes the form of an expansion in powers of c−1. Explicitly, and to a sufficient
degree of accuracy, we have

V = G

[∫
ρ

|x − x′| d3x′ − 1

c

∂

∂t

∫

ρ d3x′ +
1

2c2

∂2

∂t2

∫

ρ|x − x′| d3x′

− 1

6c3

∂3

∂t3

∫

ρ|x − x′|2 d3x′ +
1

24c4

∂4

∂t4

∫

ρ|x − x′|3 d3x′

− 1

120c5

∂5

∂t5

∫

ρ|x − x′|4 d3x′ + O(c−6)

]

, (7.4.5)

V a = G

[∫
ja

|x − x′| d3x′ − 1

c

∂

∂t

∫

ja d3x′ +
1

2c2

∂2

∂t2

∫

ja|x − x′| d3x′

− 1

6c3

∂3

∂t3

∫

ja|x − x′|2 d3x′ + O(c−4)

]

, (7.4.6)

W ab = G

[∫
τab

|x − x′| d3x′ − 1

c

∂

∂t

∫

τab d3x′ +
1

2c2

∂2

∂t2

∫

τab|x − x′| d3x′

− 1

6c3

∂3

∂t3

∫

τab|x − x′|2 d3x′ + O(c−4)

]

. (7.4.7)

In each integral ταβ is expressed as a function of t and x′, and the integration is over
the near-zone domain M defined by r′ := |x′| < R, where R is the arbitrary cutoff
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radius between the near zone and the wave zone. As usual we shall be interested in
the R-independent pieces of the potentials.

The terms that come with an odd power of c−1 in Eqs. (7.4.5)–(7.4.7) shall be
the focus of our attention. We shall have to be careful and keep in mind that while
some of the factors of c−1 appear explicitly in these equations, some are contained
implicitly in the source functions ρ, ja, and τab, which are constructed partly from
the potentials. To account for the complete (explicit and implicit) dependence on
powers of c−1, we write

V = V [0] + c−2V [2] + c−4V [4] + O(c−6)

+ c−1V [1] + c−3V [3] + c−5V [5] + O(c−7), (7.4.8)

V a = V a[0] + c−2V a[2] + O(c−4)

+ c−1V a[1] + c−3V a[3] + O(c−5), (7.4.9)

W ab = W ab[0] + c−2W ab[2] + O(c−4)

+ c−1W ab[1] + c−3W ab[3] + O(c−5). (7.4.10)

Here, for example, V [5] includes a contribution from the last term in Eq. (7.4.5),
in which we would substitute ρ = ρ[0], but it includes also a contribution from the
first term, in which we would substitute ρ = c−5ρ[5]. The dependence of the source
terms on powers of c−1 will be revealed in due course.

7.4.3 Multipole moments and conservation identities

To help with the evaluation of the potentials we introduce a number of multipole
moments and link them with a number of identities. These are a consequence of
the conservation equations

∂tρ + ∂aja = 0, ∂tj
a + ∂bτ

ab = 0, (7.4.11)

which follow directly from ∂βταβ = 0 after involving the definitions of Eq. (7.4.3).
The discussion here follows closely the developments of Sec. 3.3.1, except that those
applied to the wave zone instead of the near zone.

We define

I :=

∫

ρ d3x, (7.4.12)

Ia :=

∫

ρ xa d3x, (7.4.13)

Iab :=

∫

ρ xaxb d3x, (7.4.14)

Iabc :=

∫

ρ xaxbxc d3x, (7.4.15)

Pa :=

∫

ja d3x, (7.4.16)

Pab :=

∫

jaxb d3x, (7.4.17)

Pabc :=

∫

jaxbxc d3x, (7.4.18)

J ab :=

∫
(
jaxb − jbxa

)
d3x, (7.4.19)

J abc :=

∫
(
jaxb − jbxa

)
xc d3x, (7.4.20)

Mab :=

∫

τab d3x, (7.4.21)
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Mabc :=

∫

τabxc d3x, (7.4.22)

Mabcd :=

∫

τabxcxd d3x, (7.4.23)

in which the sources are expressed as functions of t and x, and the integrations
are over the domain M now described by r := x < R; the multipole moments are
functions of t only. At the Newtonian order we have that ρ =

∑

A mAδ(x − zA),
and I reduces to the total mass m :=

∑

A mA, Ia reduces mZa :=
∑

A mAza
A, and

Iab reduces to the Newtonian quadrupole moment Iab :=
∑

A mAza
Azb

A. Similarly,
at the Newtonian order Pa reduces to the total momentum P a :=

∑

A mAva
A and

J ab reduces to the angular-momentum tensor Jab :=
∑

A mA(va
Azb

A − za
Ava

A).
From the conservation identities of Eq. (1.4.1)–(1.4.4) we deduce that

İ = −
∮

ja dSa, (7.4.24)

İa = Pa −
∮

jbxa dSb, (7.4.25)

Ṗa = −
∮

τab dSb, (7.4.26)

J̇ ab = −
∮

(
τacxb − τ bcxa

)
dSc, (7.4.27)

Pab =
1

2

(
İab + Jab

)
+

1

2

∮

jcxaxb dSc, (7.4.28)

Pabc =
1

3

(
İabc + Jabc + Jacb

)
+

1

3

∮

jdxaxbxc dSd, (7.4.29)

Mab =
1

2
Ïab +

1

2

∮
(
τacxb + τ bcxa − ∂dτ

cdxaxb
)
dSc, (7.4.30)

Mabc =
1

6
Ïabc +

1

3

(
J̇acb + J̇bca

)
+

1

6

∂

∂t

∮

jdxaxbxc dSd

+
1

2

∮
(
τadxbxc + τ bdxaxc − τ cdxaxb

)
dSd, (7.4.31)

where the surface integrals are evaluated on r = R, and where an overdot indicates
differentiation with respect to t. The derivation of these identities is straightforward,
and it follows the general strategy outlined in Sec. 3.3.1. For example, Eq. (7.4.25)
follows from ja = ∂t(ρxa) + ∂b(j

bxa), which is a direct consequence of the first of
Eqs. (7.4.11).

One major difference with respect to the developments of Sec. 3.3.1 concerns
the boundary terms. These were not present in the earlier treatment, because
the source functions were constructed entirely from the material energy-momentum
tensor, which has its support in a small region deep within the near zone. Here
the source functions contain contributions from the potentials, and these do not
vanish at r = R. The boundary terms must be carefully evaluated, but we assert
that at all post-Newtonian orders to be considered within this section, the boundary
terms contain no R-independent pieces, and they can be safely discarded. (We shall
not prove this assertion, but you may be comforted with the recollection that each
boundary integral evaluated in Chapter 6 was shown to make no R-independent
contribution to the final result.)

We may set
Ia = 0 = Pa (7.4.32)

by placing the origin of the coordinate system at barycentre, and Eqs. (7.4.25) and
(7.4.26) guarantee that these conditions can be imposed at all times.
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The conservation identities allow us to simplify the expression of the odd terms
that appear in Eqs. (7.4.5)–(7.4.7). First, Eqs. (7.4.24) and (7.4.26) imply imme-
diately that the terms of order c−1 vanish in Eqs. (7.4.5) and (7.4.6). Second,
expanding |x−x′|2 as r2−2x ·x′ +r′2 and involving the definition of the multipole
moments reveals that

∫

ρ|x − x′|2 d3x′ = r2I − 2xaIa + Ic
c,

∫

ρ|x − x′|4 d3x′ = r4I − 4r2xaIa + 2r2Ic
c + 4xaxbIab − 4xaI c

a c + Icd
cd,

∫

ja|x − x′|2 d3x′ = r2Pa − 2xbPa
b + Pac

c,

∫

τab d3x′ = Mab,

∫

τab|x − x′|2 d3x′ = r2Mab − 2xcMab
c + Mabc

c,

These relations become
∫

ρ|x − x′|2 d3x′ = Ic
c,

∫

ρ|x − x′|4 d3x′ = 2
(
r2δab + 2xaxb

)
Iab − 4xaIac

c + Icd
cd,

∫

ja|x − x′|2 d3x′ = −xbİa
b +

1

3
İac

c +
2

3
J ac

c,

∫

τab d3x′ =
1

2
Ïab,

∫

τab|x − x′|2 d3x′ =
1

2
r2Ïab − 1

3
xcÏab

c −
2

3
xc

(
J̇ a b

c + J̇ b a
c

)
+ Mabc

c,

after involving Eq. (7.4.32) and the conservation identities, and discarding terms
that will vanish after differentiation with respect to t.

After taking all this into account, Eqs. (7.4.5)–(7.4.7) become

V = G

{∫
ρ

|x − x′| d3x′ +
1

2c2

∂2

∂t2

∫

ρ|x − x′| d3x′ + O(c−4)

− 1

6c3
I(3)

cc − 1

120c5

[

2
(
r2δab + 2xaxb

)
I(5)

ab − 4xaI(5)
acc + I(5)

cdcd

+ O(c−7)

}

, (7.4.33)

V a = G

{∫
ja

|x − x′| d3x′ + O(c−2)

+
1

18c3

[

3xbIa(4)
b − Ia(4)

cc − 2J a(3)
cc

]

+ O(c−5)

}

, (7.4.34)

W ab = G

{∫
τab

|x − x′| d3x′ + O(c−2)

− 1

2c
Iab(3) − 1

36c3

[

3r2Iab(5) − 2xcIab(5)
c − 4xc

(
J a b(4)

c + J b a(4)
c

)

+ 6Mab(3)
cc

]

+ O(c−5)

}

, (7.4.35)

where a number within brackets indicates the number of differentiations with respect
to t.
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As a consequence of the fact that I is a conserved quantity, Eq. (7.4.33) does
not contain a term that scales explicitly as c−1. And because ρ cannot contain a
c−1 term, there is no implicit dependence, and we conclude that

V [1] = 0. (7.4.36)

Similarly, Pa is a conserved quantity, and Eq. (7.4.34) does not contain an explicit
term at order c−1. Because ja cannot contain a c−1 term, we conclude that

V a[1] = 0. (7.4.37)

7.4.4 Odd terms in the effective energy-momentum tensor

To proceed we must identify the orders at which odd powers of c−1 appear within
the source functions ρ, ja, and τab. We recall from Eq. (1.3.5) that the effective
energy-momentum tensor is expressed as

ταβ = (−g)
(
Tαβ + tαβ

LL + tαβ
H

)
, (7.4.38)

in terms of the material energy-momentum tensor Tαβ , the Landau-Lifshitz pseu-
dotensor of Eq. (1.1.5), and the harmonic-gauge contribution of Eq. (1.3.6).

We begin with an examination of the material contribution. The energy-momentum
tensor of a system of N point masses is given by Eq. (4.1.3),

(−g)Tαβ =
∑

A

mAvα
Avβ

A Γ δ
(
x − zA

)
, (7.4.39)

where vα
A = (c,vA) and the relativistic factor Γ is defined by

Γ :=

√−g
√

−gµνvµ
Avν

A/c2
. (7.4.40)

The odd terms will be contained in Γ, and to calculate this we must first obtain the
metric from the gravitational potentials. It is sufficient to work at linear order in
hαβ , and according to Eqs. (1.6.4) and (1.6.6), we have gαβ = ηαβ+hαβ− 1

2hηαβ and√−g = 1− 1
2h, where h = ηαβhαβ . After involving Eqs. (7.4.2) and (7.4.8)–(7.4.10),

we obtain

√−g = 1 + (even) +
2

c5

(
V [3] − W [1]

)
+ O(c−7),

g00 = −1 + (even) +
2

c5

(
V [3] + W [1]

)
+ O(c−7),

gab = δab + (even) + O(c−5),

where (even) designates terms of order c−2, c−4, and so on, and W [1] := δabW
ab[1].

To arrive at these results we have set V [1] = 0 according to Eq. (7.4.36), and as a
consequence of Eq. (7.4.37), we find that the odd terms in g0a first appear at order
c−6 and can be neglected. We next obtain

Γ = 1 + (even) +
1

c5

(
3V [3] − W [1]

)
+ O(c−7), (7.4.41)

and we conclude that odd terms first appear at order c−5 within the material energy-
momentum tensor. (This conclusion will require revision. We shall find that in
actual fact, 3V [3]−W [1] = 0, so that the first odd term in Γ appears at order c−7.)

We next examine the Landau-Lifshitz pseudotensor. We shall not go through a
detailed computation here (this is postponed until Sec. 7.5.2), but merely determine
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the expected scaling of the leading odd terms. Noticing that (−g)tαβ
LL is at least

quadratic in the gravitational potentials, we observe that the leading odd terms in
(h00)2 and h00hab scale as c−7, and that other products come with additional powers
of c−1; inserting these scalings within Eq. (1.1.5), we find that the leading odd terms
in (−g)t00LL and (−g)tab

LL scale as c−3, while the leading odd term in (−g)t0a
LL scales as

c−4. The conclusion of this simple exercise is that the Landau-Lifshitz pseudotensor
is expected to make an odd contribution to ρ at order c−5, to ja at order c−5, and
to τab at order c−3. (These conclusions will require revision. A closer examination
will reveal that in actual fact, the pseudotensor contributes to ρ and ja at order
c−7 only, and to τab at order c−5 only.)

The expected scaling of the leading odd terms in (−g)tαβ
H is determined in a

similar way. Here we find that this pseudotensor contributes to ρ at order c−5,
to ja at order c−5, and to τab at order c−5. (These conclusions will not require
revision.)

These considerations allow us to write down the following expansions for the
source functions:

ρ = ρ[0] + c−2ρ[2] + O(c−4) + c−5ρ[5] + O(c−7), (7.4.42)

ja = ja[0] + c−2ja[2] + O(c−4) + c−5ja[5] + O(c−7), (7.4.43)

τab = τab[0] + c−2τab[2] + O(c−4) + c−3τab[3] + c−5τab[5] + O(c−7). (7.4.44)

The zeroth-order terms are of course the Newtonian expressions. The terms in c−2

are the post-Newtonian corrections, and these were carefully evaluated in Chapter
4; they will not be needed in this section. Expressions for ρ[5] and τab[3] will be
obtained below, but ja[5] and τab[5] will not be required.

7.4.5 Odd terms in the gravitational potentials

We next substitute Eqs. (7.4.42)–(7.4.44) into Eqs. (7.4.33)–(7.4.35) and compare
with Eqs. (7.4.8)–(7.4.10). This reveals that the odd terms in the gravitational
potentials are given by

V [3] = −1

6
GI(3)

cc [0], (7.4.45)

V [5] = G

{∫
ρ[5]

|x − x′| d3x′ − 1

6
I(3)

cc [2] − 1

60

(
r2δab + 2xaxb

)
I(5)

ab [0]

+
1

30
xaI(5)

acc[0] − 1

120
I(5)

cdcd[0]

}

, (7.4.46)

V a[3] = G

{
1

6
xbIa(4)

b [0] − 1

18
Ia(4)

cc [0] − 1

9
J a(3)

cc [0]

}

, (7.4.47)

W ab[1] = −1

2
GIab(3)[0], (7.4.48)

W ab[3] = G

{∫
τab[3]

|x − x′| d3x′ − 1

2
Iab(3)[2] − 1

12
r2Iab(5)[0] +

1

18
xcIab(5)

c [0]

+
1

9
xc

(
J a b(4)

c [0] + J b a(4)
c [0]

)
− 1

9
Mab(3)

cc [0]
]}

. (7.4.49)

In these expressions we indicate the order in c−1 at which the multipole moments
are to be evaluated. For example, Iab[0] is the zeroth-order term in an expansion of
the quadrupole moment in powers of c−1, and c−2Iab[2] is the second-order term.
Said differently, Iab[0] is the Newtonian quadrupole moment Iab =

∑

A mAza
Azb

A,
and c−2Iab[2] is its post-Newtonian correction.

A number of observations are in order. First, we notice that apart from two
exceptions, V [3], V [5], V a[3], W ab[1], and W ab[3] involve the Newtonian multipole
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moments only; the exceptions concern Iab[2], the 1pn correction to the quadrupole
moment. Second, we notice that V [3] and W ab[1] are functions of time only, while
V [5], V a[3], and W ab[5] are also functions of the spatial coordinates. And third, we
observe that 3V [3] − W [1] = 0, which implies that the term of order c−5 vanishes
in Eq. (7.4.41).

Our results thus far imply that the gravitational potentials admit the following
expansions:

h00 =
4

c2

{

V [0] + O(c−2) + c−3V [3] + c−5V [5] + O(c−7)

}

,

h0a =
4

c3

{

V a[0] + O(c−2) + c−3V a[3] + O(c−5)

}

,

hab =
4

c4

{

W ab[0] + O(c−2) + c−1W ab[1] + c−3W ab[3] + O(c−5)

}

.

Their spatial derivatives are given by

∂ch
00 =

4

c2

{

∂cV [0] + O(c−2) + c−5∂cV [5] + O(c−7)

}

,

∂ch
0a =

4

c3

{

∂cV
a[0] + O(c−2) + c−3∂cV

a[3] + O(c−5)

}

,

∂ch
ab =

4

c4

{

∂cW
ab[0] + O(c−2) + c−3∂cW

ab[3] + O(c−5)

}

,

and their time derivatives are

∂0h
00 =

4

c3

{

V̇ [0] + O(c−2) + c−3V̇ [3] + O(c−5)

}

,

∂0h
0a =

4

c4

{

V̇ a[0] + O(c−2) + c−3V̇ a[3] + O(c−5)

}

,

∂0h
ab =

4

c5

{

Ẇ ab[0] + O(c−2) + c−1Ẇ ab[1] + O(c−3)

}

,

in which an overdot indicates differentiation with respect to t = x0/c. We notice
that V [3] and W ab[1] do not appear in our expressions for ∂ch

00 and ∂ch
ab, because

these potentials do not depend on the spatial coordinates.

7.4.6 Computation of ρ[5] and τab[3]

The time has come to do some real work and to evaluate the source terms for the
radiation-reaction potentials. We must carefully construct ρ[5] and τab[3], which

come from (−g)tαβ
LL and (−g)tαβ

H ; there is no contribution from the material energy-
momentum tensor, because as we have seen, the odd terms contained within Γ in
Eq. (7.4.39) scale as c−7.

Equation (1.1.5) reveals that a typical term in the Landau-Lifshitz pseudotensor
has the form of gg∂h∂h. (There are also terms of the form gggg∂h∂h, but they
need not be distinguished for the purpose of this argument.) There are two ways
of generating terms that contain an odd power of c−1. The first is to let ∂h∂h be
odd in c−1, and to keep the prefactor gg even; the second is to let gg be odd, and
to keep ∂h∂h even.

In the first scenario, we need to multiply an even term in one of the factors ∂h
by an odd term in the remaining ∂h. Using the expansions displayed at the end
of the preceding subsection, we find that the dominant scaling of such products is
c−8, and that it is produced by the set

S1 =
{

∂ch
00∂dh

0a, ∂ch
00∂0h

00, ∂ch
00∂dh

ab
}

.



7.4 Radiation-reaction potentials 151

We also find that the set of products

S2 =
{

∂ch
00∂dh

00, ∂ch
00∂dh

ab, ∂ch
00∂0h

0a, ∂ch
0a∂dh

0b,

∂ch
0a∂0h

00, ∂ch
0a∂0h

bd, ∂0h
00∂0h

00, ∂0h
00∂0h

ab
}

participates at order c−9.
In the second scenario we let the factors of g supply the odd terms, and we keep

∂h∂h even. The leading odd terms in g come from h00 at order c−5, h0a at order
c−6, and hab at order c−5. The leading even term in ∂h∂h comes from ∂ch

00∂dh
00

at order c−4. After multiplication we find that the set

S3 =
{

h00∂ch
00∂dh

00, hab∂ch
00∂dh

00
}

also participates at order c−9.
The next step is to decide how the various terms listed in S1, S2, and S3 enter

in the components of the Landau-Lifshitz pseudotensor. A careful examination of
Eq. (1.1.5) reveals that S1 appears only in (−g)t0a

LL, whose dominant odd term
therefore scales as c−4; this produces a contribution to ja[5]. It reveals also that
S2 and S3 appear in (−g)t00LL and (−g)tab

LL, whose dominant odd terms scale as
c−5; this produces a contribution to ρ[7] and τab[5]. We may conclude from all this
that the Landau-Lifshitz pseudotensor makes no contribution to ρ[5] and τab[3], the
quantities that concern us in this subsection.

The source functions must therefore originate from (−g)tαβ
H , the harmonic-gauge

contribution to the effective energy-momentum tensor. This quantity is defined in
Eq. (1.3.6),

(−g)tαβ
H =

c4

16πG

(

∂µhαν∂νhβµ − hµν∂µνhαβ
)

,

and here odd terms must be produced by the first scenario. Using the expansions
displayed at the end of the preceding subsection, we easily find that the leading odd
term in (−g)t00H scales as c−3 and comes from the product hab∂abh

00; this makes a
contribution to ρ[5]. We also find that the leading odd term in (−g)tab

H scales as
c−5 and therefore makes no contribution to τab[3].

These considerations lead us to the conclusion that only (−g)t00H contributes to
ρ[5], and that τab[3] = 0. The mass density is produced by

− c2

16πG
hab∂abh

00,

and from the equations listed at the end of the previous subsection, we find that

ρ[5] = − 1

πG
W ab[1]∂abV [0].

Inserting Eq. (7.4.48) gives

ρ[5] =
1

2π
Iab(3)[0]∂abV [0].

To put this in its final form, we recall that the [0] label refers to the Newtonian limit.
The quadrupole moment is therefore the Newtonian moment Iab, and the potential
V [0] is the Newtonian potential, which was denoted U in previous chapters.

What we have obtained, therefore, is

ρ[5] =
1

2π
Iab(3)∂abU, (7.4.50)
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and we have also established that

τab[3] = 0. (7.4.51)

Another important outcome of this subsection is that we have identified the types
of terms that contribute to (−g)t00LL at order c−5, to (−g)t0a

LL at order c−4, and to
(−g)tab

LL at order c−5; this information will be required in Sec. 7.5.2).

7.4.7 Computation of V [5]

The only term that remains to be evaluated in Eq. (7.4.46) is the integral
∫

ρ[5]

|x − x′| d3x′,

in which ρ[5], given by Eq. (7.4.50), is expressed as a function of t and x′. Making
the substitution gives

1

2π
Iab(3)

∫
∂a′b′U(t,x′)

|x − x′| d3x′.

The integral is defined over the domain M , and it is evaluated in the following
paragraph.

We begin by writing

∂a′b′U

|x − x′| = ∂a′

(
∂b′U

|x − x′|

)

− ∂b′U∂a′

1

|x − x′| .

Noticing that ∂a′ |x − x′| = −∂a|x − x′|, this is

∂a′b′U

|x − x′| = ∂a′

(
∂b′U

|x − x′|

)

+ ∂a

(
∂b′U

|x − x′|

)

.

Applying this trick once more, we obtain

∂a′b′U

|x − x′| = ∂a′

(
∂b′U

|x − x′|

)

+ ∂ab′

(
U

|x − x′|

)

+ ∂ab

(
U

|x − x′|

)

.

Integration over the domain M yields
∫

∂a′b′U

|x − x′| d3x′ =

∮
∂b′U

|x − x′| dSa + ∂a

∮
U

|x − x′| dSb + ∂ab

∫
U

|x − x′| d3x′.

Inspection of the surface integrals, which are evaluated on ∂M , reveals that they
scale as R−1; they do not give rise to R-independent contributions to the po-
tential. The remaining volume integral is, within the domain M , a solution to
∇2ψ = −4πU . We already know the solution to this equation: According to
Eq. (3.2.4), ∇2X = 2U , ψ must be equal to −2πX, where X is the post-Newtonian
superpotential. Our final expression for the integral is therefore −2π∂abX.

We have arrived at
∫

ρ[5]

|x − x′| d3x′ = −Iab(3)∂abX,

and with this established, Eq. (7.4.46) becomes

V [5] = G

{

−Iab(3)∂abX − 1

6
I(3)

cc [2] − 1

60

(
r2δab + 2xaxb

)
I
(5)
ab

+
1

30
xaI(5)

acc −
1

120
I
(5)
cdcd

}

. (7.4.52)

The potential is expressed in terms of Newtonian multipole moments, the su-
perpotential X, and the post-Newtonian correction c−2Iab[2] to the Newtonian
quadrupole moment.
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7.4.8 Summary: Radiation-reaction potentials

Our computation of the radiation-reaction potentials is complete. We have shown
that the gravitational potentials can be expanded as

h00 =
4

c2

{

U + O(c−2) + c−3V [3] + c−5V [5] + O(c−7)

}

, (7.4.53)

h0a =
4

c3

{

Ua + O(c−2) + c−3V a[3] + O(c−5)

}

, (7.4.54)

hab =
4

c4

{

P ab + O(c−2) + c−1W ab[1] + c−3W ab[3] + O(c−5)

}

, (7.4.55)

in which U := V [0], Ua := V a[0], and P ab := W ab[0] are the leading-order, near-
zone potentials listed in Sec. 4.2.10; the Newtonian potential, in particular, is given
by

U =
∑

A

GmA

|x − zA|
. (7.4.56)

The terms that come with an odd power of c−1 are the radiation-reaction potentials,
and they are given by

V [3] = −1

6
GI(3)

cc , (7.4.57)

V [5] = G

[

−Iab(3)∂abX − 1

6
I(3)

cc [2] − 1

60

(
r2δab + 2xaxb

)
I
(5)
ab

+
1

30
xaI(5)

acc −
1

120
I
(5)
cdcd

]

, (7.4.58)

V a[3] = G

[
1

6
xbI

a(4)
b − 1

18
Ia(4)

cc − 1

9
Ja(3)

cc

]

, (7.4.59)

W ab[1] = −1

2
GIab(3), (7.4.60)

W ab[3] = G

[

−1

2
Iab(3)[2] − 1

12
r2Iab(5) +

1

18
xcIab(5)

c

+
1

9
xc

(
Ja b(4)

c + Jb a(4)
c

)
− 1

9
Mab(3)

cc

]

. (7.4.61)

They are expressed in terms of the Newtonian multipole moments

Iab =
∑

A

mAza
Azb

A, (7.4.62)

Iabc =
∑

A

mAza
Azb

Azc
A, (7.4.63)

Iabcd =
∑

A

mAza
Azb

Azc
Azd

A, (7.4.64)

Jabc =
∑

A

mA

(
va

Azb
A − za

Avb
A

)
zc
A, (7.4.65)

Mabcd =
∑

A

mAva
Avb

Azc
Azd

A. (7.4.66)

The potentials also depend on c−2Iab[2], the 1pn correction to the Newtonian
quadrupole moment Iab := Iab[0]; an expression for this could be obtained by
importing the relevant results from Chapter 4, but this is not necessary, because
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Iab[2] will not be required in future calculations. In addition, V [5] depends on the
post-Newtonian superpotential X. According to Eq. (4.2.37), this is given by

X =
∑

A

GmA|x − zA|. (7.4.67)

It is noteworthy that V [3] and W ab[1] are functions of time only. This property
ensures that these potentials will have no effect on the equations of motion, because
only spatial gradients of these potentials could be involved. This, in turn, ensures
that the radiation-reaction force scales as c−5, and not as c−3 as might naively be
expected. In fact, V [3] and W ab[1] could be eliminated by means of a coordinate
transformation; we shall not pursue this here, as the transformation would take us
away from the harmonic gauge adopted throughout this work.

7.4.9 Transformation to Burke-Thorne gauge

[TO BE WRITTEN? IF SO REVISE PREVIOUS SENTENCE.]

7.5 Radiation-reaction force and energy balance

7.5.1 Strategy

In this section we calculate the 5
2pn term in the acceleration vector aA of each

body within the N -body system. Our general strategy is based on the methods
of Chapter 5, in which the post-Newtonian equations of motion are derived on the
basis of conservations identities that follow from the Einstein field equations. We
recall from Sec. 5.1 that the basic law of motion for each body A is

MAaA = ṖA − ṀAvA − Q̇A − D̈A, (7.5.1)

where

MA :=
c2

16πG

∮

SA

∂cH
0c0b dSb, (7.5.2)

is the mass parameter of each body, which changes in time according to

ṀA = −1

c

∮

SA

(−g)

(

t0b
LL − t00LL

vb
A

c

)

dSb. (7.5.3)

We also have that PA is the momentum vector of each body, and its rate of change
is given by

Ṗ a
A = −

∮

SA

(−g)

(

tab
LL − t0a

LL

vb
A

c

)

dSb. (7.5.4)

The law also involves the quantities

Qa
A :=

1

c

∮

SA

(−g)

(

t0b
LL − t00LL

vb
A

c

)
(
xa − za

A

)
dSb (7.5.5)

and

Da
A =

c2

16πG

∮

SA

[(
∂dH

0c0d
)(

xa − za
A

)
− H0a0c

]

dSc. (7.5.6)

Each integral is evaluated on a two-sphere SA surrounding each body, which is
described by the equation sA := |x − zA| = constant. And finally, we recall that
Hαµβν is related to the gravitational potentials through the relation

Hαµβν = g
αβ

g
µν − g

αν
g

βµ, (7.5.7)
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where g
αβ = ηαβ − hαβ is the gothic inverse metric.

We want to compute the 5
2pn contributions to MA, ṀA, ṖA, Q̇A, and D̈A, and

insert them within Eq. (7.5.1) to determine the 5
2pn contribution to the acceleration

vector. (We will also have to make sure that there are no contributions at 3
2pn

order.) According to the equations listed previously, these computations require,
in addition to the radiation-reaction potentials obtained in Sec. 7.4, expressions
for the odd terms in the Landau-Lifshitz pseudotensor. In particular, we need an
expression for (−g)t00LL that is accurate to order c−3, an expression for (−g)t0a

LL that
is accurate to order c−4, and an expression for (−g)tab

LL that is accurate to order
c−5. According to the considerations of Sec. 7.4.6, however, there is no contribution
to (−g)t00LL at order c−3, and this component of the pseudotensor plays no role in
the radiation reaction. The same considerations revealed that S1 enters (−g)t0a

LL

at order c−4, while S2 and S3 enter (−g)tab
LL at order c−5; these components will

be computed carefully.
Once the relevant components of Hαµβν and (−g)tαβ

LL are at hand, it will be
a simple matter to follow the methods outlined in Chapter 5 and to calculate the
various quantities that appear in Eq. (7.5.1). The end result will be an explicit
expression for

aA[rr] := c−5aA[5], (7.5.8)

the radiation-reaction force (per unit mass) acting on body A. And once this is
known, we shall be able to verify whether the work done by all the radiation-reaction
forces matches the energy radiated by the source in the form of gravitational waves.
This, we recall, is expressed by the quadrupole formula of Eq. (7.3.6),

Ėgw =
1

5

G

c5

(

Iab(3)I
(3)
ab − 1

3
Icc(3)I(3)

cc

)

. (7.5.9)

The answer, of course, will be in the affirmative, but in the same coarse-grained
sense that applies to flat-spacetime electrodynamics (as reviewed in Sec. 7.4.1).

7.5.2 Computation of the Landau-Lifshitz pseudotensor

We already have noted that
(−g)t00LL = 0 (7.5.10)

at order c−3; its leading, odd-order contribution scales as c−5.
To calculate the time-space components at order c−4, we return to the consid-

erations of Sec. 7.4.6, which indicated that this quantity must be constructed from
S1, the first set of products ∂h∂h that are listed there. A careful expansion of
Eq. (1.1.5) next reveals that the answer is given by the c−4 piece of

(−g)t0a
LL =

c4

16πG

[
3

4
∂0h

00∂ah00 + ∂ch
00

(
∂ah0c − ∂ch0a

)
− 1

4
∂0h

cc∂ah00

]

.

This becomes

(−g)t0a
LL =

1

πGc4

[
1

4

(
3V̇ [3] − Ẇ [1]

)
∂aU +

(
∂aV c[3] − ∂cV a[3]

)
∂cU

]

after involving the equations listed near the end of Sec. 7.4.5. Finally, from Eqs. (7.4.57)
and (7.4.60) we find that the first group of terms vanishes, while from Eq. (7.4.59)

we see that ∂aVb[3] = 1
6GI

(4)
ab , which implies that the second group vanishes also.

We conclude that
(−g)t0a

LL = 0 (7.5.11)

at order c−4.
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The spatial components of the pseudotensor require a much more labourious
calculation. Returning once more to Sec. 7.4.6, we recognize that the terms that
can participate at order c−5 are contained in S2 and S3. A careful expansion of
Eq. (1.1.5) next reveals that the answer is given by the c−5 piece of

(−g)tab
LL =

c4

16πG

{
1

4
∂ah00∂bh00 +

1

4
∂ah00∂bhcc +

1

4
∂ahcc∂bh00

−
(
∂ah0c − ∂ch0a

)(
∂bh0c − ∂ch0b

)
+ ∂0h

0a∂bh00 + ∂0h
0b∂ah00

− ∂0h
ac∂bh0c − ∂0h

bc∂ah0c + δab

[

−1

8
∂ch

00∂ch00 − 1

4
∂ch

00∂chdd

+
1

2
∂ch

0d
(
∂ch0d − ∂dh0c

)
− ∂0h

0c∂ch
00 + ∂0h

cd∂dh
0c

− 3

8
∂0h

00∂0h
00 +

1

4
∂0h

00∂0h
00

]

+
1

8

(
2gacgbd − gabgcd

)
g00g00∂ch

00∂dh
00

}

.

This eventually becomes

(−g)tab
LL =

1

4πc5

[

−
(
∂aU∂bcdX + ∂bU∂acdX − δab∂eU∂ecdX

)
I
(3)
cd

− 1

5

(
xa∂bU + xb∂aU − δabxd∂dU

)
I(5)
cc

+
3

5
xc

(

∂aUIb(5)
c + ∂bUIa(5)

c − δab∂dUI
(5)
cd

)

− 2

15

(

∂aUIb(5)
cc + ∂bUIa(5)

cc − δab∂dUI
(5)
dcc

)

− 2

3

(

∂aUJb(4)
cc + ∂bUJa(4)

cc − δab∂dUJ
(4)
dcc

)

+ 2
(

∂aU cIb(4)
c + ∂bU cIa(4)

c − δab∂dU cI
(4)
cd

)

+
4

3
∂aU∂bUI(3)

cc + 2∂aU∂cUIb(3)
c + 2∂bU∂cUIa(3)

c

− 2

3
δab∂cU∂cUI

(3)
dd − δab∂cU∂dUI

(3)
cd − ∂cU∂cUIab(3)

]

(7.5.12)

after a long computation involving the equations listed near the end of Sec. 7.4.5,
as well as the radiation-reaction potentials of Eqs. (7.4.57)–(7.4.61).

7.5.3 Internal and external potentials

To simplify the notation it will be advantageous to proceed as in Sec. 5.2, and
to focus our attention on a particular body, the one labeled by A = 1. We let
m := m1, z := z1, v := v1, and so on. In addition, we introduce the vector
s := x − z, and decompose it as s = sn, in terms of its length s := |s| and the
unit vector n := s/s. In this notation, the two-sphere S that surrounds the body
is described by s = constant, and the surface element on S is dSa = s2na dΩ, in
which dΩ is the usual element of solid angle.

The potentials U , Ua, and X are decomposed into internal and external pieces
according to Eqs. (5.2.10), (5.2.12), (5.2.15), (5.2.18), (5.2.20), and (5.2.22). We
have

U =
Gm

s
+ Uext, (7.5.13)
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Ua =
Gmva

s
+ Ua

ext, (7.5.14)

X = Gms + Xext, (7.5.15)

with

Uext =
∑

A 6=1

GmA

|x − zA|
, (7.5.16)

Ua
ext =

∑

A 6=1

GmAva
A

|x − zA|
, (7.5.17)

Xext =
∑

A 6=1

GmA|x − zA|. (7.5.18)

For later convenience we also list the identities

∂as = na, (7.5.19)

∂abs =
1

s

(
δab − nanb

)
, (7.5.20)

∂abcs = − 1

s2

(
δabnc + δacnb + δbcna − 3nanbnc

)
(7.5.21)

involving derivatives of s := |x − z|.

7.5.4 Computation of M and D

We first compute the odd contributions to M := M1 and D := D1, starting from
their definitions in Eqs. (7.5.2) and (7.5.6). Recalling the work carried out in Chap-
ter 5 — and especially the discussion at the beginning for Sec. 5.4.1 — we understand
that it is sufficient to calculate all surface integrals to order s0, and to ignore all
contributions at order s and higher.

According to Eq. (7.5.7),

H0a0b = −δab − h00δab + hab + h00hab − h0ah0b,

and we wish to evaluate this at orders c−5 and c−7 in order to calculate the c−3

and c−5 terms in M and D, respectively. With Eqs. (7.4.53)–(7.4.55) we find that
H0a0b[5] = −4δabV [3] + 4W ab[1], and inserting Eqs. (7.4.57) and (7.4.60) produces

H0a0b[5] = −2G

(

Iab(3) − 1

3
δabI(3)

cc

)

. (7.5.22)

At the next order we get

H0a0b[7] = −4δabV [5] + 4W ab[3] − 8GUIab(3), (7.5.23)

in which we may substitute the radiation-reaction potentials of Eqs. (7.4.58) and
(7.4.61).

The fact that ∂aH0a0b[5] = 0 implies that there is no contribution to M at order
c−3. To compute the contribution at order c−5 we must substitute Eq. (7.5.23) into
Eq. (7.5.2) and evaluate the surface integral to order s0. After inserting the known
expressions for V [5] and W ab[3], we find that the terms within ∂aH0a0b[7] that are
sufficiently singular to produce a finite integral in the limit s → 0 are

4GI
(3)
cd ∂bcdX − 8GIb(3)

c ∂cU ;

these scale as s−2, while all other contributions are bounded as s → 0. We next
decompose U and X into internal and external pieces, as in Eqs. (7.5.13) and
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(7.5.15), and we make use of Eqs. (7.5.19) and (7.5.21). The previous expression
becomes

−4G2m

s2
I
(3)
cd

(
nbδcd − 3nbncnd

)
.

Multiplication by dSb = s2nb dΩ produces

∂aH0a0b[7]dSb = −4G2mI
(3)
cd

(
δcd − 3ncnd

)
,

and integration over the sphere gives zero, because according to the results of
Sec. 1.8.4, 〈〈nanb〉〉 := (4π)−1

∫
nanb dΩ = 1

3δab.
We have obtained the statements that

M [3] = M [5] = 0, (7.5.24)

and we find that M makes no contribution to the radiation-reaction force. On the
other hand, inspection of the integrand in Eq. (7.5.6) reveals that it is of order s−1,
so that the integral itself is of order s. We therefore write

D[3] = D[5] = 0, (7.5.25)

and conclude that D also makes no contribution to the radiation-reaction force.

7.5.5 Computation of Ṁ , Q, and Ṗ

The computation of Ṁ := Ṁ1 and Q := Q1 is exceedingly simple in view of
Eqs. (7.5.10) and (7.5.11). Inserting these within Eqs. (7.5.3) and (7.5.5), we im-
mediately obtain

Ṁ [5] = 0 (7.5.26)

and

Q[5] = 0. (7.5.27)

These quantities also do not participate in the radiation-reaction force.
We are left with the computation of Ṗ := Ṗ1, which is based on Eq. (7.5.4) and

the stress tensor of Eq. (7.5.12). The calculations are very similar to those carried
out in Sec. 5.3.3. We write

Ṗ a[5] = −
〈〈
s2Γabnb

〉〉
,

where Γab := 4πc5(−g)tab
LL and the angular brackets indicate an average over a two-

sphere s = constant. We take each line in turn in Eq. (7.5.12) and substitute the
decompositions of Eqs. (7.5.13)–(7.5.15) for the potentials U , Ua, and X. We use
Eqs. (7.5.19)–(7.5.21) to differentiate the internal potentials, and we expand each
external potential in a Taylor series about x = z. Finally, we perform the angular
integrations using the rules of Sec. 1.8.4, and discard all terms of order s and higher.

We list some of the intermediate results that are produced in these computations:

〈〈
s2∂aU∂bcdXnb

〉〉
= −1

3
Gm∂acdXext −

2

3
Gmδcd∂aUext,

〈〈
s2∂bU∂acdXnb

〉〉
= −Gm∂acdXext

− 2

15
Gm

(
δcd∂aUext + δac∂dUext + δad∂cUext

)
,

〈〈
s2na∂eU∂ecdX

〉〉
= −1

3
Gm∂acdXext

− 2

15
Gm

(
δcd∂aUext + δac∂dUext + δad∂cUext

)
,
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〈〈
s2∂aUnb

〉〉
= −1

3
Gmδa

b

〈〈
s2∂aU cnb

〉〉
= −1

3
Gmδa

bv
c

〈〈
s2∂aU∂cUnb

〉〉
= −1

3
Gmδa

b∂
cUext −

1

3
Gmδc

b∂
aUext.

We emphasize that these expressions are valid up to corrections of order s, and that
the external potentials are evaluated at x = z after differentiation.

Collecting results, we find that

Ṗ a[5] = Gm

(

−I
(3)
cd ∂acdXext + 2Ia(3)

c ∂cUext +
4

3
I(3)
cc ∂aUext

+
3

5
Ia(5)

c zc − 1

5
I(5)
cc za + 2Ia(4)

c vc − 2

15
Ia(5)

cc − 2

3
Ja(4)

cc

)

. (7.5.28)

7.5.6 Radiation-reaction force: Reference body

We now have everything we need to compute the radiation-reaction force. We return
to Eq. (7.5.1),

Ma = Ṗ − Ṁv − Q̇ − D̈,

and apply it to our reference body. Equation (5.3.3), together with Eq. (7.5.24),
imply that at 5

2pn order,

M = m + c−2M [2] + c−4M [4] + O(c−6),

with no odd term making an appearance. Equation (5.3.5), together with Eq. (7.5.26),
imply that

Ṁ = c−2Ṁ [2] + c−4Ṁ [4] + O(c−6),

and this also does not include an odd term. Equation (5.3.9), together with
Eq. (7.5.27), imply that

Q = c−2Q[2] + c−4Q[4] + O(c−6),

and once more we notice the absence of an odd term. We note also that D = O(s),
and that it is therefore irrelevant to the equations of motion. This leaves us with
Ṗ , and Eqs. (5.3.7) and (7.5.28) imply that

Ṗ = Ṗ [0] + c−2Ṗ [2] + c−4Ṗ [4] + c−5Ṗ [5] + O(c−6),

where Ṗ a[0] = m∂aUext is the Newtonian gravitational force, and Ṗ a[5] is given
explicitly by Eq. (7.5.28). An odd term has finally appeared within the law of
motion.

The preceding equations imply that the acceleration vector has an expansion of
the form

a = a[0] + c−2a[2] + c−4a[4] + c−5a[5] + O(c−6), (7.5.29)

and a[rr] := c−5a[5] is the radiation-reaction force per unit mass. The Newtonian
and post-Newtonian terms were evaluated in Secs. 5.4.1 and 5.4.4, and a calculation
of c−4a[4], the 2pn acceleration, was completely bypassed. The 5

2pn term in the

acceleration, however, is given by Ṗ [5]/m, and according to Eq. (7.5.28), this is

aa[rr] =
G

c5

(

−I
(3)
cd ∂acdXext + 2Ia(3)

c ∂cUext +
4

3
I(3)
cc ∂aUext

+
3

5
Ia(5)

c zc − 1

5
I(5)
cc za + 2Ia(4)

c vc − 2

15
Ia(5)

cc − 2

3
Ja(4)

cc

)

. (7.5.30)
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This is expressed in terms of Newtonian multipole moments, and in terms of the
potentials Uext and Xext that are external to the reference body.

For our final expression we calculate ∂aUext and ∂abcXext with the help of
Eqs. (7.5.16), (7.5.18), and we evaluate the results at x = z. In terms of the vector
z1A := z − zA, its length z1A := |z − zA|, and the unit vector n1A := z1A/z1A, we
have

∂aUext = −
∑

A 6=1

GmA

z2
1A

na
1A

and

∂abcXext = −
∑

A 6=1

GmA

z2
1A

(

δabnc
1A + δacnb

1A + δbcna
1A − 3na

1Anb
1Anc

1A

)

.

After insertion of these expressions within Eq. (7.5.30), we arrive at

aa[rr] =
G

c5

(

−3I
(3)
bc

∑

A 6=1

GmA

z2
1A

na
1Anb

1Anc
1A − 1

3
I(3)
cc

∑

A 6=1

GmA

z2
1A

na
1A

+
3

5
I

a(5)
b zb − 1

5
I(5)
cc za + 2I

a(4)
b vb − 2

15
Ia(5)

cc − 2

3
Ja(5)

cc

)

. (7.5.31)

This is the radiation-reaction force (per unit mass) acting on the reference body.

7.5.7 Radiation-reaction force: Final answer

Equation (7.5.31) generalizes easily to any body within the N -body system. We
simply replace the label “1” by an arbitrary label “A”, and we obtain

aa
A[rr] =

G

c5

(

−3I
(3)
bc

∑

B 6=A

GmB

z2
AB

na
ABnb

ABnc
AB − 1

3
I(3)
cc

∑

B 6=A

GmB

z2
AB

na
AB

+
3

5
I

a(5)
b zb

A − 1

5
I(5)
cc za

A + 2I
a(4)
b vb

A − 2

15
Ia(5)

cc − 2

3
Ja(5)

cc

)

. (7.5.32)

This is our final answer. The radiation-reaction force is expressed in terms of the
interbody distance zAB := |zA − zB | as well as the unit vector

nAB =
zA − zB

|zA − zB | ,

which points from body B to body A. It involves also the Newtonian multipole
moments

Iab =
∑

A

mAza
Azb

A, (7.5.33)

Iabc =
∑

A

mAza
Azb

Azc
A, (7.5.34)

Jabc =
∑

A

mA

(
va

Azb
A − za

Avb
A

)
zc
A, (7.5.35)

which are functions of time t; the number within brackets indicates the number of
differentiations with respect to t. As a final comment we note that Eq. (7.5.32)
gives only the leading-order term in a post-Newtonian expansion of the radiation-
reaction force; a more complete calculation would reveal correction terms at order
c−7, and so on.
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7.5.8 Energy balance

We next calculate the rate at which the radiation-reaction forces do work on the
N bodies, and verify that this is equal (in a coarse-grained sense) to the rate at
which the system’s energy is lost to gravitational waves; this loss is expressed by
the quadrupole formula of Eq. (7.5.9).

The rate at which the forces do work is

Ẇ =
∑

A

mAaA[rr] · vA. (7.5.36)

We insert Eq. (7.5.32), and we notice that the terms involving Ia
cc and Ja

cc dis-
appear, because they each multiply P :=

∑

A mAvA; this is the Newtonian total
momentum, and this can be set equal to zero by placing the origin of the coordinate
system at barycentre. After rearranging the double sums, we obtain

Ẇ =
G

c5

[

−3

2
I
(3)
ab

∑

AB

GmAmB

z2
AB

(
nAB · vAB

)
na

ABnb
AB

− 1

6
I(3)
cc

∑

AB

GmAmB

z2
AB

(
nAB · vAB

)
+

3

5
I
(5)
ab

∑

A

mAva
Azb

A

− 1

5
I(5)
cc

∑

A

mA

(
zA · vA

)
+ 2I

(4)
ab

∑

A

mAva
Avb

A

]

; (7.5.37)

the double sums exclude the case A = B, and vAB := vA − vB is the relative
velocity between bodies A and B.

To proceed we need to establish a number of helpful results. First, we note that

żAB = nAB · vAB , ṅAB =
1

zAB

(
va

AB − żABna
AB

)
.

Second, we work out expressions for the first three derivatives of the quadrupole-
moment tensor. We evaluate these with the help of the Newtonian acceleration
vector,

aA = −
∑

A

GmB

z2
AB

nAB + O(c−2),

and after some straightforward computations, we obtain

İab =
∑

A

mA

(
va

Azb
A + za

Avb
A

)
, (7.5.38)

Ïab = −
∑

AB

GmAmB

zAB
na

ABnb
AB + 2

∑

A

mAva
Avb

A, (7.5.39)

Iab(3) =
∑

AB

GmAmB

z2
AB

[

3żABna
ABnb

AB − 2
(
va

ABnb
AB + na

ABvb
AB

)]

. (7.5.40)

From this last expression we also get

I(3)
cc = −

∑

AB

GmAmB

z2
AB

żAB . (7.5.41)

Returning to our main development, we notice in Eq. (7.5.37) that the first
double sum can be expressed as

1

3
Iab(3) +

2

3

∑

AB

GmAmB

z2
AB

(
va

ABnb
AB + na

ABvb
AB

)
.
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We notice also that the second double sum is equal to −I
(3)
cc . In addition, the third

term can be expressed as 3
10I

(5)
ab İab, and the fourth term as − 1

10I
(5)
cc İcc. With all

this, Eq. (7.5.37) becomes

Ẇ =
G

c5

[

−1

2
I
(3)
ab Iab(3) − I

(3)
ab

∑

AB

GmAmB

z2
AB

(
va

ABnb
AB + na

ABvb
AB

)

+
1

6
I(3)
cc Icc(3) +

3

10
I
(5)
ab İab − 1

10
I(5)
cc İcc + 2I

(4)
ab

∑

A

mAva
Avb

A

]

. (7.5.42)

In the final sequence of steps we distribute the time derivatives. We write, for
example,

I
(5)
ab İab =

d

dt

(

I
(4)
ab İab − I

(3)
ab Ïab

)

+ I
(3)
ab Iab(3)

and

I
(4)
ab

∑

A

mAva
Avb

A =
d

dt

(

I
(3)
ab

∑

A

mAva
Avb

A

)

− I
(3)
ab

d

dt

∑

A

mAva
Avb

A.

The second term becomes

1

2
I
(3)
ab

∑

AB

GmAmB

z2
AB

(
va

ABnb
AB + na

ABvb
AB

)
,

and we obtain our final expression,

Ẇ =
G

c5

{

−1

5
I
(3)
ab Iab(3) +

1

15
I(3)
cc Icc(3) +

d

dt

[
3

10

(

I
(4)
ab İab − I

(3)
ab Ïab

)

− 1

10

(

I(4)
cc İcc − I(3)

cc Ïcc
)

+ 2I
(3)
ab

∑

A

mAva
Avb

A

]}

. (7.5.43)

This is the desired energy-balance equation.
In view of Eq. (7.5.9), Eq. (7.5.43) can be written as

Ẇ + Ėgw = − d

dt
Ebound, (7.5.44)

where Ėgw is the rate at which the gravitational waves carry energy away, and

Ebound := −G

c5

[
3

10

(

I
(4)
ab İab − I

(3)
ab Ïab

)

− 1

10

(

I(4)
cc İcc − I(3)

cc Ïcc
)

+ 2I
(3)
ab

∑

A

mAva
Avb

A

]

(7.5.45)

is the piece of the gravitational-field energy that stays bound to the system. Equa-
tion (7.5.44) is a fine-grained statement of energy balance. Averaging over an ap-
propriately selected time interval ∆t gives rise to the coarse-grained statement

〈Ẇ 〉 = −〈Ėgw〉, (7.5.46)

which says that on the average, the radiation-reaction forces do work at a rate that
matches the rate at which energy is removed by radiation. Because Ėgw > 0, the
forces do negative work, the N -body system loses energy, and the effect occurs at
the 5

2pn order.
Notice that in order to arrive at Eq. (7.5.46), we have to assume that the net

change in Ebound is zero over the time interval. This would be the case if the
Newtonian motion is periodic, or if the system begins and ends in an unaccelerated
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state. (Recall from Sec. 7.4.1 that the situation is very similar in the context
of flat-spacetime electrodynamics.) Alternatively, we might absorb Ebound into
a redefinition of the Newtonian energy, Enew = Eold + Ebound, and write Ẇ =
Ėnew. In this language, Eq. (7.5.44) becomes Ėnew = −Ėgw, and we preserve
the fine-grained statement of energy balance. Because the definition of energy
is ambiguous at 5

2pn order, by virtue of the very fact that the dynamics is not
conservative, this interpretation of the results is just as valid as the original, coarse-
grained interpretation. We confess, however, a marked preference in favour of the
original interpretation, because as we have argued back in Sec. 7.2.3, the very
notion of a gravitational-wave flux involves an implicit coarse-graining operation.
We therefore prefer to keep the coarse-graining explicit in Eqs. (7.5.44) and (7.5.46).

7.5.9 Momentum renormalization

We have seen that the terms involving Ia
cc and Ja

cc in Eq. (7.5.32) play no role in the
energy balance. Indeed, these terms do not really belong to the radiation-reaction
force, and they are best absorbed into a change of momentum variable.

Let us write the equations of motion in the form

dpA

dt
= mA

[

aA[0] + c−2aA[2] + c−4aA[4] + c−5āA[5] + O(c−6)
]

− GmA

c5

(
2

15
Ia(5)

cc +
2

3
Ja(5)

cc

)

,

where pA := mAvA is the Newtonian momentum of body A, and where c−5ā[5] is
what remains of the radiation-reaction force after removal of the terms involving Ia

cc

and Ja
cc. Because these are total time derivatives, they can be moved the left-hand

side of the equation, which can then be written as

dp̄A

dt
= mA

[

aA[0] + c−2aA[2] + c−4aA[4] + c−5āA[5] + O(c−6)
]

,

where

p̄a
A = pa

A +
GmA

c5

(
2

15
Ia(4)

cc +
2

3
Ja(4)

cc

)

is a new momentum variable. The terms in Ia
cc and Ja

cc, therefore, are naturally in-
terpreted as a 5

2pn correction to the Newtonian momentum of each body. Adopting
the new definition, these terms can be removed from the expression of Eq. (7.5.32)
for the radiation-reaction force.

A consequence of this change is that the expression for the total momentum
changes also, according to

P̄ a = P a +
Gm

c5

(
2

15
Ia(4)

cc +
2

3
Ja(4)

cc

)

,

where m :=
∑

A mA is the total mass. With āA[rr] = c−5āA[5] as radiation-reaction
forces, P̄ is a constant of the motion, and the total momentum can be set equal to
zero by placing the origin of the coordinate at the (corrected) barycentre.

7.5.10 Specialization to a two-body system

In the barycentric frame, the motion of each body in a two-body system is com-
pletely determined by the relative position vector z := z1 − z2. At Newtonian
order, z1 = (m2/m)z and z2 = −(m1/m)z, where m := m1 + m2 is the total
mass. We introduce also the relative velocity v := v1 −v2, the relative acceleration
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a = a1 − a2, the dimensionless reduced mass η := m1m2/m2, and the unit vector
n := z/z, where z := |z|. The relative Newtonian acceleration is

a = −Gm

z2
n + O(c−2), (7.5.47)

and from Sec. 6.11.3 we recall the consequences

vv̇ = −Gm

z2
ż + O(c−2), zz̈ = v2 − ż2 − Gm

z
+ O(c−2), (7.5.48)

where ż = n · v is the radial component of the relative velocity vector.
According to Eq. (7.5.32), the radiation-reaction forces acting on bodies 1 and

2 produce the relative acceleration

aa[rr] =
G

c5

[

−Gm

z2

(

3I
(3)
bc nbnc +

1

3
I(3)
cc

)

na

+
3

5
zI

a(5)
b nb − 1

5
zI(5)

cc na + 2Ia(4)
c vc

]

. (7.5.49)

Notice that the terms involving Ia
cc and Ja

cc have once more dropped out of sight.
The quadrupole-moment tensor is given by

Iab = mηzazb, (7.5.50)

and this must differentiated a number of times in order to turn Eq. (7.5.49) into
something fully explicit.

Making repeated use of Eqs. (7.5.47) and (7.4.48), a straightforward computation
returns

Iab(3) =
2Gm2η

z2

[

3żnanb − 2
(
vana + navb

)]

, (7.5.51)

Iab(4) =
2Gm2η

z3

[(

3v2 − 15ż2 +
Gm

z

)

nanb

− 4vavb + 9ż
(
vana + navb

)
]

, (7.5.52)

Iab(5) =
2Gm2η

z4

[

−15
(
3v2 − 7ż2

)
żnanb + 30żvavb

+ 4

(

3v2 − 15ż2 − Gm

z

)
(
vana + navb

)
]

. (7.5.53)

Inserting these results within Eq. (7.4.49), we eventually arrive at

a[rr] =
8G2m2η

5c5z3

[(

3v2 +
17

3

Gm

z

)

żn −
(

v2 + 3
Gm

z

)

v

]

. (7.5.54)

This is the radiation-reaction force (per unit mass) acting on the relative orbital
motion. This should be added to the right-hand side of Eq. (5.5.18) to account
for the dissipative nature of the motion at 5

2pn order. Its effect on the radius of a
circular orbit is described by Eq. (7.3.13).

The radiation-reaction forces do work at a rate Ẇ = m1a1[rr]·v1+m2a2[rr]·v2 =
mηa[rr] · v, and according to Eq. (7.5.54), this is

Ẇ =
8G2m3η2

5c5z3

[(

3v2 +
17

3

Gm

z

)

ż2 −
(

v2 + 3
Gm

z

)

v2

]

. (7.5.55)
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The rate at which energy is radiated in the form of gravitational waves was computed
in Sec. 7.3.1, and according to Eq. (7.3.11), this is

Ėgw =
8G3m4η2

15c5z4

(
12v2 − 11ż2

)
. (7.5.56)

It is easy to verify that these rates are related by the (fine-grained) energy-balance
equation

Ẇ + Ėgw = − d

dt
Ebound, (7.5.57)

where

Ebound =
8G2m3η2

5c5

żv2

z2
. (7.5.58)

This expression for Ebound can be obtained on the basis of Eq. (7.5.45), using the
results of Eqs. (7.5.51) and (7.5.52).
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