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CHAPTER 1
PRELIMINARIES

1.1 Landau-Lifshitz formulation of the Einstein field equa-

tions 1
1.2 Momentum and flux: Integral identities 3
1.3 Harmonic coordinates and wave equation 4
1.4 Conservation identities 6
1.5 Schwarzschild metric in harmonic coordinates 6
1.6 Iteration of the Einstein field equations 8
1.7 Energy-momentum tensor of a point mass 9
1.8 Angular STF tensors and spherical harmonics 10

We collect in this chapter a number of results and techniques that will be required
in the following chapters. The formulation of the Einstein field equations that is
best suited to a post-Newtonian expansion is due to Landau and Lifshitz, and this
is reviewed in Secs. 1.1 and 1.2. In Secs. 1.3 and 1.4 we refine this formulation
by imposing the harmonic coordinate conditions, and we show that the exact field
equations can be expressed as a set of ten wave equations in Minkowski spacetime
(with complicated and highly nonlinear source terms). We illustrate the formalism
in Sec. 1.5, by showing how the Schwarzschild metric can be cast in harmonic
coordinates. The post-Newtonian method builds on approximate solutions to the
wave equations, and in Sec. 1.6 we show how the metric can be systematically
expanded in powers of the gravitational constant G and inserted within the field
equations; these are iterated a number of times, and each iteration of the field
equations increases the accuracy of the solution by one power of G. In Sec. 1.7
we construct the energy-momentum tensor of a point mass, and in Sec. 1.8 we
summarize the elegant theory of symmetric-tracefree (STF) angular tensors and
their relations with the spherical-harmonic functions.

1.1 Landau-Lifshitz formulation of the Einstein
field equations

The post-Newtonian approach to integrate the Einstein field equations is based on
the Landau and Lifshitz formulation of these equations. In this formulation the
main variables are not the components of the metric tensor g,z but those of the
“gothic inverse metric”

g% == /=gg*”, (1.1.1)

where g®? is the inverse metric and g the metric determinant. Knowledge of the
gothic metric is sufficient to determine the metric itself: Note first that det[g®’] = g,

1



2 Preliminaries

so that g can be directly obtained from the gothic metric; then Eq. (1.1.1) gives
g%, which can be inverted to give gas-
In the Landau-Lifshitz formulation, the left-hand side of the field equations is
built from
HOHBY .= gaBgny _ gavgBu (1.1.2)

This tensor density is readily seen to possess the same symmetries as the Riemann
tensor, namely,

HroBY — —gowbvgenl — _genBv - gbven — gronbv, (1.1.3)
The Einstein field equations take the form
167G
1

9, HOHOV =
% P

(—g) (T + 27, (1.1.4)

where T is the energy-momentum tensor of the matter distribution, and

(o3 C4 « (073 1 « v
(—g)typ = oG )00 Ba, M — 0rg™0, 0% + 59 P 93u0,8™ 0, g"*

- gaAguuaprya)\gﬂp - gﬂ)\guyapgowa)\gup + g}\#gupayga)\apgﬁu

(20797 — 709 (20090- gpggw)aAgVTa#gpa} (1.15)
is the Landau-Lifshitz pseudotensor, which (very loosely speaking) represents the
distribution of gravitational-field energy. We use the notation 9, f := 0f/0x* and
Opw [ 1= 0% f /OxtOz” for any field f(z*) in spacetime.
By virtue of the antisymmetry of H**#” in the last pair of indices, we have that
the equation
O HOMPY = 0 (1.1.6)

holds as a trivial identity. This, together with Eq. (1.1.4), imply that
95 [(—g) (77 + tff)] ~0. (1.1.7)

These are conservation equations for the total energy-momentum tensor (which
includes a contribution from the matter and another contribution from the grav-
itational field), expressed in terms of a partial-derivative operator. These equa-
tions are strictly equivalent to the usual expression of energy-momentum conserva-
tion, VT = 0, which involves only the matter’s energy-momentum tensor and a
covariant-derivative operator.

Equations (1.1.2)—(1.1.7) form the core of the Landau-Lifshitz framework. It is
out of the question to provide here a derivation of these equations (the calculations
are straightforward but extremely tedious), but the following considerations will
provide a partial understanding of where they come from.

Let us write down the Einstein field equations, in their usual tensorial form

b _ SWGTaB

ct ’
at an event P in spacetime, in a local coordinate system such that 0,gq3(P) = 0.
(The special equality sign = means “equals in the selected coordinate system.”) In
these coordinates the Riemann tensor at P involves only second derivatives of the
metric, and a short computation reveals that the Einstein tensor is given by
Ges X l(ga/\gﬂugw} + gﬁz\gaugl/p _ gaAngg/w _ gaugﬁvg/\p
2

—g*Pg"g" + g*P g g*) D, g p-
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If we now compute 0, H apBy at the same point and in the same coordinate system,
we find after straightforward manipulations that it is given by

uHM = (—g) (g™ g™ g™ + g g1 g"P — g gPP g — g gP¥ g
— g g"g"" + g*P g g*) D gap-

To arrive at this result we had to differentiate (—g) using the rule 0,(—g) =
(—=9)9°0,9as, which leads to 0., (—g) = (—9)9*’9uugas. We also had to relate
derivatives of the inverse metric to derivatives of the metric itself; here we used the
rule @Lgaﬁ = —gakgﬁpaﬂgm which leads to Bl“,go‘ﬁ = —ga’\gﬁpau,,g)\p.

Comparing the last two displayed equations reveals that

1
Gaﬁ 2 _" 9 VHO‘“ﬁ”,
2(—g) "

and we conclude that at P, the Einstein field equations take the form of

, x 167G

By HOMP 5

(—9)T".

This is the same as Eq. (1.1.4), because tﬁf Z0at P, by virtue of the fact that each
term in the Landau-Lifshitz pseudotensor is quadratic in Gug(w , which vanishes at
P in the selected coordinate system. It is therefore plausible that at any other event
in spacetime, and in an arbitrary coordinate system, the Einstein field equations
should take the form of Eq. (1.1.4), with a pseudotensor tff that restores all first-
derivative terms that were made to vanish at P in the special coordinate system.
To show that this pseudotensor takes the specific form of Eq. (1.1.5) requires a long
computation.

1.2 Momentum and flux: Integral identities

Because they involve a partial-derivative operator, the differential identities of
Eq. (1.1.7) can immediately be turned into integral identities. Consider a three-
dimensional volume V, a fixed (time-independent) domain of the spatial coordi-
nates %, bounded by a two-dimensional surface S. We assume that V' contains at
least some of the matter (so that 7%° is nonzero somewhere within V'), but that
S does not intersect any of the matter (so that 7% = 0 everywhere on S). We
formally define a momentum vector P®[V] associated with the volume V by the
three-dimensional integral

1

PoV] = E/V(—g)(TaO +177) d’z. (1.2.1)

We assume that the coordinate 2° has a dimension of length, and the factor of ¢=*
on the right-hand side ensures that P*[V] has the dimension (mass) x (velocity)
of a momentum vector; it follows that ¢P°[V] has the dimension of an energy. In
flat spacetime, and in Cartesian coordinates, P*[V] would have the interpretation
of being the total momentum vector associated with the energy-momentum tensor
TP In curved spacetime, and in a coordinate system that cannot be assumed to be
Cartesian, the quantity defined by Eq. (1.2.1) does not have any physical meaning.
It is, nevertheless, a useful quantity to introduce, as we shall see in Chapter 5. In
the limit in which V includes all of three-dimensional space, P*[V] is known to
coincide with the ADM four-momentum of an asymptotically-flat spacetime; in this
limit, therefore, the physical interpretation of the momentum vector is robust.
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Substituting Eq. (1.1.4) into Eq. (1.2.1) gives

3

PVI= Tomc v

By HOMO .

Summation over v must exclude v = 0, because H**0 = 0. We therefore have

3

PeV] = — [ 0.(9,H*0) ¢3
V1= 152 [ 0c0u1) .
and this can be written as a surface integral by invoking Gauss’s theorem. We now
have
3
PV] = ——
V] 167G

where dS. is an outward-directed surface element on the two-dimensional surface
S. Equation (1.2.2) can be adopted as an alternative definition for the momentum
enclosed by S. This is advantageous when the volume integral of Eq. (1.2.1) is
ill-defined or difficult to compute.

Assuming (as we have done) that the surface S does not move on the coordinate
grid, the rate of change of the momentum vector is given by

% 9, H*"¢ds,, (1.2.2)
S

A poyj - f{ 0,0 HOM° dS
dax® 167G Jg " “

We have 8,0H*"0¢ = —0,0H** = —0,, H' + 0,qH***¢. The first term on
the right-hand side can be related to the total energy-momentum tensor on S,
which is equal to (—¢)t{{ because the matter contribution vanishes on the surface.
The second term is the spatial divergence of an antisymmetric tensor field, and
its integral vanishes (by virtue of Stokes’s theorem) because S does not have a
boundary. Collecting results, we find that

d (63 1 ocC

c
The rate of change of P*[V] is therefore expressed as a flux integral over S; and
the flux is given by the Landau-Lifshitz pseudotensor. The integral identity of
Eq. (1.2.3), and others similar to it, will be put to good use in Chapter 5.

1.3 Harmonic coordinates and wave equation
It is advantageous at this stage to impose the four coordinate conditions
g’ =0 (1.3.1)

on the gothic metric. These are known as the harmonic coordinate conditions, and
they play a helpful role in post-Newtonian theory. It is also useful to introduce the
potentials

hoP = B — g, (1.3.2)

where n®? := diag(—1,1,1,1) is the Minkowski metric expressed in Cartesian coor-
dinates (20 := ct, ). In terms of the potentials the harmonic coordinate conditions
read

dph™P =0, (1.3.3)

and in this context they are usually referred to as the harmonic gauge conditions.
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The introduction of the potentials h*? and the imposition of the harmonic gauge
conditions simplify the appearance of the Einstein field equations. It is easy to verify
that the left-hand side becomes

Oy HOMPY = — 0P 4 W19, 0P — 9,h" D, hP",

where O = n#¥9,,,, is the flat-spacetime wave operator. The right-hand side of the
field equations stays essentially unchanged, but the harmonic conditions do slightly
simplify the form of the Landau-Lifshitz pseudotensor, as can be seen in Eq. (1.1.5).
Isolating the wave operator on the left-hand side, and putting everything else on
the right-hand side, gives us the formal wave equation

167G
OhP = — 5 TP (1.3.4)
for the potentials h*?, where
790 = (—g) (TP + 427 + 1§F) (1.3.5)

is the effective energy-momentum pseudotensor for the wave equation. We have
introduced
(—g)t2h = i{a hev 9, hPH — hv o h“ﬁ} (1.3.6)
A ST A S v m o
as an additional (harmonic-gauge) contribution to the effective energy-momentum
pseudotensor. The wave equation of Eq. (1.3.4) is the main starting point of
post-Newtonian theory. It is worth emphasizing that Eq. (1.3.4), together with
Eq. (1.3.5), are an ezxact formulation of the Einstein field equations; no approxima-
tions have been introduced at this stage.
It is easy to verify that (fg)tﬁﬁ is separately conserved, in the sense that it

satisfies the equation 83[(—g)t§5] = 0. This, together with Eq. (1.1.7), imply that
TP = 0. (1.3.7)

The effective energy-momentum pseudotensor is conserved.

Because it involves second derivatives of the potentials, the term h‘“’@ul,ho‘ﬁ
on the right-hand side of the field equations might have been more appropriately
placed on the left-hand side, and joined with the wave-operator term. In fact, there
is a way of combining all second-order derivatives into a curved-spacetime wave
operator. For this purpose we treat h®? as a collection of ten scalar fields instead of
as a tensor field. The scalar wave operator associated with the metric gog (which
is to be constructed from the potentials) is denoted 0,4, and it has the following
action on the potentials:

1
Dgh“ﬁ = ﬁau(ﬁg””ayhaﬁ)
1
= =0 [ = w0,
_ % [One? — W, h07 ],
where we have used the harmonic gauge conditions in the last step. This does indeed
involve all second-derivative terms that appear in Eq. (1.3.4). The field equations
could then be formulated in terms of [J,, and this was, in fact, the approach adopted
by Kovacs and Thorne in their series of papers on the generation of gravitational
waves. This approach, while conceptually compelling, is not as immediately useful
for post-Newtonian theory as the approach adopted here, which is based on the
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Minkowski wave operator. It is indeed much simpler to solve the wave equation in
flat spacetime than it is to solve it in a curved spacetime with an unknown metric.
The wave equation of Eq. (1.3.4) admits the formal solution

hoP (x) = t—f/G(w,m’)TW(m') d*a’, (1.3.8)

where © = (ct, ) is a field point and 2’ = (ct’,2") a source point. The two-point
function G(x,2’) is the retarded Green’s function of the Minkowski wave operator,

which satisfies
0G(z,z") = —4nd(z — 2'), (1.3.9)

and which is known to be a function of  — 2’ only. (An explicit expression will
be presented in Chapter 2.) This property is sufficient to prove that if the ef-
fective energy-momentum pseudotensor 77 satisfies the conservation identities of
Eq. (1.3.7), then the potentials h®” will satisfy the harmonic gauge conditions of
Eq. (1.3.3). The proof involves simple manipulations and integration by parts.

1.4 Conservation identities

The conservation identities of Eq. (1.3.7) can be expressed as
A7 + 9,7% =0, Do 4 9,7 = 0, (1.4.1)

in which we have separated the time derivatives from the spatial derivatives. From
these we can easily derive the useful consequences

70 = 0y (7%°2%) + 0, (%2%), (1.4.2)

1 1
T = 5800 (Toozaxb) + 580 (T“be + TP — 8dTCdxaxb), (1.4.3)
and
ab,.c 1 Oa,.b, .c 0b,.a,.c Oc,.a,.b 1 ad, b, .c bd,.a,.c cd,.a, b
T%x :580(7' r’x+ 1 7x% — T ch)+§8d(7 z’xc + %% — 1 xo:)
(1.4.4)

As we shall see in Chapter 6, these conservation identities play an important role
in the theory of gravitational-wave generation.

1.5 Schwarzschild metric in harmonic coordinates

The usual form of the Schwarzschild metric is

2GM 2GM\ !
ds? = _(1 - gp )d(ct)2—|— (1 - gp ) dp® + p*(d6* + sin® 0 dp*), (1.5.1)

where (t, p, 8, ¢) are the usual Schwarzschild coordinates. To help us gain experience
with the harmonic coordinates of post-Newtonian theory, we wish here to transform
the Schwarzschild metric to a new form that is compatible with the harmonic con-
ditions of Eq. (1.3.1).

We motivate the transformation with the observation that each one of the four
scalar fields (¢T, X,Y, Z), defined by

cr' = ct,

X = (p—GM/c*) sinfcos ¢,
Y = (p— GM/c?)sinfsin ¢,
Z = (p—GM/c*) cosb,
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and collectively denoted X (") satisfies the scalar wave equation in the Schwarzschild
metric:

1
0, X® = g*PV, VX W = ﬁaa(\/fggaﬁagX(”)) =0. (1.5.6)

This statement, which is invariant under coordinate transformations, is easily veri-
fied by a quick computation. Suppose now that (¢T', X,Y, Z) are adopted as coordi-
nates, and that the Schwarzschild metric is expressed in terms of these coordinates.
In these circumstances we would have dg X () Z 5‘5 and Eq. (1.5.6) would become

95(v—gg9*") = 0.

This, in view of the definition g*? = \/jggaﬁ, is the harmonic coordinate condition
of Eq. (1.3.1). The conclusion, therefore, is that (¢T, X,Y, Z) is a set of harmonic
coordinates for the Schwarzschild spacetime.

The transformation from the Schwarzschild coordinates (¢, p, 6, ¢) to the har-
monic coordinates (z° =ct =T, 2! = v = X, 22 =y =Y, 23 = 2 = Z) is effected
by the relations

20 = et, % =rQ°, r=p—GM/c, (1.5.7)

where
Q! := sin 6 cos ¢, 02 := sinfsin ¢, 03 .= cosé. (1.5.8)

These definitions imply §,,Q2%0Q = 1, and we have the usual relation
r? = patal = 2% + y? + 22 (1.5.9)

between r and the Cartesian-like coordinates (x,y, z).
The differential form of x® = rQ® is

dz® = Q%dp + Q% do*, (1.5.10)

where Q9 = 9Q?/004 and 64 = (0,¢). This allows us to transform the inverse
metric ¢ from its original Schwarzschild form to its new harmonic form. The
computation involves the identity Q42Q40% = 59 — QQb, where Q48 is the
inverse of Q4p := diag(1,sin?#), the metric on a unit two-sphere. It gives

0o _7“—|—GM/C2
g - r— GM/CQ, (1511)
ab T_GM/C2 ayb T2 ab ab

= — ——— (6% — QQ°). 1.5.12
g r+GM/c? (r—l—GM/02)2( ) (1.5.12)

In these expressions, r is defined by Eq. (1.5.9) and Q® := 2%/r forms the compo-
nents of a unit vector. In Eq. (1.5.12) the spatial components of the inverse metric
are decomposed into a longitudinal part proportional to Q%Q° and a transverse part
proportional to §%° — Q*QP: notice that this last tensor is orthogonal to Q% and QP.

The metric is next obtained by inverting Eqgs. (1.5.11) and (1.5.12). We obtain

r—GM/c?
= —— 1.5.1
goo T+GM/CQ, (1.5.13)
_ r+GM/c? (r+GM/c?)?
gab = WQQQ}) + ’]"72(6&[) — QaQb). (1514)

It is understood that Q, := 6,,°. It is worth noticing that in harmonic coordinates,
the event horizon is located at » = GM/c?; the familiar factor of 2 is missing.
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The metric determinant is easily calculated to be /=g = (r + GM/c?)? /r?, and
the gothic inverse metric is then

0 _ (r+ GM/c?)3

g = 2 = GMJA)’ (1.5.15)
2\ 2

g = g <GM/C> b, (1.5.16)

The potentials h®? = n®8 — g*# are

w0 _ ., T+GM/A)?  GMjE_(GM/A\

hY = 1+r2(r—GM/c2)_4 " +7 . +---, (1.5.17)
2\ 2

pab = (Gﬂf/"‘ > Q0. (1.5.18)

In Eq. (1.5.17) the exact expression for h% is expanded in powers of GM/(c*r).
This is an example of a post-Newtonian expansion; the leading term in A% is said
to be of Newtonian order, while the next term is of first post-Newtonian order.

It is easy to substitute Egs. (1.5.16) and (1.5.17) into Eq. (1.1.2) to calcu-
late H*#9¢. This can then be substituted into Eq. (1.2.2) to calculate P®[r], the
momentum vector associated with a surface S described by r = constant. The
computations are simple, they involve the surface element dS, = r2Q.dQ (where
dQ = sin 0 dfd¢ is an element of solid angle), and they lead to P%[r] = 0 and

POl = EMC(ZT —GM/c*)(r+GM/c?)

2 r(r— GM/c?) (1.5.19)

The spatial momentum vanishes (as expected, since the coordinates are centered on
the black hole), and in the limit  — oo Eq. (1.5.20) reduces to

P%o0] = Me. (1.5.20)

The total energy is cP°[oo] = Mc?, and M is the total gravitational mass of the
spacetime.

1.6 Iteration of the Einstein field equations

A practical way of integrating the Einstein field equations, in the form of the wave
equation of Eq. (1.3.4),

167TG « «
Or*8 = — i 7B, - (—g)(T“ﬂ[g] —|—th + tHﬁ), (1.6.1)
is to involve a post-Minkowskian expansion of the form

he? = GRS + G257 + GPRSP + - (1.6.2)

The strategy consists of integrating the wave equation order-by-order in GG. This
method gives rise to an adequate asymptotic expansion of the metric when the
spacetime does not deviate too strongly from Minkowski spacetime. Notice that
as was indicated in Eq. (1.6.1), the matter’s energy-momentum tensor is actually a
functional of the metric gog, and this dependence comes in addition to its depen-
dence on the purely material variables. Part of the challenge of finding a solution
to the wave equation resides in this implicit dependence on the metric.

A zeroth-order approximation for the potentials is hgﬁ = 0, which implies that
ggﬂ = n°? and ggﬁ = Nag. If one substitutes this into the right-hand of the



1.7 Energy-momentum tensor of a point mass 9

wave equation, one obtains h*? = — (167G /c*) 75", where 75 is the zeroth-order
approximation to the effective energy-momentum pseudotensor. This is known,
because at this order of approximation it is equal to 7*%[n], the material energy-
momentum expressed as a functional of the Minkowski metric. The solution to the
wave equation is h?ﬁ = Gk?ﬁ , and the Einstein field equations have been integrated
to first order in G.

The next iteration begins by substituting h(fﬂ into the right-hand side of the
wave equation to form 7y A , the first-order approximation to the effective energy-
momentum pseudotensor. This is known, because it is constructed from tfg and t%ﬁ ,
which can both be computed from h‘f‘ﬁ , and also from T7*? [g], which is now expressed
as a functional of the first-order approximation to the metric, gog = 10s + O(G).
The new solution to the wave equation is hS” = Gk + G2kS”, and the Einstein
field equations have been integrated to second order in G.

The iterations are continued until a desired degree of accuracy has been achieved.
At this stage we have nth-iterated potentials h%? that depend on the position in
spacetime, and that depend also on the matter variables contained in 7®?. These
must be determined as well, and this is done by imposing the conservation identities
of Eq. (1.3.7), 957*% = 0. Or equivalently [see the discussion following Eq. (1.3.9)],
the matter variables are determined by imposing the harmonic gauge conditions,
8ﬁh°‘5 = 0. After this final procedure the potentials, and the associated metric,
become proper tensor fields in spacetime. The point, of course, is that solving
the wave equation order-by-order in G amounts to integrating only a subset of
the Einstein field equations; to get a solution to the complete set of equations
it is necessary also to impose the coordinate conditions. And since doing this is
equivalent to enforcing energy-momentum conservation, the motion of the matter
is determined, along with the metric, by a complete integration of the Einstein field
equations.

The post-Minkowskian method requires an efficient way of computing the metric
and various associated quantities from the potentials. The following approximate
relations are easy to verify:

Yo = Tap+ hap — %hnaﬁ + hauh'y — %hhaﬁ
# (592 = 301 Y+ 0(G2) (163
R - R % hi — % hhes
+ (;hQ + ih“”h,w) ™% +0(G?), (1.6.4)
(—g) = 1—h+ %hQ - %h”“hw + O(G®), (1.6.5)

1, 1 1
V=g = 1- 5h + ghQ - ihﬂ”hw +0(G?). (1.6.6)

It is understood that here, indices on h*? are lowered with the Minkowski metric.
Thus, hag := Nauns,h*” and h := 1, K",

1.7 Energy-momentum tensor of a point mass

Let a particle of mass m follow a world line described by the equations z = 2%*(\),
with A denoting proper time. Its energy-momentum tensor is given by

dz* dzP §(a° — 2°)0(z — 2)

T (z) =
(@) =me [ % V=g

d), (1.7.1)
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in which & = (2!, 22, 23) denotes a purely spatial vector with components x%. The

energy-momentum tensor depends on the metric explicitly through the factor /—g,
and also implicitly through the calibration of the proper time A.

It is useful to change the parameterization of the world line from A to z°. We
write

a 3.8 7.0 0_ .0 -
700 = e [ B AT A0 =)o@ - 2) o
dz0 dz0 dX V=g

and we carry out the integration with respect to 2°. This eliminates one of the

d-functions, and we obtain

dz® dzP d2° §(x — 2)

T — e 222 &% 2
MO0 AN =g

Letting 2° = 2° = ct, we write this as

0
o M o2 8@ %)
dA /=g
where v® = dz®/dt is the velocity four-vector. We next write dA\? = —g,,,dz"dz" /c?

for proper time, and deduce that

dx 1
70 = E\/—ng“v”/c?

Inserting this into our previous expression returns

«a, B dz®
mu*v 5w — 2), b ¥
V=9V = guvivY /e

o dt
our final expression for the energy-momentum tensor. This is expressed in terms
of z(t), the spatial position of the particle as a function of time, and in terms of
v(t) = dz/dt, the spatial velocity vector. The dependence on the metric is now
fully explicit.

The wave equation of Eq. (1.6.1) involves (—g)T*? instead of just 7%, and we
shall be interested in a situation in which there is an arbitrary number of point
particles in the spacetime. Assigning a label A to each particle, and denoting their
masses by m 4, their position vectors by z4, and their velocity vectors by v, we
find that Eq. (1.7.2) generalizes to

TP (t,z) = = (¢,v), (1.7.2)

V=9

(—9)T*(t, ) = mAvfivi—é(ac - z4), (1.7.3)
a dz3
Va = ﬁ = (Cv UA)7 (174)

where the sum extends over each particle. It is understood that the metric g,,, and
its determinant g, are to be evaluated at the position & = z4 of each particle.

1.8 Angular STF tensors and spherical harmonics

1.8.1 Angular STF tensors

The angular vector

Q= ; = (sin 6 cos ¢, sin 0 sin ¢, cos 6) (1.8.1)
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will appear frequently throughout these notes, together with various products Q*QPQ¢ - - .,
and together with tracefree versions Q(*¢) of such products. These tracefree ten-
sors, distinguished by the angular bracket notation, are constructed by removing

all traces from the “raw” products Q*QPQ¢. ... Explicit examples are
Q) = Qb - %5”, (1.8.2)
Qlebd = Qe0bas — %(5‘“’96 +0%°Q0 + 6707, (1.8.3)
Qlabed) ._  QanbOeQd %(5abQCQd+5aCQde+5adeQc 1 gheQaqd
+ 6%4QQ° + 5CanQb) + % (6“1’5“"1 4 5acsbd 4 5“d6bc). (1.8.4)

For example, Q(*°) is tracefree because §,,0(?*¢) = Q° — $(30°+9°4+Q°) =0 and
similarly, 6,.0(¢) = §,40(20¢) = (. Because these tensors are also symmetric with
respect to all pairs of indices, they are called symmetric-tracefree tensors, or STF
tensors.

The angular STF tensors Q(*¢) play a useful role in the construction of irre-
ducible solutions to Laplace’s equation, V2t = 0. In preparation for this discussion
we record the useful identities

1
O, = Q. 00 = = (6ap — Q) (1.8.5)
r
and introduce a multi-index L := ajas - - - ap as well as the notation
Qb .= quQaz...Qu (¢ factors), (1.8.6)

in which the number of factors matches the number of indices contained in the
multi-index. The STF version of this product is denoted (&), A tensor such as
Ay is assumed to be completely symmetric, and a tensor such as Ay is completely
tracefree. It is understood that summation over a repeated multi-index involves
summation over each individual index contained in the multi-index.

1.8.2  Solutions to Laplace’s equation

Let us first consider the growing solutions to Laplace’s equation,
V) = 0.

The simplest solution is the monopole, ©» = A = constant, and next in order
of complexity is the dipole ¢ = A,az* = rA,Q%, where A, is a constant vector (3
independent components). For a quadrupole solution we might try ¢ = 2 4,,Q%Q°,
but this is a solution if and only if §** A,, = 0; the constant tensor must be tracefree,
and we find that our quadrupole solution can be expressed as ¥ = r2A<ab>Q“Qb,
or as ¥ = 7"2A<ab>(2<“b>, because the difference between Q2QP and Q) ig %5‘”’,
and this vanishes after multiplication by a STF tensor. Notice that the number of
independent components contained in Ay is equal to 5. Continuing along these
lines would eventually reveal that a general ¢-pole solution to Laplace’s equation
can be expressed as

Y = r£A<L>Q<L> (growing solution), (1.8.7)

in which the constant STF tensor Az, contains 2¢ + 1 independent components.
Let us consider next the decaying solutions. The simplest is the monopole
1 = Ar~!, which involves a single constant A. To generate a dipole solution we
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simply differentiate »—! and multiply this by a constant vector. The result is ¢ =
A%0,r~ 1, and this clearly is a solution to Laplace’s equation; the vector A% contains
3 independent components. To generate a quadrupole solution we differentiate once
more, and write 1) = A%d,,r~!. The solution is currently expressed in terms of
a symmetric tensor that contains 6 independent components. The trace part of
A% however, provides only irrelevant information, because §*9y,r~! = V2r—1 =
0 (away from r = 0). We may therefore remove the trace part of A% without
sacrificing the generality of the solution, which we now write as 1) = A gr—1,
or as Y = A<“b>8(ab>r*1; the STF tensor A'*® contains 5 independent components.
Continuing along these lines would eventually reveal that a general ¢-pole solution
to Laplace’s equation can be expressed as

)= A<L>8<L>r_1 (decaying solution), (1.8.8)

in which the constant STF tensor A contains 2¢ + 1 independent components.

The decaying solutions of Eq. (1.8.8) are not yet expressed in terms of Q¢F).
This is easily remedied. Involving Eq. (1.8.5) we note first that 9,7~ = —r~2Q,,
that 9upr ™! = 7733022 — dup), and that Juper ™! = 3r=H(—=5Qu Qe + 04620 +
8ac + 0pefy). Because r~! is a solution to Laplace’s equation, its derivatives
form the components of a STF tensor, and the preceding results can be expressed
as 3<ab>r’1 = 37"*3(2(,@ and 8<abc>r*1 = —15r’4Q<abc>. To derive the general
statement we assume that there is an £ for which we know that

Arr—t = Myr~Q, + trace terms,

and we proceed by induction. (Here M, is a constant that will be determined for
all values of £.) An additional differentiation yields

Aurr "t = M, [,(g + 1)7"*(“2)QQQL + r*(Hl)&IQL] + trace terms,
and we compute

9.0 = 0a(, Uy - W,)
(aale)Qb2 Qe+ Dy (aale)
= 1 (5ab1 _ Qale)sz . ng 4ot Tﬁllegbz - (5ab@ _ Qang)

= —0r~ 10,0, + trace terms.
Incorporating this into our previous result gives
O,rr ' = —(20+ 1) M, r~ 20 Q) + trace terms,

and this allows us to conclude that the expression for 9,77 7! is of the same general
form as the expression for dr~!, and that My, = —(2¢ + 1)M,. The solution to
this recurrence relation is M, = (—1)%(2¢ — 1)!!My, and using our previous special
cases we can verify that My = 1. What we have, at this stage, is a proof that
opr—t = (=120 — DN~ DO + trace terms. Because 97! is a STF tensor,
we may express this in its final form as

prt = 0yr ™t = (=1 (20 — Dy~ ENQ . (1.8.9)
It follows that Eq. (1.8.8) can be written as
= r*(”l)A<L>Q<L> (decaying solution), (1.8.10)

after absorbing the factor (—1)¢(2¢ — 1)!! into a re-definition of AL,
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1.8.3 Spherical harmonics

It is well known that irreducible solutions to Laplace’s equations can also be ex-
pressed as

¢
P =rt Z A Yo (0, 0) (growing solution) (1.8.11)
m=—/
and ,
=~ D Z A Yem (0, 9) (decaying solution), (1.8.12)
m=—~

where Yy, (6, ¢) are the usual spherical-harmonic functions, which satisfy Yy _,,, =
(—=1)™Yy,,, with the overbar indicating complex conjugation. The sums over m
contain 2¢ + 1 terms, and for a real ¢ the number of independent real constants
contained in Ay, is also 2¢ + 1. This number matches the number of independent
components contained in the STF tensor A(L).

Comparing Eq. (1.8.7) to Eq. (1.8.11), and also Eq. (1.8.10) to Eq. (1.8.12), it is
clear that there must exist a strict correspondence between the angular STF tensors
Q) on the one hand, and the spherical harmonics Yz, (6, ¢) on the other hand.
We can, in fact, express this correspondence as

Yo (0,0) = 250, (1.8.13)

where %;? is a constant STF tensor that satisfies %%Zn = (—1)"”%37?. As specific
examples, it is easy to check that

exy 1 [15 I ey 4 |15 1 /15
2 = \ee Y =T =0 Y =15

with all other components of %Q"‘” vanishing, that

v = = AT =Y =

with all other components of %ﬁ“’” vanishing, and that
az 1 /5 1 /5 22y 1 /B
= = T =5y

with all other components of %gab) vanishing. It is also easy to verify that the
functions of 6 and ¢ defined by Eq. (1.8.13) satisfy the familiar eigenvalue equation
for spherical harmonics.

The inverted form of Eq. (1.8.13) is

470!

4
@y 70 =
O =N Y 9, Yen(0,0),  Ne= Qe+ 1)

m=—/{

(1.8.14)

This can easily be checked for specific cases, such as £ = 2. To illustrate the truth of

this statement we introduce another angular vector Q' := (sin 6’ cos ¢', sin 8’ sin ¢’, cos '),
defined in terms of a distinet set of angles (6’,¢'), and we multiply each side of

Eq. (1.8.14) by Q’<L>. We get

4
QR = Ne > (Z8 Yy Yem 6, 6),

m=—/¢
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and substituting Eq. (1.8.14) gives

20+1
QB =N, Z om0/, &) Yem (0, 6) = = —NePo(2- ),

m=—/{

where we have invoked the addition theorem for spherical harmonics. Let us
examine a few special cases. When ¢ = 1 a direct computation reveals that
0, = Q- Q =: cosy = Pi(cosvy), where v is the angle between the vectors
Q and Q. When ¢ = 2 we have Qe Q’ = cos?y — § = 2P3(cosy). And when
¢ = 3 we have QW’C)Q’( be) = cos® vy — 50057 = 2P;(cosvy). All these results are
compatible with the general statement, which follows from Eq. (1.8.14). Now, the
number that multiplies Py(cos~y) in the general expression is (20 + 1)N,/(4w). Tt is
also, as we can see from the special cases, the reciprocal of the coefficient multiply-
ing cos’ v in an expansion of Py(cos~y) in powers of cos~y. This coefficient is equal
to (20 — 1)!11/£! and we conclude that (2¢ + 1)N,/(4w) = £!/(2¢ — 1)!!, so that Ny is
indeed given by the expression displayed in Eq. (1.8.14). We conclude also that as
a consequence of Eqgs. (1.8.13) and (1.8.14), we have

2!

(Lo —
& Q<L>_(2£_1)n

Py ), (1.8.15)

a useful identity involving the contraction of angular STF tensors that refer to two
distinct directions.

The foregoing results give rise to another useful identity. We rewrite Eq. (1.8.14)
as

= No Z Y Vo (0, )

and insert it into the integral [ Y, (€', gb/)Q'(L/> dSY, where dQ’ = sin @’ df’d¢’. This
gives

el
/YZm(a',gs’)QgL,) dQ' = Ny Z @f;y’/nm,(a',¢’mm(9’,¢’)dﬂ',
m/:7£1

and the orthonormality of the spherical harmonics allows us to simplify this as
[ Ym0, 49 = 800 Ne

If we now multiply each side by Y, (6, #) and sum over m, we obtain

S o6 () [ Yin®', )2, 492 = 500N S B Tin(0,0)

m=—/ m=—/

In view of Eq. (1.8.14), this is

Z ng /ng 9/ / L’) dQY = 8p Q<L>. (1.8.16)

m=—{

This identity will be put to good use in Chapters 2 and 6.
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1.8.4 Spherical averages

We denote by ((¢)) the average of a quantity ¥(6,¢) over the surface of a unit
two-sphere:

(6) = 4 [v0.0)d0 (1817)

where df) = sin 6 dfd¢. Of particular interest are the spherical average of products
QeQPQ° - - of angular vectors. These are easily computed using Eqs. (1.8.2) and the
fact that the average of an angular STF tensor Q(%¢*) must be zero; this property
follows directly from Eq. (1.8.14) and the identity [ Yz, (6, ¢) dQ = 6,00m,0. We
obtain

(@) = o, (1.8.18)

a _ ]'a
() = 3o, (1.8.19)
(') = o, (1.8.20)
(Qebeady = %(5ab5cd+5“5bd+5ad5“). (1.8.21)

These results can also be established directly, by recognizing that the tensorial
structure on the right-hand side is uniquely determined by the complete symmetry
of the left-hand side and the fact that 6% is the only available geometrical object.
The numerical coefficient can then be determined by taking traces; for example,
1 = 6ap0ea((Q000QcQ) = 1—15(9 + 3+ 3), and this confirms that the numerical
coefficient must indeed be %5
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We saw in Chapter 1 that in their Landau-Lifshitz formulation, the Einstein field
equations take the form of wave equations in Minkowski spacetime. Integrating the
field equations requires finding solutions to the wave equation, and in this chapter
we introduce the relevant techniques. We begin by giving a precise formulation of
the problem in Sec. 2.1, and after introducing the retarded Green’s function for the
wave equation, we describe how its solution can be expressed as an integral over the
past light cone of the spacetime point at which the field is evaluated. In Sec. 2.2
we partition three-dimensional space into near-zone and wave-zone regions, and in
Sec. 2.3 we follow Will and Wiseman (1996) and explain how the light-cone integral
can be decomposed into near-zone and wave-zone contributions. Techniques to
evaluate near-zone integrals are introduced in Sec. 2.4, and techniques to evaluate
wave-zone integrals are developed in Sec. 2.5.

2.1 Formulation of the mathematical problem
We wish to integrate the wave equation
Oy = —4mp (2.1.1)

for a potential ¥ (z) generated by a source p(x). Here x = (ct, x) labels a spacetime
event, and ) , , )
 ap B 0 0 0 0

|:|—’I7 aaﬁ——w‘kw“r@‘i’@
is the wave operator of Minkowski spacetime. In this chapter ¢ plays the role of the
gravitational potentials 2, and the source function j plays the role of the effective
energy-momentum pseudotensor 7%, The source function is assumed to be known,
as 7% would be in the post-Minkowskian formulation of the Einstein field equations
— see Sec. 1.6. But unlike the typical situation encountered in electrodynamics, it
is not assumed to be bounded. Instead, the source is assumed to be distributed over
all of Minkowski spacetime, because 7% is constructed in part from A2, which does
extend over all of spacetime. The source does not have compact support, but it is
assumed to fall off sufficiently fast to ensure that the solution to the wave equation
decays at least as fast as |z| L.

(2.1.2)

17
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The central tool to integrate Eq. (2.1.1) is the retarded Green’s function G(x,x'),
a solution to

OG(x,2") = —4nd(x — 2') = —4né(ct — ct')o(x — ) (2.1.3)

with the property that G(z,’) vanishes if x is in the past of /. The Green’s

function is given explicitly by

o(ct —ct’' — |x — x'|)
|z — a'|

G(z,z') = , (2.1.4)

where |z — 2| == /(x — ') - (x — ') = /(@ —2/)2+ (y — ¢)2 + (z — 2/)2 is the
length of the three-dimensional vector & — @’ and the spatial distance between x
and z’. Alternatively, the Green’s function can be expressed as

G(z,2') =20(ct — ct') §[(ct — t')? — |z — 2'|?], (2.1.5)

in terms of the spacetime interval between x and z’; here ©(ct —ct’) is the Heaviside
step function, which is equal to one when ct > ct’ and to zero when ct < ct’.
In terms of the Green’s function, the solution to Eq. (2.1.1) is

¥(z) :/G(x,x’),u(x’) da’, (2.1.6)

where d*z’ = d(ct')d3x’. After substitution of Eq. (2.1.4) and integration over
d(ct’), this becomes

t i .
W(ct, x) = / plet — o = @], 2') s 0 (2.1.7)
This is the retarded solution to the wave equation, and the domain of integration
extends over €(x), the past light cone of the field point z = (ct, x).

2.2 Near zone and wave zone

The domain %(x) will be partitioned into a near-zone domain A~ and a wave-zone
domain W . Before we formally introduce these notions, let us examine the solution
to a specific version of Eq. (2.1.1),

cosw(t —r/c) wsinw(t—r/c)
—p.Q _Y
Y=p 2 p - ;

which corresponds to u = —p - Vi(x) coswt. Here p is a constant vector, r := |x|,
Q := x/r is the angular vector of Eq. (1.8.1), and w is an angular frequency. Physi-
cally, this solution represents the scalar potential of a dipole of constant direction p,
oscillating in strength with a frequency f = w/(27); the wavelength of the radiation
produced by the oscillating dipole is A = ¢/ f = 27¢c/w.

Our first observation is that i behaves very differently depending on whether
r is small or large compared with A. When r < A = 27¢/w, the trigonometric
functions can be expanded in powers of wr/c, and the result is

2,.2
wzp.QCOSWt [1+O<w ! )] (near zone),

r2 2

with a correction term that is quadratic in r/\ < 1. We observe also that in the
near zone — the region r < A — the derivatives of ¢ are related by

(near zone).

cfézi - O(%)
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In the near zone, therefore, a time derivative is smaller than a spatial derivative
(multiplied by ¢) by a factor of order r/\ < 1.

When, on the other hand, » > A = 2wc¢/w, it is no longer appropriate to expand
the trigonometric functions, and the potential must be expressed as

{1 + O(WCT)} (wave zone),

in terms of the retarded-time variable 7 := ¢t — r/¢; here the difference between
and t is not small, and the correction term is linear in A\/r < 1. We observe also
that in the wave zone — the region r > A — the derivatives of i are related by

Cﬁéifﬂ =0(1) (wave zone).
To obtain this result we use the fact that the spatial dependence contained in €
and r~! produces a spatial derivative of fractional order A\/r, while the spatial
dependence contained in 7 = t — r/c produces a spatial derivative of order unity.
In the wave zone, therefore, a time derivative has the same order of magnitude as
a spatial derivative (multiplied by c).
To define the notions of near zone and wave zone in the general context of the
wave equation of Eq. (2.1.1), we introduce the following scaling quantities:

w sin wt

Y=-p Q—
C

t. := characteristic time scale of the source, (2.2.1)
2m
we = = characteristic frequency of the source, (2.2.2)
c
2me . _
Ae = = ct. = characteristic wavelength of the radiation. (2.2.3)
We

The characteristic time scale t. is the time required for noticeable changes to occur
within the source; it is defined such that Oyu is typically of order u/t. over the
support of the source function. If, as in the previous example, p oscillates with a
frequency w, then t. ~ 1/w and w, ~ w.

The near zone and the wave zone are defined as

2me _

near zone: rorr K\ = = ct, (2.2.4)
We
, 2me
wave zone: rorr >\ = = ct.. (2.2.5)
We
Thus, the near zone is the region of space in which r := |z| or v’ := |z’| is small

compared with a characteristic wavelength \., while the wave zone is the region of
space in which r or 7’ is large compared with this length scale. As we have seen in
the dipole example, the potential behaves very differently in the two zones: In the
near zone the difference between 7 = ¢ — r/c and t is small (the field retardation is
unimportant), and time derivatives are small compared with spatial derivatives; in
the wave zone the difference between 7 = ¢t —r/c and ¢ is large, and time derivatives
are comparable to spatial derivatives. These properties are shared by all generic
solutions to the wave equation.

Another important feature of the near zone concerns the quantity (r'/c)dyu, in
which g is understood to be a function of time and the spatial variables x’. This
quantity is of order (r'/c)(p/tc), or (r'/Ae)p, which is much smaller than p. In the

near zone, therefore,
!/

' Ou r
= O(/\—cu) < . (2.2.6)

This states, simply, that the source retardation is unimportant within the near
zone. This was to be expected, because the field retardation itself was seen to be
unimportant in the near zone.
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2.3 Integration domains

The integral of Eq. (2.1.7) extends over the past light cone € (z) of the field point
x. Following Will and Wiseman, we partition the integration domain into two
pieces, the near-zone domain A (z) and the wave-zone domain # (x). We place
the boundary of the near/wave zones at an arbitrarily selected radius R, with R
imagined to be of the same order of magnitude as A., the characteristic wavelength
of the radiation associated with 1. We let .4 (x) be the intersection between € (z)
and the near zone, formally defined as the spatial region such that ' := |2’| <
R. Similarly, we let # (x) be the intersection between %' (x) and the wave zone,
formally defined as the spatial region such that ' > R. The near-zone and wave-
zone domains join together to form the complete light cone of the field point x:
We write Eq. (2.1.6) as

Y(x) =Py (x) + Yy (z), (2.3.1)

where

Yoy (x) = /JV Gz, 2" )p(z") d*a’ (2.3.2)

is the near-zone portion of the light-cone integral, while
Yy () = / Gz, 2 (') d*a’ (2.3.3)
Va

is its wave-zone portion. We recall that the boundary between the near and wave
zones is placed at ' = R = O(\;), where A, is defined by Eq. (2.2.3). Methods to
evaluate ©_y and 1 will be devised in the following sections. It is an important
fact that while ¢_y and ¥ will individually depend on the cutoff parameter R,
their sum 1 = 1 4 + 1 will necessarily be independent of this parameter. The
R-dependence of ¥_y and 1y is therefore unimportant, and it can freely be ig-
nored. This observation will serve as a helpful simplifying tool in many subsequent
computations.

2.4 Near-zone integration

2.4.1 Wave-zone field point

To begin, we evaluate

by(x) = /JV plet — |2 = @'}, @) s (2.4.1)

|z — /|

when z is situated in the wave zone, that is, when r = |x| > R. We recall that
the domain of integration .4 is the intersection between % (z), the past light cone
of the field point x, and the near zone, defined as the spatial region such that
r'i=z'| < R.

For this purpose we introduce a modified integrand,

plct — & — 2’|, y)
|z — |

= f(lz — a'|) =: g(2"),

in which the spatial dependence of the source function on x’ has been replaced by
a dependence on arbitrary parameters y. We have indicated that if ¢ and y are
kept fixed, then the modified integrand can be viewed as a function f of argument
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|z — «’|. If, in addition, x is kept fixed, then we have a function g that depends
only on the vector x’.

Knowing that x’ lies within the near zone, we treat it as a small vector, and
we Taylor-expand g about =’ = 0. Keeping just a few terms in this expansion, we

obtain 5 o2
9 a1 g
g(:v’) = 9(0) dz'a a’ 2 Ox'ax'd

in which all derivatives are evaluated at £’ = 0. But

og _ of _ of

ox'a — dx'e dxo’

{E/all'/b"‘"‘,

because f depends on @’ only through the combination |z — a’|. Our Taylor ex-
pansion can therefore be expressed as

O a1 O
Dz a? 2 Oxazb

9(x') = f(lz]) - v

The derivatives of f are still evaluated at &’ = 0. But because the differentiation
is now carried out with respect to @, we can set ' = 0 in f before taking the
derivatives. Observing that f then becomes a function of r = || only, we have

2
g(CE,) _ f(’f') aéfaga)x a4 %aax{gg xlaxlb 4

Keeping all terms of the Taylor expansion, this is

— Z (_1)q’£/Qan(7’),

!
=0 7

where @ := ajaz--- a4 is a multi-index of the sort introduced in Sec. 1.8.1. More
explicitly, we have established the identity

plet — |z —2'|y) = (=D g, plet—ry)
= 0 . 2.4.2
lz — 2| qzz:o T 0Q , ( )
The dependence of u/r on the variables 2 is contained entirely within 7.
We may now set y equal to ' and substitute Eq. (2.4.2) into Eq. (2.4.1). This
gives

o0
v (ct, ) u, z’)x’C 3’ |, 2.4.3
; oo [ utea) (2.4.3)
where
u:=ct—r=c(t—r/c)=:cr (2.4.4)

is a retarded-time variable. Notice that the temporal dependence of the source
function no longer involves @', the variable of integration. The integration domain
has therefore become a surface of constant time (the constant being equal to 7 =
t — r/c) bounded externally by the sphere ' = R. This domain is denoted .# in
Eq. (2.4.3).

Equation (2.4.3) is valid everywhere within the wave zone. It simplifies when
r — 00, that is, when ©_4 is evaluated in the far-away wave zone, a neighbourhood
of future null infinity. In this limit we retain only the dominant, »—! term in v 4,
and we approximate Eq. (2.4.3) by

100

/ dou(u, ')z’ d*z’ + O(r=2).
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The dependence of p on 2% is contained in u = ¢t — r, so that Oopu = —puMdr =
—1MQ,, in which u denotes the first derivative of p with respect to u, and
where we used Eq. (1.8.5). Involving this equation once more, we find that d,pp =
12Q, 0+ O(r~1), and continuing along these lines reveals that in general, Oop =
(—1)9u Qg + O(r~1). Inserting this into the previously displayed equation, we
find that Eq. (2.4.3) becomes

oo

Yy (t,x) = % Z %QQ ((,i) /j{ pw(u, 2")z'? 3z’ + O(r=?2) (2.4.5)

q=0

in the far-away wave zone. This is a multipole expansion for the potential iy .
Notice that Qqz'? = Qq,Qy, - -+ Qg 2’12/ - - 2/% = (- x’)4.

2.4.2  Near-zone field point

We next evaluate

by (z) = /JV et — |z =, a") 5 (2.4.6)

|z — /|

when z is situated in the near zone, that is, when r = |z| < R.

In this situation, both  and x’ lie within the near zone, and |z — x’| can be
treated as a small quantity. To evaluate the integral we simply Taylor-expand the
time-dependence of the source function, as in

0 1 92
plet o ') = plet) — gl — /| + 5 g le — !

+"',

in which all derivatives are evaluated at ct. Substituting this expansion into Eq. (2.4.6)
produces

Y (t,x) = Z (=1 (8(?:15)) //1 plet, ')z — 2/ |97 a3, (2.4.7)

q=0 ¢

which is valid everywhere within the near zone. Notice that once more, the domain
of integration is .#, a surface of constant time bounded externally by the sphere
r=TR.

2.5 Wave-zone integration

In this section we develop a method to evaluate

Yy (x) = /W Gz, z" (') d*a’, (2.5.1)

the wave-zone portion of the complete solution ¢ to the wave equation. We recall
that the domain of integration % is the intersection between %'(x), the past light
cone of the field point z, and the wave zone, defined as the spatial region such that
r’ := |&’| > R. The wave-zone integral of Eq. (2.5.1) is much more difficult to
evaluate than the near-zone integral encountered in Sec. 2.4. To proceed it will be
necessary to restrict our attention to source functions of the form

p(z') = LSO gy (2.5.2)

T dx opm ’

where f is an arbitrary function of argument u' = c¢t’ — ¢’ (it is unrelated to the
function f introduced in Sec. 2.4.1), n is an arbitrary integer, and Q) s an
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angular STF tensor of degree ¢, of the sort introduced in Sec. 1.8.1. Fortunately,
this restriction is not too important from a practical point of view: All sources
functions that will be involved in wave-zone integrals in the remaining chapters of
these notes will be seen to be superpositions of the irreducible forms displayed in
Eq. (2.5.2).

2.5.1 Reduced Green’s function

The source function of Eq. (2.5.2) can be neatly expressed in terms of spherical
harmonics Yy, (6, ¢') — see Sec. 1.8.3 — and for this reason it is advantageous
to express G(z, '), the retarded Green’s function of Egs. (2.1.4) and (2.1.5), as a
spherical-harmonic decomposition. We therefore write

G(z,2') = Z ge(ct,rsct’ 7" ) Yo (0, 0" ) Yo (0, 6), (2.5.3)

m

where ge(ct,r;ct’,r') is a reduced Green’s function for each multipole order . Sub-
stitution of Eq. (2.5.3) into Eq. (2.1.3) reveals that each gy satisfies the reduced
wave equation

2 19,0 l+1)

A(ct)?  r? Er or 2

]gz = —%5(@ —ct)o(r —1"). (2.5.4)

It follows from this equation that (as was already indicated) the reduced Green’s
function depends on £ but is independent of m.

We shall not attempt to integrate Eq. (2.5.4) directly. It is simpler to take
the known expression for G(x, '), as it appears in Eq. (2.1.5), and to extract its
multipole components using Eq. (2.5.3) and the orthonormality of the spherical
harmonics. Introducing the notation

Ac=c(t—1t), R:=|z -2, (2.5.5)
Eq. (2.1.5) can be expressed as
G(z,2') = 20(A)§(A? — R?).

We substitute this on the left-hand side of Eq. (2.5.1), multiply each side by
Yom (6/,¢"), and integrate over d2’ = sin @’ df’d¢’. The result is

20(8) [ 367 — B)Yi (0, 61) dSY = 1Yo (0.0)

We next set m = 0 and use the fact that Yp(0,¢) < Py(cosd). The previous
equation reduces to

20(A) / §(A? — R?)Py(cos @) dcos 0’ dp' = goPy(cos ).
Finally, we set cosf = 1 and use the fact that Py(1) = 1. This gives

Py(cos@')dcost' d¢',

cos =1

g = 2@(A)/5(A2 - R?)

and since A% — R? evaluated at cos@ = 1 is independent of ¢’ (as we shall see), we
have

Py(cosB")dcost'. (2.5.6)

cos =1

ge(ct,ryct’,r') = 41O (A) /5(A2 — R?)
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To evaluate the remaining integral we must compute R?> = (z — ') - (z — =’)
and evaluate it at cos = 1. This gives R? = r2 — 2rr’ cos §’ 4 1’2, and substitution
inside the d-function produces

_279(

ge ) /6(cos€’ —&)Py(cos ') dcost,

rr!
where £ := (r? + r'2 — A?)/(2rr’). The integral is nonzero whenever ¢ lies in the
interval between —1 and +1; when this condition is satisfied it evaluates to

_ 27r0(A)

ge —Py(§).

rr
The condition —1 < ¢ implies —2r7’ < 72 4+ "2 — A2 so that A < r + /. The
condition ¢ < 1 implies 2rr’ > r? + 2 — A% so that A > |r — ¢/|. This last
condition supersedes the requirement A > 0, which comes from the step function
appearing in G(z,2’). Altogether, we find that the reduced Green’s function is
given by

ge(ct,rset’ ,r') = 2—”/@(A —|r=7"O(r + 1" — A)Py(&), (2.5.7)
rr
where ) n_ A2
re+re —
e= = (2.5.8)

The temporal support of the reduced Green’s function is the interval |r — /| < A <
r+r.
For later convenience we wish to express g, in terms of the retarded-time vari-
ables
wi=ct—r, wi=ct' — 1. (2.5.9)

We have A = u — v +r — ', and for r > ' the condition A > |r — 7’| translates
to u — v > 0, while for r < ¢’ it translates to u — v’ > 2(v" — r). In both cases
the condition A < r + 7 translates to u — v’ < 27’. Finally, rewriting £ in terms of
u — u' reveals that the reduced Green’s function of Eq. (2.5.7) can be expressed as

2rH

ge(u,riu 1) = === Pa(€), (2.5.10)
where
_ [ Ofu-wle[r — w-w)] -
" '_{ Olu—u =2(r' = r)]0[2r — (u—u)] < (2.5.11)
and / )
_ ., r=r N 2
§=1-—(u—u) -5 —(u—u)" (2.5.12)

The simplicity of the reduced Green’s function comes as a great help in the evalu-
ation of wave-zone integrals.

2.5.2  Wave-zone field point

To begin, we evaluate
Yy () :/ Gz, 2 (') d*a’
V4
when z is situated in the wave zone, that is, when r = |z| > R. We do this for

the specific source term displayed in Eq. (2.5.2), using the representation of the
retarded Green’s function given in Eq. (2.5.3).
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The first step is to change the variables of integration from (ct’,z’,y’,2’) to
(u',r',0',¢"), using v/ = ct’ — " and the usual relation between Cartesian and
spherical coordinates. The new volume element is d*z’ = 2dv’dr’dSY, where dY =
sin#' df’d¢’. After inserting this, together with Egs. (2.5.2) and (2.5.3), inside the
integral, we obtain

f
Z/ 'd’ 2)gg/(uru )
x Z Vi (6,0) [ Vo (0,600 H) agr.

The angular integration is carried out with the help of Eq. (1.8.16), and we arrive
at

1/}7/—7/ 'd'f g/(uru r’).

To evaluate this we partition the spatial domain of integration into the two intervals
R <r <randr <r <oo. (Because x is chosen to be within the wave zone, it
is automatic that » > R.) We next refer to Eq. (2.5.11) and use the step functions
to define the temporal domain of integration. After also involving Eq. (2.5.10) and

changing the integration variable from v’ to s := 1 (u — u’), we obtain

L [l e [T [ ali )

where ¢ is now given by £ = 1 —2(r' —7)s/(rr') — 252/ (rr").
We can make additional progress if we change the order of integration and rewrite
the preceding expression as

Qb " "o, P r P,
Vy = , {/0 dsf(u— 28)/ dr’ /(i(fz) + /R de(u )/ dr’ /(i(gz)
' * r+s
—i—/o dsf(u—2s)/r dr’ %53) +/T de(u_2s)/s dr/ji(fz) }

The integrals over dr’ can now be evaluated. Let

A 163)
G(k) .:/ ar'

be a function of the parameter k, in addition to the dependence on r and s contained
in €. In terms of this function we have

(L)
Yy = L {

r

R
/ dsf(u—25)[G(r) — G(R)]

0

+ /R dsf(u — 2s) [G(r) — G(s)]

+ /07" dsf(u—2s)[G(r+s) — G(r)]
—|—/OO dsf(u—Qs)[G(r+s) — G(s)]},

Y {— /OR dsf(u— 25)G(R)

which can be rewritten as

Yy
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- [ asstu—20606)

R

+/0°° ds f (u — QS)G(r+s)},

(L) (R
oy — QT {/0 dsf(u—25)[G(r +s) — G(R)]

or as

+/<>° dsf(u—2s)[G(r+s) — G(s)]}

R

To put this in its final form we introduce the functions

r+s
A(s,r) = /R %@dp (2.5.13)
and
r+s
B(s,r) ;:/ if;(_fl) dp, (2.5.14)

in which p stands for 7/, s for %(u — '), and

2 2
g2 20+s) (2.5.15)
T D

We next observe that A = G(r+s) — G(R) and B = G(r + s) — G(s), and we write
our previous expression as

(L)
’(/}W(ua T, 97 ¢) = ¢

{/ORde(U—QS)A(S7T)+/OO dsf(u—2s)B(s,7")}. (2.5.16)

R

This is a concrete expression for the 1y of Eq. (2.5.1), corresponding to a source
function of the form displayed in Eq. (2.5.2), when the field point z is in the wave
zone. Here, f(u') describes the temporal behaviour of the source function, which
decays spatially as r'~"; the angular dependence is given by (¥} an angular STF
tensor of degree /.

2.5.8 Near-zone field point

We next evaluate

W@:L@mwwwf

when z is situated in the near zone, that is, when r = |z| < R.
We return to

Q<L> ! /! f( ) ! /
Yy = ?/d dr e 2)gg(u7r7u , ")
and notice that here, r is always smaller than r’, so that there is no need to partition
the spatial domain of integration. The step functions of Eq. (2.5.11) define the
temporal domain of integration, and after substituting Eq. (2.5.10) and changing
the integration variable from v’ to s := %(u — '), we obtain

Q) flu—2s)

l(n 1) Py (5) ’

r’—r
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where ¢ is still given by € =1 — 2(r" — r)s/(rr’) — 2s2/(rr’). This becomes

QL) R A 21 (3
0 s+r P,
+/R dsf(u—QS)/S dr’r,é(gE)}

after changing the order of integration. Proceeding through the same steps as
before, we finally obtain

Yy (u,r,0,0) = Q;m{/R dsf(u—QS)A(s,r)—i—/oo dsf(u—Qs)B(s,r)}, (2.5.17)

R—r R

where the functions A(s,r) and B(s,r) are defined by Eqs. (2.5.13) and (2.5.14),
respectively. This is a concrete expression for the ¢ of Eq. (2.5.1), corresponding
to a source function of the form displayed in Eq. (2.5.2), when the field point z is in
the near zone. Here, f(u’) describes the temporal behaviour of the source function,
which decays spatially as 7/~"; the angular dependence is given by Q/{©) | an angular
STF tensor of degree /.

2.5.4 Estimates

It is possible to give crude estimates to the integrals appearing on the right-hand
side of Egs. (2.5.16) and (2.5.17).

Suppose first that we wish to evaluate Eq. (2.5.16) in the far-away wave zone, and
keep only its dominant, r~! part. Taking P, () to be of order unity, we approximate
the functions defined by Egs. (2.5.13) and (2.5.14) as

> dp 1
A ~ ~ —
/72 pnfl Rn72

* d 1
B f\/‘/6 pn]jl ~ Sn72;

we ignore all numerical factors and exclude the special case n = 2. Inserting A into
the first integral of Eq. (2.5.16) yields

R
%/0 flu—2s)ds.

Taking R to be small, we Taylor-expand f(u — 2s) about s = 0 and integrate
term-by-term. A typical term in the expansion is
1

’R’n72
where the superscript (¢) indicates the number of derivatives with respect to u. As
was motivated at the end of Sec. 2.3, we are interested in the R-independent part
of ¥y . In order to extract this from your previous expansion, we retain the term
g = n — 3 and discard all others. An estimate for the first integral is therefore
f=3)(u). We next substitute B into the second integral of Eq. (2.5.16) and obtain

o ds
Assuming that f and all its derivatives vanish in the infinite past, repeated integra-

tion by parts returns an expression of the form

Jw=2R) | fDw-2R)  fO(u-2R)
’R’n73 + Rn74 + Rn75 +

and

fO ()R,
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The R-independent part of this is easily seen to be of the form f("=3)(u), as we
had for the first integral. We conclude that a crude estimate for Eq. (2.5.16) is

QL)

" F=3) () (far-away wave zone). (2.5.18)

Yoy ~

This estimate ignores numerical factors, R-dependent terms, and terms that decay
faster than r—1.
Suppose next that we wish to evaluate Eq. (2.5.17) deep within the near zone,

for r < R. Here the first integral of Eq. (2.5.17) is approximated as

R
/ dsf(u—2s)A(s,r) ~rf(u—2R)A(R,r),

R—r

with

r+R d
p r
A(R,7r) ~ ~—
(R,r) /R pr—1 Rn—1

This produces the estimate

7,,2

Rnfl

for the first integral, and the R-independent part of this is rzf(”*l)(u). The second
integral of Eq. (2.5.17) involves the domain of integration R < s < co. Because s
is large compared with r, we have the estimate

T dp T
B~ n—1 ~ n—1"
s p S

Inserting this inside the integral gives

> ds
T/R f(u—QS)F,

and repeated integration by parts returns an expression of the form

f(u—2R)

rf(u—2R) rfMw—-2R) rf®(u—2R)
’R]n72 Rnfi’ﬁ ’R]n74

R

The R-independent part of this is easily seen to be rf("=2)(u). Collecting results,
we conclude that a crude estimate for Eq. (2.5.17) is

Yy ~ QL) {f("*z)(u) + rf(”*l)(u)} (near zone). (2.5.19)

This estimate ignores numerical factors and all R-dependent terms.
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Our strategy to integrate the Einstein field equations, in their Landau-Lifshitz
formulation introduced in Chapter 1, relies on a post-Minkowskian expansion of
the gravitational potentials in powers of G. This strategy leads to an iterative
approach to the solution, and each iteration of the field equations increases the
order of accuracy by one power of G. In this chapter we carry out the first iteration
of this program, and construct the first post-Minkowskian approximation to the
gravitational potentials. Because the wave equations are linear at this level of
approximation, this is the domain of the linearized theory, that is, general relativity
linearized about Minkowski spacetime. We begin in Sec. 3.1 with a statement of
the field equations, for which we can write down immediate integral solutions. In
Sec. 3.2 we evaluate the integrals when the field point lies within the near zone, and
in Sec. 3.3 we construct expressions that are valid in the wave zone. In each case the
gravitational potentials are presented in the form of a post-Newtonian expansion in
powers of ¢ 2.

3.1 Field equations

In the first post-Minkowskian approximation, Eq. (1.6.1) reduces to the linear wave
equation

OhoP = , (3.1.1)

,@Taﬁ
oA

in which the energy-momentum tensor is a functional of 7,3, the metric of Minkowski
spacetime. The coordinate system is =% = (ct,z?), and O := naﬁaag is the wave
operator of Minkowski spacetime. The potentials must also satisfy the harmonic
gauge conditions

9sh*? =0, (3.1.2)
which are enforced automatically when the energy-momentum tensor satisfies the
conservation identities

957" = 0; (3.1.3)
this statement was established at the end of Sec. 1.3. At this order of approximation,
the metric and other related quantities are given by

1
Jap = Napg+ haﬁ - 5}”7045 + O(G2)7 (3'1'4)

29
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g = pef el %hnaﬁ +0(G?), (3.1.5)
(—g9) = 1—h+0(G?, (3.1.6)
V=g = 1- %h + O(G?). (3.1.7)

These expressions are a special case of Egs. (1.6.3)—(1.6.6). Notice that hyg is the
“trace-reversed” metric perturbation. It is understood that here, indices on h®? are
lowered with the Minkowski metric. Thus, hag 1= Naung h*” and h 1= n,, h*".

For our purposes in this chapter, it will not be necessary to specify the nature
of the matter distribution. We shall leave T“? arbitrary, except for the conditions
of Eq. (3.1.3). We shall assume, however, that the matter distribution is bounded,
and that it has enough internal dynamics to produce an interesting gravitational
field. (By interesting we mean, for example, a nonspherical and time-dependent
gravitational field.) This dynamics must have a nongravitational origin, because the
conservation identities of Eq. (3.1.3) forbid the existence of significant gravitational
interactions within the matter distribution.

We introduce the field variables ®, A%, and B®, which are related to the grav-
itational potentials by

4 4
00 ._ 0a ._ b._ b

h = =0, ho% = C—3A“, h® .= EBG . (3.1.8)
We also introduce the matter variables p, j%, and T, which are related to the
energy-momentum tensor by

T% .= ?)p, T .= ¢j°, T =T, (3.1.9)
The quantity p has the dimension of a mass density, j* has the dimension of
(mass density)x (velocity), and 7% has the dimension of (mass density) x (velocity)2.

The field equations are

00 = —4rGp, (3.1.10)
0A° = —47Gj°, (3.1.11)
OB = —47GT™, (3.1.12)
and the gauge conditions are
0P + 0, A =0, A+ 9B =0. (3.1.13)
The conservation identities are
Oip + 0aj® =0, 0:j% + 0T = 0. (3.1.14)

The retarded solutions to the wave equations are

_ _ ’ 7
octw) = G [LAZl@mTa) b (3.1.15)
|z — @’
-Q _ _ ! ’
Aty = ¢ [l lema @) e (3.1.16)
|z — |
ab _ ot ’
Bit(et,a) = ¢ [T lz=2h ) (3.1.17)
|z — |

We assume that the matter distribution is contained within the near zone (refer
back to Secs. 2.2 and 2.3), so that h;ﬁ =0 and h*? = hjé
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3.2 Near-zone expressions

To express the potentials in the near zone we rely on the method described in
Sec. 2.4.2, which consists of treating |z — x’| as a small quantity and Taylor-
expanding the time dependence of each source term. For example, we write

10p 1 02%p
P(Ct—\93—35'|)=P—ng—wq‘i‘@ﬁm—w'ﬁ‘F'“
and insert this into Eq. (3.1.15). We obtain
t,x’) . G o
> = G Mdsx'cat p(t,z') dx’
G o?
—|—@ﬁ/p(t,w')|a:—:c'\d3a:’+~--.

The second term vanishes by virtue of the conservation identities:

/8tpd3x = —/8aj“d3x = —fjadsa =0,

because there is no flux of matter across the surface bounding the matter distribu-
tion. Our final expression for the scalar potential is

1 9°X

d=U+ @W + O(C_B), (3.2.1)
where (o)
o 14 t,IB 3./
Ult,z) := G/ [ d°z (3.2.2)

is the Newtonian potential associated with the mass density p, while
X(t,x) = G/p(t,m')|:c — /| d%2’ (3.2.3)

is known as the superpotential. It is easy to verify that these satisfy the Poisson
equations
V2U = —4nGp, VX = 2U. (3.2.4)

It is evident that the Newtonian potential ignores all retardation effects within
the near-zone, and that these are contained in the superpotential as well as the
higher-order corrections discarded in Eq. (3.2.1).

Similar considerations reveal that the vector potential is given by

A =U"40(c™?), (3.2.5)
where (o)
a ja t,:I: 3./
t,x) = —=d 2.
U(t,z) =G o x (3.2.6)

is another instanteneous potential that satisfies
VAU = —4nGje. (3.2.7)

Notice that by virtue of the conservation identity 0;j% + 9,7% = 0, a term of order
¢! that should be present in Eq. (3.2.5) actually vanishes. The discarded term of
order ¢=2 would involve §7;j¢ and would partially incorporate the retardation effects
that do not appear in U®.
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Finally, the near-zone expression for the tensor potential is

B® = P® 1 O(c™h), (3.2.8)
where b( /)
T (t, x ;
PPt x) =G | —22L @3/ 3.2.9
(t, ) @] x ( )

is an instanteneous potential that satisfies
VZP® = 47 GT, (3.2.10)

Here it should be noticed that the discarded term of order ¢~! does not vanish —
we have run out of conservation identities.
Substituting Eqgs. (3.2.1), (3.2.5), and (3.2.8) into Egs. (3.1.8) gives

4 2 92X _

hOO = EU + CTW + O(C 5), (3211)
4

hoe = C—SUG+O(C—5), (3.2.12)
4

R = ijab+0(c—5). (3.2.13)

These expansions in powers of ¢! are known as post-Newtonian expansions. The
leading term in h%, of order ¢=2 and involving U, is said to be of Newtonian order,
or OPN order. The second term in h%, of order ¢* and involving X, is said to
be of first post-Newtonian order, or 1PN order. The leading term in h°?, of order
¢~3 and involving U, is said to be of one-half post-Newtonian order, or %PN order.
And finally, the leading term in h%®, of order ¢=* and involving P, is also of 1PN
order. The counting of post-Newtonian order depends on the power of ¢~ !; to an
additional power of ¢~! one assigns a half PN order, and to an additional power of

c~2 one assignes a full post-Newtonian order.

3.3 Wave-zone expressions

3.3.1 Multipole moments and identities

To express the potentials in the wave zone we rely on the method described in
Sec. 2.4.1, which led to the multipole expansion displayed in Eq. (2.4.3). Our
expressions will involve the mass multipole moments

I(u) = /p(u,w')dsx', (3.3.1)
o) = / p(u, 2')2 da, (3.3.2)
) = / o, V22" P (3.3.3)
I%¢(y) = / plu, ")’ 22’ d3a’, (3.3.4)

and so on; these tensors are all completely symmetric. Recall that
u=ct—r=c(t—r/c)=:cr (3.3.5)

is a retarded-time variable, and notice that I is in fact the total mass associated
with the mass density p. Our expressions will involve also the current multipole
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moments
JP(u) = /[ja(u, z')2’" — 0 (u, x")2"*] &2, (3.3.6)
J(u) = /[j“(u, z')2’"" — j0(u, 2")2'* ]2’ &2, (3.3.7)

and so on; these tensors are antisymmetric in the first pair of indices. Notice that
J is in fact the total angular-momentum tensor associated with the current density
7%; this is related to the angular-momentum vector J* by J¢ := %Eachbc, where
Eabe 18 the permutation symbol.

We will use the conservation identities involving p, j, and T% to derive the
important consequences

I = constant, (3.3.8)
“ =0 (in centre-of-mass frame), (3.3.9)
J% = constant, (3.3.10)
/j“ Bx' = 1°=0, (3.3.11)
1. 1
/j%;'b Bz = §Iab + 5Jab, (3.3.12)
1. 1
/jal'/bl'/c del _ gIabc + g(Jabc 4 Jacb)’ (3313)
. 1.
/ T B3z = 516”’, (3.3.14)
1. 1 . .
/Tabl,/c de/ _ 6Iabc + g(Jacb 4 cha)’ (3315)
in which an overdot indicates differentiation with respect to 7: I9 := dI? Jdr =

cdI® /du.
We begin by differentiating Eq. (3.3.1) with respect to u. We obtain

1
%:/aupdga;‘:—C_l/aajad?)x:—C_lfjadsaza

because (as was observed before) there is no flux of matter across the surface bound-
ing the matter distribution. Because dI/du = 0, I(u) must be a constant, and we
conclude that the total mass I is conserved, as was stated in Eq. (3.3.8). Notice that
to simplify the notation we have dropped the primes on the integration variables;
we shall continue to do so in the remainder of this subsection.

We proceed by differentiating Eq. (3.3.2) with respect to u, which gives

ilj; = /(8up)x“ P = fcfl/(ﬁbjb)xa d3z.

We rewrite the integrand as

(85°) 2" = By (5°2) — j°,

which is a special case of Eq. (1.4.2) expressed in a different notation. The diver-
gence produces a surface integral that vanishes (because, as usual, j°dS; vanishes
on the surface bounding the matter distribution), and we obtain

dIre
T :cfl/jadsx,
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which is just Eq. (3.3.11). Differentiating once more, we get

d1e

=c ! [0 dr=—c? [ T dPz = —c2 ¢ T™dS, =0,
du?

because there can be no normal stress on the surface bounding the matter distribu-
tion. We conclude that d?I¢/dr? = 0, so that the mass dipole moment I®(7) must
be at all times of the form I%(0) + I*(0)r. We may choose the initial conditions
I¢(0) = 0 = I%(0) and set I%(7) = 0. This defines the system’s centre-of-mass
frame, and this is the statement of Eq. (3.3.9).

To establish Eq. (3.3.12) we express j%z° in terms of its symmetric and anti-
symmetric parts, and we integrate over d3x. Taking Eq. (3.3.6) into account, we
obtain

1 1
/j“:cb R 3 /(jaxb + 7°2%) dz + §J“b.
Going back to Eq. (3.3.3), we have

dIab a.b i3 -1 -c\ ,.a,b 33
= (Oup)xta’ d’r = —c (0c5¢) z*x” d’x.

The integrand can be expressed as
(8Cjc)m“xb — ac(jcxaxb) o ja.’Eb o jbxa,
and integration produces

ab
diu _ C—l/(jaxb +jb$a) dSJZ

because, as usual, there is no contribution from the surface integral. Collecting

results, we have
aret 1
/j“xb B = ¢ + 72=;ab7

2 du

and this is just Eq. (3.3.12). The derivation of Eq. (3.3.13) follows a very similar
path, and we shall not go through the details here.
To establish Eq. (3.3.14) we invoke the identity

2
Tab _ %8uu (pxaxb) + %60 (Tacmb + Tbcxa _ 8dTCd$a$b),

which is a special case of Eq. (1.4.3). After integrating over d3z and discarding the
surface integral, we obtain Eq. (3.3.14). For Eq. (3.3.15) our starting point is

1
Tab c _ gau(jaxbxc +jbil'a1'c 7jCSUa.’£b) + 55;(1(Tadxbxc +de1,axc . TCdl'aiL'b),

a special case of Eq. (1.4.4). After integration and involvement of Eq. (3.3.13), we
obtain

2 d? cd 2 d?
Tab c 73 _ Ciilabc = 2 ( gabc acb = ¥ rbac
/ v dw AR vl G R
cd bac beca C2 d2 cab cd cab cba
+6%(J +J )—g@ _6@(‘] + J).

Noting the complete symmetry of 7%* and the antisymmetry of J%¢ in the first
pair of indices, this is just Eq. (3.3.15).
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3.3.2  Wave-zone potentials
According to Eq. (2.4.3), the scalar potential is given by

1 1 1 1
o = G[/pd3 "~ 0, (/px'a d3a?/) + 8ab(/px’“x'bd3x’>
r r 2 r
1 1
_ 7aabc (/pfﬂ/al'/bl'/c d3x’) + :|
6 r

in the wave zone. With the definitions of Eqs. (3.3.1)—(3.3.4), this is

a ab abc
o-cf-a(E) ()t ()
T T 2 T 6 r

Taking into account Eq. (3.3.9) gives us the final expression
T 1 Iab 1 [abc
P=G|—+4+ =0w| — ) — =0apbc| — e 3.3.16
R C R O R
in which each multipole moment /9, with the exception of the constant monopole

moment I, is a function of the retarded-time variable T =t — r/c.
For the vector potential we have

1 1 1 1
Aa:G|:T/jad3 /—ab<r/ja$/bd3$/>+2abc(r/jal‘/b$/cd3$/>+"'].

Taking into account Eqs. (3.3.11)—(3.3.13), this is
1 Jeb 4 jab 1 Jabe 4 jabe 4 jach
A“:G{—2ab<+> ( A >+}

+ -0
6 r
We recall that J? is the constant angular-momentum tensor; all other multipole mo-
ments depend on 7. Because J is constant, we have that 9,(J%®r=1) = J®9yr~—! =
—r~2J%Q);, where Q* = z%/r.
Finally, the wave-zone tensor potential is

B%® =@ [1 /T“b 3z’ — 0, (1 / T e d?’x’) +-- } )
r r

which becomes

(3.3.17)

(3.3.18)

fab 1 fabc 2 rach ) Tbca
Bab=G|: ag( +2J%° +2J >+:|

2 6
after taking into account the identities displayed in Eqs. (3.3.14) and (3.3.15).
Substituting Eqgs. (3.3.16), (3.3.17), and (3.3.18) into Egs. (3.1.8) gives

r

4G TT 1 Iab 1 Iabc
00 __
h == CT |:T’ + iaab <T> - Gaabc(’l’) + - :| ) (3319)
4G 1 W 1, (I
Oa _ el abl _ -
h 3 {2(] 72 28b< r )
1 jabc_|_Jabc+Jacb
+ 68b0< ) +-- ] , (3.3.20)
r
b 4G T1 fab 1 j’abc + 2jacb + 2jbca
L = ——|Z—_29, 4+ - (3.3.21)
A2 r 6 T

These are the gravitational potentials in the wave zone, expressed as multipole
expansions involving the mass multipole moments ¢ and the current multipole
moments J?. The dependence on 2% of each quantity within round brackets is
contained in the factor r—!, and also in the dependence of each moment on 7 =
t—r/c.
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3.3.83 Post-Newtonian counting

Counting post-Newtonian orders is more subtle in the wave zone than in the near
zone. Recalling our discussion in Sec. 2.2, let us introduce the scaling quantities

m, := characteristic mass scale of the source, (3.3.22)
r. := characteristic length scale of the source, (3.3.23)
t. := characteristic time scale of the source, (3.3.24)
v, = % = characteristic velocity within the source, (3.3.25)

C
Ae = ct. = characteristic wavelength of the radition. (3.3.26)

The characteristic radius 7. is defined such that the matter variables vanish outside
a sphere of radius r.; the matter distribution is confined within this sphere. The
characteristic time scale t., we recall, is the time required for noticeable changes to
occur within the matter distribution. We assume that the characteristic velocity v,
is small compared with the speed of light:

Ve K C. (3.3.27)

This, of course, is the standard slow-motion approximation of post-Newtonian the-
ory. It follows from Eq. (3.3.27) that

re < Ag; (3.3.28)

in the slow-motion approximation, the matter distribution is always situated deep
within the near zone.

Let us examine the various terms that make up A®?, and let us estimate their
orders of magnitude in the wave zone, when r > \.. Based on these estimates, we
shall assign a post-Newtonian order to each term.

We begin with the first term on the right of Eq. (3.3.19). This is evidently of
order Gm,/(cr), which is what was called Newtonian order at the end of Sec. 3.2.
We therefore assign a 0PN order to this term.

We continue with the second term on the right of Eq. (3.3.19). Recalling that
1% is a function of 7 =t — r/c, we find that after differentiation, the second term
is of the schematic form . .

G Iab Iab Iab
c? (021" + cr? * r3 )7

where we ignore the angular dependence and all numerical factors. Noting that 1%°
is of order m.r2, this term is of order

G<mc7"§ mer? mcrf) _ Gm, r? (1 ct. c%i)

- + =2y
2\ 2t2r  cter? r3 Ar 22 r r2

In view of Egs. (3.3.25) and (3.3.26), this is of order

UC 2 )\C AC 2

() fe 2

c T r
relative to Gm./(c?*r). The term within square brackets is of order unity in the
wave zone, and we conclude that the second term in Eq. (3.3.19) is smaller than
the first term by a factor of order (v./c)?. To this term we therefore assign a 1PN
order.

Similar considerations reveal that the third term on the right of Eq. (3.3.19) is

smaller than the first by a factor of order (v./c)3. To this term we therefore assign a
%PN order. The discarded terms in Eq. (3.3.19) are terms of 2PN order and higher.
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We next move on to the first term on the right of Eq. (3.3.20). The angular-
momentum tensor J® is of order mevere, and it follows that the first term is of
order

G mevere  Gme (UC>2 Ae
3 r2 c2r \¢/ r

Relative to Gm./(c?r) this is of order (v./c)?(\./7) < (v./c)?, and to this term we

assign a 1PN order. The same conclusion applies to the second term of Eq. (3.3.20).

For the third term we note that both [%*° and J*¢ are of order mr?/t., which

allows us to focus on only one of these contributions. After differentiation we find

that the second term has the schematic form

G jabc jabc Jabe
(Frv+ )

3 2

3\ cr cr r3

which leads to an estimate of

G (mer? N mer? N merd\ Gmc(vc>3 " e N (AC>2

2\ c3t3r  22r2  ct3)  2r \c r T '
Because this is smaller than Gm./(c?*r) by a factor of order (v./c)3, we assign a
3pN order to this term. The discarded terms in Eq. (3.3.20) are of 2PN order and
higher.

Finally, it is easy to see that the first term on the right of Eq. (3.3.21) is of order

(ve/c)? relative to Gm,./(c*r), and is therefore of 1PN order. The second term is of

%PN order, and the discarded terms are of 2PN order and higher.
These conclusions are summarized in the following equations:

4G 1 1 b 1 Jabe
00
= =2 4z L)z 4. 3.9
h c2 [ r 2 ab( r ) Gaabc< r ) ]’ (3.3.29)

OPN 1PN 3PN

poo — 4G {1Jab9b_13 (“)

2 |2¢ r2 2 r
— —

1PN 1PN

1 (jabc+Jabc+Jacb> :|
+ —he _—r
6¢ r

(3.3.30)

r

4G 1 fab 1 fabc 2jacb ijca
pab {_a( R )+] (3.3.31)

1PN
3PN

This reveals that the gravitational potentials have been calculated consistently
through 3PN order. Comparison with Egs. (3.2.11)—(3.2.13) shows that the count-
ing of post-Newtonian orders is different in the near and wave zones. For example,
in the near zone h% begins at %PN order, while in the wave zone it begins at 1PN
order.

Another difference concerns the post-Newtonian order of a time derivative rela-
tive to that of a spatial derivative. As we have seen in Sec. 2.2, in the near zone we
have P

v
W = O(f) (near zone),
so that a time-differentiated potential is assigned a post-Newtonian order that is
half a unit higher than the spatially-differentiated potential. In the wave zone, on
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the other hand,
O,hP B
c|Vhab|

so that a time-differentiated potential is assigned the same post-Newtonian order
as the spatially-differentiated potential. There are, however, important exceptions
to this rule. For example, it is clear from Eq. (3.3.29) and the constancy of I that
¢~ 10,h" is of 1PN order while 9,h% is of 0PN order. Similarly, the constancy of J
implies that ¢=19,h% is of 2PN order while 9,h"® is of 1PN order. These exceptions
are consequences of the harmonic gauge conditions,

0(1) (wave zone),

C*lﬁthOO =+ 6ah0a — O7 C*lathOa 4 abhab — 0’

which indeed imply that ¢c=19,h%, for example, must be of the same post-Newtonian
order as 9,h%® everywhere in spacetime, and not just in the near zone.
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In this chapter we continue the iterative program initiated in Chapter 3 and
construct the second post-Minkowskian approximation to the gravitational poten-
tials. These will be accurate to second order in the gravitational constant G, and
they will apply specifically to a system of N bodies moving under their mutual
gravitational attraction. The chapter is structured much as the preceding one. We
begin in Sec. 4.1 with a statement of the field equations and a presentation of their
integral solutions. In Sec. 4.2 we construct expressions for the potentials that are
valid in the near zone, and in Sec. 4.4 we do the same for the wave zone. In each case
the potentials are presented in the form of a post-Newtonian expansion in powers
of ¢72. In Sec. 4.3 we make a brief excursion off the main path and indicate how
the (Newtonian) equations of motion for the N bodies can be obtained from the
conservation identities satisfied by the source terms. A more complete derivation
of the post-Newtonian equations of motions is postponed until Chapter 5.

4.1 Field equations

4.1.1  Wave equation

As was shown in Sec. 1.3, the Einstein field equations are written in the form of the
wave equation

167G
af af
Or*P = — a7 (4.1.1)
for the potentials h*?, where
790 = (—g) (TP + 77 + 1) (4.1.2)

is an effective energy-momentum pseudotensor. Here, T%? is the energy-momentum
tensor of the matter distribution, tff is the Landau-Lifshitz pseudotensor of Eq. (1.1.5),
and tﬁﬁ is an additional contribution to 7%”, defined by Eq. (1.3.6), and associated
with the harmonic-gauge conditions 93h®® = 0.

Equation (4.1.1) is exact, but in this chapter the right-hand side of Eq. (4.1.2)
will be approximated to first order in G. This will make the right-hand side of

39
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Eq. (4.1.1) accurate to second order in G, which is the required degree of accuracy
in the second post-Minkowskian approximation.

4.1.2  Material energy-momentum tensor

In Chapter 3 the nature of the matter distribution was not specified, and T was
left arbitrary. In this chapter we assume specifically that the matter distribution
is a collection of N point particles of masses my4 at positions z4(t); the index
A = 1,2,---,N labels each particle. The energy-momentum tensor for such a
matter distribution was constructed in Sec. 1.7. According to Eq. (1.7.3), it is given

by
—g)TB(t,x) = mavd? Y9 5(x— 2 , 4.1.3
( g) ( ) ZA: AUVp A\/W ( A) ( )
where

v = (c,va) (4.1.4)

is the velocity four-vector of each particle, with zeroth component ¢ and spatial
components v4 = dza/dt.
We assume that the particles move slowly, so that

va K ¢, (4.1.5)

with v4 1= /va - v4 denoting the length of the spatial vector v4. We assume also
that the system of particles is gravitationally bound, which implies (as a consequence
of the Newtonian virial theorem) that v% is of the same order of magnitude as
Gma/|za — zp|. This approximate equality,

2 GmA

v (4.1.6)

|za — zB|

implies that an expansion in powers of (v4/c)? is intimately linked to an expansion
in powers of G. To be consistent in this context of gravitationally-bound systems,
a post-Newtonian expansion must keep the order of accuracy in G in step with the
order of accuracy in ¢~2.

The energy-momentum tensor of Eq. (4.1.3) is a functional of the metric gug,
which must be calculated to first-order in G. This calculation was carried out in

Chapter 3, and from Sec. 1.6 (as well as Sec. 3.1) we recall the relations

1
9op = Map + hap = Shilap + 0(G?) (4.1.7)

and )
V—g=1- Sh+ O(G?), (4.1.8)

where it is understood that indices on h®? are lowered with the Minkowski metric
Nag; thus, hag = Naung b and h = n,, Y.

To evaluate the potentials we rely on the observation made in Sec. 3.3.3, that in
a slow-motion approximation the matter distribution is always situated deep within
the near zone. This means that we can rely on the near-zone expressions obtained
in Sec. 3.2. Recalling Egs. (3.2.11)—(3.2.13), we have

4
W= SULOE), W =0(), =0, (4.1.9)

where the Newtonian potential U is determined by Poisson’s equation VU =
—4mwGp, in which p := T%/c? is the mass density calculated from Eq. (4.1.3) while
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neglecting all correction terms of order c=2 and G. Indeed, corrections of fractional
order ¢~2 have already been discarded in h°°, and a correction of order G in p
would produce a term of order G2 in U that must be neglected. In other words,
p=> pmpdé(x— zp), and the solution to Poisson’s equation is

U(t, ) Z| Gms (4.1.10)

T —zg|’

This is indeed the Newtonian potential for a system of point masses at positions
zZB (t)
Combining Eqs. (4.1.4), (4.1.7), and (4.1.9) produces

— g/t =1 -3/ —2U/c* + O(c™ %),

and we see that this expression was calculated consistently through order ¢~2; ac-

cording to Eq. (4.1.6), the terms v%/c? and 2U/c? are of the same order of magni-
tude. We also have

V=g =1+2U/c® +0(c™?),

and inserting these relations into Eq. (4.1.3) gives

22 LUJA +O0(c )| 0(x —2z4), (4.1.11)

(—g)T*P(t, ) = ZmAUA”A[ _,_7_,_
in which |U]4 is formally equal to U(t,z4), the Newtonian potential evaluated
at the position of particle A — the potential must be evaluated there because it
multiplies §(x — z4).

Equation (4.1.11) is an explicit expression for the energy-momentum tensor, but
it is formally ill-defined because the Newtonian potential is infinite at € = z4. As
it stands, the energy-momentum tensor cannot be defined as a proper distribution,
and there exist no solutions to the wave equation of Eq. (4.1.1). (It is a bad
idea to incorporate infinite densities within a nonlinear field theory.) Following
Blanchet and his collaborators, we shall step around this problem by postulating
a prescription to regularize the expression of Eq. (4.1.11). We shall assert, simply,
that the quantity 6(x — z)/|x — z|, which is too singular to be a proper distribution,
is to be set equal to zero. Thus,

d(x — 2)

=0. 4.1.12

regularization prescription:
This prescription, known as taking Hadamard’s partie finie, can be loosely inter-
preted as a renormalization of each mass parameter m 4 by the infinite self-energy
of the particle: ma(1 + 3U*! /c?) — m4. In the case of extended bodies, the
gravitational self-energy would indeed contribute to the total mass-energy of each
body.
The prescription of Eq. (4.1.12) allows us to formally define U] 4 as

=3 G (4.1.13)
B£A |24 = 2]’
The sum now excludes body A, and the result can safely be substituted into
Eq. (4.1.11).

4.1.8  Landau-Lifshitz pseudotensor

We next compute (—g)tfg, the Landau-Lifshitz pseudotensor of Eq. (1.1.5), to first
order in G. This is a fairly labourious calculation, but an important source of
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simplification comes from the fact that we need expressions that are accurate only
up to some power of ¢~!. A source of caution, on the other hand, is that we need
expressions that sufficiently accurate both in the near zone and in the wave zone.
To begin, we recall the scalings that are implied by Eq. (3.1.8),
Y = 0(c™?), h' = O(c™?), R = O(c™); (4.1.14)

it is understood that each potential carries also a factor of G. It follows that the
spatial derivatives of the potentials scale as

2:h° =02,  o.h=0(c?),  .hP=0(?). (4.1.15)
The temporal derivatives, on the other hand, scale as
h =0(c™®),  Hh* =0(c?),  9h® =0(c?), (4.1.16)

because the gauge conditions imply that yh%® must be of the same order as 9,h%,
and Oph®® must be of the same order as 9,h%. In the near zone the temporal
derivative of h*® would come with an additional factor of ¢!, and would therefore
scale as O(c™%), but this does not happen in the wave zone.

Substituting the potentials h*? into Eq. (1.1.5) and keeping careful track of the
orders in ¢~! eventually returns

16C’IZG (—g)t%(i _ _gaChOOGChOO + 0(676), (4117)
1

17G Couty, = Som00u + (000 — 9RO + O, (4118)
1677;G(fg)tﬁi = ia“hmabh@o - §5abachooa%00 +0(c™). (4.1.19)

These results are sufficiently accurate for our immediate purposes. At a later stage,
however, we shall need additional accuracy in our expression for (—g)t%  and we
record this improved expression here:
167G
e

1 1
(_g)tili _ Z (1 _ QhOO)aah003bhOO _ g(Sab (1 _ 2h00)80h008ch00
o aahOCabhOc + aahOcachOb =+ abhOCachOa _ aChOaachOb

1 1
+ 6ah0080h0b + 6bh0080h0a + iaah()Oabhcc =+ i8bh008ahcc
1
+ 3% —g(aohoo)2 — 0ch*0h* — J0:h° 0k,
1
+ 5achod(aChOd —9h%) | +0(c™®). (4.1.20)

It should be noted that this incorporates corrections of fractional order ¢~2 relative
to the leading-order expression of Eq. (4.1.19), and that to be consistent, we have
terms (such as h°°9*h°°9°h%0) which contain an additional power of the gravita-
tional constant G.

4.1.4  Harmonic-gauge pseudotensor

We next compute (—g)t%ﬁ , the “harmonic-gauge” pseudotensor of Eq. (1.3.6), to
first order in G. Here the computations are quite simple, and the scalings of
Egs. (4.1.14)—(4.1.16) imply

167TG(_g)t%0 — 0(076), (4121)

ct
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167G " B
o (ot = 0, (4.1.22)
167G “ _
o (ot = 0. (4.1.23)

For later reference we record the improved expression

167G
1

; (—g)teb = —h%8950h™ + O(c™?) (4.1.24)

for the spatial components of the pseudotensor.

4.1.5  FExplicit form of the wave equations

We may now substitute Eqgs. (4.1.11), (4.1.17)—(4.1.19), and (4.1.21)—(4.1.23) into
Eq. (4.1.2), and insert this into the right-hand side of Eq. (4.1.1). Before we do
this, however, we recall that the R%° that appears within the Landau-Lifshitz pseu-
dotensor is the one that was determined during the first iteration of the Einstein
field equations. Returning to the notation of Sec. 3.1, we write this as h% = 4®/c?
and we note that ® satisfies the wave equation

O¢ = —47rGZmA6(w—zA); (4.1.25)
A
to get this we have inserted our previous expression for p [see the text preceding

Eq. (4.1.10)] into Eq. (3.1.10). The wave equations for the second post-Minkowskian
potentials are then

167G v 3I_[JJA 14 c
Op0 — > ZmA<1+2;‘2+ = )6(m—z,4)+c480¢>8<1>
A
+0(c7?), (4.1.26)
" 167G a _
Opde = — 3 ZmAvA5(w —24) +0(c7?), (4.1.27)
A
a 167TG a 4 a 1 a C
Oh —— ;mAUAvZ(S(:B—zA) _(:4(6 ¢3b¢—§5 0,20 q’)
+0(c™%). (4.1.28)

We recall that |U] 4 is given by Eq. (4.1.13).
The structure of each wave equation simplifies if we introduce new potentials V',
Ve, and We, defined by

4 4 8

00 __ 2

W= SV W 07 (4.1.29)
4

Oa o a

W= Ve, (4.1.30)
4

ab . ab

o= W, (4.1.31)

where W := §,, W is the trace of the tensor potential. The wave equation satisfied
by V¢ follows immediately from Eq. (4.1.27), and the wave equation satisfied by W
follows from Eq. (4.1.28); from this we deduce that OW = —47G Y , mav3d(x —
za) + 20.20°@ + O(c™2). The equation for V follows from Eq. (4.1.26) and our
result for OW, but we need also an expression for O®2.

We apply the wave operator on ®2 and find that

062 = 2000 + 20,90°® — 2(9®)°.
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We next involve Eq. (4.1.25) and write

2000 = —47G > ma(20)5(z — z4)
A
for the first term, which we copy as
20009 = —47rGZmA 2(UJa+O0(c?)]6(z — za),
A
because ® is evaluated in the near zone, at * = z4. We further notice that thanks

to Eq. (4.1.16), (0p®)? is of order ¢~2, and we arrive at

= _47TGZ ma(2\U]4)6(z — z4) + 20.20°® + O(c2). (4.1.32)

With this we find that the wave equations for V, V¢, and W are

3v4  |U]a _
ov = *47TGZ’/TL ( +ffAf =2 §(x—za) +0(c™), (4.1.33)
ave = 747rGZmAvA6(a: —z4) +O(c™?), (4.1.34)
1
DWab = —4nG ZmA’UZ'UZ(S(w - ZA) — (aaq)ab(l) — 2(5(lbac(l)acq))
A
+0(c™?). (4.1.35)
We recall that |U]a is defined by Eq. (4.1.13), and that ® is determined by

Eq. (4.1.25).

The reason for expressing h% in the form of Eq. (4.1.29) is now clear: By
inserting the terms involving W and ®2 we were able to make the wave equation
for V entirely independent of the field variable ®. The equation for V¢ also is
independent of @, and the only place in which ® appears is within the wave equation
for Wb,

Equation (4.1.33) allows us to calculate V through order ¢ =2, while Eqgs. (4.1.25),
(4.1.34), and (4.1.35) allow us to calculate ®, V2, and W through order c. Insert-
ing the results into Eqgs. (4.1.29)—(4.1.31) produces gravitational potentials with an
order structure given schematically by h% = ¢=2 4+ ¢4, h% = ¢=3, and h*® = ¢=*.

4.2 Near-zone expressions

4.2.1  Computation of V

The wave equation for V has a source term that is confined to the near zone, and
recalling the discussion of Sec. 2.3, we observe that as a consequence, Vi = 0 and
V =V 4. The near-zone scalar potential is computed with the help of Eq. (2.4.7),
and we quickly obtain

1 9°X _

V=U+- ¢+ 5z gz T Ol 3, (4.2.1)
here
o U(t,z) Z Gima (4.2.2)
|z — z4] o
is the Newtonian potential of Eq. (4.1.10)7

GmA §’02 — I_UJA

Ylt,x) =Y %cfm ) (4.2.3)

A
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is a post-Newtonian correction to the Newtonian potential, and

= Gmalz — z4| (4.2.4)
A

is the superpotential.
We notice that there is no term of order ¢! in Eq. (4.2.1). A contribution at
this order would originate from the ¢ = 1 term in Eq. (2.4.7), and it would be equal

to
_cdtZ (1+202_ c? )

Because ), ma is a constant, this is actually of order c¢73, and is part of the
discarded terms in Eq. (4.2.1).

4.2.2  Computation of V¢

The wave equation for V' has a source term that is also confined to the near zone,
and once more we find that V,j, = 0 and V¢ = V,. The near-zone vector potential
also is computed with the help of Eq. (2.4.7), and here we obtain

Z Gmavy f—ZGmAUA +0(c7?).

e — za| cdt

The second term can be expressed as —(G/c¢)dP®/dt, in terms of the vector P =
>~ 4mava, which is the total (Newtonian) momentum of the N-body system. An-
ticipating that at leading order the motion of the system is governed by the New-
tonian equations of motion (a fact that will be established properly in Sec. 4.3), we
declare that the Newtonian momentum is conserved at OPN order: dP/dt = O(c™2).
It follows that the second term in V@ is actually of order ¢ and part of the dis-
carded terms.
We write our final expression as

VeE=U*+0(c?), (4.2.5)
where
Z Gmavy (4.2.6)
|z — z4]

is the same instantaneous potential that was first introduced in Eq. (3.2.6).

4.2.8  Computation of W®: Organization

The computation of the tensor potential is much more involved, because its wave
equation possesses a source term that contains a field contribution in addition to a
material contribution. To distinguish these we shall write

W = W M) + W[F], (4.2.7)

with W2 [M] denoting the part of the tensor potential that comes entirely from the
material source, while W?[F] comes from the field source. The wave equation for
WF] is simplified if we define an auxiliary potential x** by

1

WEPR] = X — S0y, (4.2.8)
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where x := 6,5x?. With these definitions, Eq. (4.1.35) becomes the set of equations
OweM] = 747rGZmAvaZ(§(a: —z4) +O0(c™?), (4.2.9)
A

Ox™® = —0°®3°® + O(c?). (4.2.10)

Because the source term of Eq. (4.2.9) is contained within the near zone, we have
that Wg2[M] = 0 and W [M] = W3[M]. The source term of Eq. (4.2.10), on the
other hand, is distributed over all space, and

X = x% + x5 (4.2.11)

In the following subsections we will endeavour to compute each one of the quantities
introduced here, so as to finally build up a complete expression for W4,

4.2.4  Computation of Wa: We®[M]

This is the easiest piece. Following the same steps as in Secs. 4.2.1 and 4.2.2, we

arrive at .

a Gmav§v _
WM :Zﬁ+0(c b, (4.2.12)
A

4.2.5 Computation of W: x

The computation of x% is much more involved, and to get us started we first
examine its trace y, which is in fact easy to calculate. From Eq. (4.2.10) we have
Ox = —0.29°@ + O(c~?). Using Eq. (4.1.32), we write this as

D(X + %@2) = —47TGZmA(LUJA)5(w —z4) +0(c7?). (4.2.13)
A

Because this source term comes entirely from the matter distribution, we follow the
familiar steps and obtain

1, GmalU| =
= —— _— . 4.2.14
X 2U + EA @ = 2] +0(c™) ( )

Here we used the fact that ® = U + O(c™?) in the near zone, and the Newtonian
potential U is given by Eq. (4.1.10).

4.2.6  Computation of W y%

Now for a more challenging computation. In this subsection we calculate X“j/,
the near-zone contribution to the retarded integral associated with Eq. (4.2.10),
assuming that the field-point © = (ct, «) is within the near zone. The techniques
to carry out such a computation were described in Sec. 2.4.2, and according to
Eq. (2.4.7) we have

1 v U U
ab 3./ —1
t,x) = — —d’z"+ O(c™ ). 4.2.15
Y i ™) (4215)
Here we have once more substituted U in place of ®, and inside the integral the
Newtonian potential is viewed as a function of ¢ and z’; the symbol 8% indicates
differentiation with respect to z’*, and the domain of integration .# is a surface of
constant time bounded externally by the sphere v’ := |2’/| = R.
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Our starting point is Eq. (4.1.10) for the Newtonian potential, from which we
obtain
(2" — z4)°
@ 2aP?

0"U == Gma
A

and then

r_ b
9% Uab U ZGZ $ ZA) (w ZA)

|z’ — 246

+3° Y Pmams (@’ — za)"(a" — 2p)° (4.2.16)

A B#A " — zal?la’ — 2p]* 7

in which we distinguish “self terms” from “interaction terms”.

Following Blanchet, Faye, and Ponsot, we re-express Eq. (4.2.16) in terms of
quantities differentiated with respect to z4 and zp. The derivative operators are
taken outside the integral of Eq. (4.2.15), and x?) is written in terms of these oper-
ators acting on a generating function K(x;z4, zg). This function can be evaluated,
and it is Straightforward to take the derivatives. The end result is the relatively
simple expression for x% b displayed in Eq. (4.2.23) below.

To proceed we note the identities

0 1 (= za)?
02% |&' — z 4| o |’ — z 43
and
62 1 I — a( ! b 5ab 4
- _ ((L’ ZA) (m ZA) o Wéab&(w _ZA)
024075 |x" — 24| |’ — z4l? | — z4? 3

in the last one it is necessary to insert a distributional term proportional to 6%°, to
ensure that the Laplacian of |z’ — z4|~! with respect to the variables z 4 is properly
equal to —4mwd(x’—z4). More work along these lines produces an additional identity,

0? 1 8@ — za) (@ — za)? B 2570
0294024 |@' — za|? |z’ — z4l6 |2’ — za]%
8r g
S0 (@ — za).
3 |z’ — z4| (:E ZA)

The last term is not defined as a distribution, and the identity must be regularized.
Following cousistently the general prescription of Eq. (4.1.12), we simply drop the
last term, and write our last identity as

(' — za)%(x' —2z4)® 1 0? R 1
= - VL | ———— 4.2.17
|z’ — 246 029024 + At — 242 ( )

where V2 is the Laplacian operator with respect to the variables z4. The last
identity we shall need follows directly from the first, and it is

(@' — z4)" (2" — zp)* O 1

@’ — zal¥|2’ — zp|? 029402 |@' — zal|lz’ — zB|

(4.2.18)
this requires no regularization, and is valid when z4 # zp.

We substitute Egs. (4.2.17) and (4.2.18) into Eq. (4.2.16), and insert the result
inside the integral of Eq. (4.2.15). This produces

X% = ZG2mA( EvE) éabVi)K(m;zA,zA)

02
+Z Z G2mAmB FETED K(z;24,25) +O(c™h), (4.2.19)
A B#A



48 Second post-Minkowskian approximation

where

K( )= / @ (4.2.20)
T;Zp,2B) = — 2.
BT e = |2 — zal|x’ — 28|
is the generating function that was mentioned previously.
The generating function will be evaluated in Sec. 4.2.7. The result is

S

K(x;z4,2p) =1 —hlﬁ,

(4.2.21)

where

S(x;z4,28) = | —za| + |x — 25| + |24 — 25| (4.2.22)

The dependence of K on R comes from the fact that the domain of integration
A is truncated at v’ = R. This dependence plays no role, however, because K is
differentiated as soon as it is substituted into Eq. (4.2.19).

It is now straightforward to compute derivatives of K(x;z4, zp) with respect
to z4 and zp. We find, for example,

0 2(x — z4)"(x — 24)° yab
———K(x;24,24) = _
02307 (7524 24) |z — zal* | — zal?
and
0* 1 [(x—2z4)" 24— 25)%] [(x — 25)° 24— 2z5)°
—— —K(x;24,2p) = [( 4)*  (za—z8B) ][( B) _|_( A~ 2B) }
82,4823 ‘LE—ZA| |ZA—ZB‘ ‘$_ZB| |ZA—ZB|
i) ]
S |za — zB]3 |za — zB|]|’

and these results are to be inserted within Eq. (4.2.19).
Our final result is

a GQm CL a
X,/?/ = Z | zA|2 ?4 -0 b)
G?mam
+ Z Z %(n% —n%p) (n% + n%B)

A B#A
G*mm _

-3y Srza ATE n‘anAB 5 +0(c7Y),  (4.2.23)

A B#A

where we have introduced the unit vectors

T — 2z T — 2B ZA — 2B
ng = ——, np ' =——, NMAB ‘= 7———»
|za — 28|

4.2.24
|z — z4| |z — zg| ( )

and where S(x; za, zp) is defined by Eq. (4.2.22).
Tt is a straightforward exercise to verify that the trace of Eq. (4.2.23) is

G?
Z| ngz 7ZZGmAmB

A B#A

1 1 1
( + - )
| — zallza — 25| | — 2zB||za —2B| | —z4||lT — 2B]
+0(c™h), (4.2.25)
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and that this is the same statement as in Eq. (4.2.14). This calculation is aided by
the identities

2 2 2
TATTrB— ZaB

npg-Np

2TATB
2 2 2
re —1r4 —z
B —TA — *aB
g -TMAB -
2razaB
2 2 2
re — 1% +2
B~ TaA T ZaB
Np - MNAB -
2rpzaAB
where 74 := | — z4l, rp :=|x — zp|, and zap := |24 — 25|

4.2.7  Computation of W®: K(x;za, zp)
To calculate the generating function we note first that Eq. (4.2.20) is a solution to

1
|z — zal|lx — 2B|

V2K (x; 24, 25) = (4.2.26)

Strictly speaking, the source term should be multiplied by ©(R — r) to truncate it
at the boundary of the near zone, because the domain of integration in Eq. (4.2.20)
does not extend beyond this boundary. The step function is not necessary, however,
because we require the solution to Eq. (4.2.26) only within the near zone; how the
solution extends beyond r = R is of no concern here.
We will show below that
K,=—-InS,

where S(x; z4, zp) is defined by Eq. (4.2.22), is a particular solution to Eq. (4.2.26).
To this we must add a suitable solution K to Laplace’s equation to obtain the
desired solution K = K, + K},. The solution to the homogeneous equation must
be regular in all three variables @, z4, and zp, because the singularity structure
required by Eq. (4.2.26) is already contained in K. Furthermore, K; must be
dimensionless, and the only possibility is to make it equal to a constant. We are
therefore looking for a solution of the form

K =Ko —In(|z — za| + |& — zp| + |24 — 2B]),

where Ky is a dimensionless constant. To determine this we shall carry out an
independent computation of the special value K (x;0,0), and compare our result to
Ky — In(2r), which follows from the general expression. From Eq. (4.2.20) we have

1 3./ 1 R 1dQy
K(w;0,0)——/ d°z _ / dr'd
0

TAn )yl —a |22 4r )y |z —a!|

Invoking the addition theorem for spherical harmonics, this is simply
/R dT,/
0 >
where 7~ is the greater of 7 and r’. The integral evaluates to
R
K(2;0,0) =1+ In—, (4.2.27)
r

and we conclude that Ky = 1+ In(2R). All together, this gives us the result
displayed in Eq. (4.2.21).



50 Second post-Minkowskian approximation

We now wish to verify that K, = —In .S is a solution to Eq. (4.2.26), which we
write in the form

1

VK = — ,
TATB

where r4 and rpg were introduced previously. In this notation, S =74 +rg + za5B.
We first check that

VK, = —%(SVQS — 9:50°9),

and we compute the various derivatives of S. We have, for example, 9*S = n% +n%,
from which it follows that

a b ab a b ab
aabszinAnAfé 7"3”3*5
rA B

From this, and the helpful identities that were listed at the end of Sec. 4.2.6, we
obtain g
vig = otATTE ey = At s — 2an)S

TATB TATB

Collecting results, we confirm that K, is indeed a solution to V2K = —1/(rarpg).

4.2.8  Computation of W®: %

In this subsection we estimate X%, the wave-zone contribution to the retarded
integral associated with Eq. (4.2.10), assuming that the field-point = = (ct, )
is within the near zone. The techniques to carry out such a computation were
described in Sec. 2.5.3, and crude estimates were obtained in Sec. 2.5.4. These
estimates ignore numerical factors and terms that depend explicitly on R, but they
are sufficient to allow us to conclude that

X% = 0(c™?). (4.2.28)

The wave-zone contribution is therefore much smaller than x°f, which is of order
®. Recalling that x®° enters h® (via W4[F]) with an additional factor of ¢4,
we observe that the wave-zone contribution to h® is of order ¢%. Relative to
R0 = O(c=2), this is a correction of order ¢~%, and we conclude that x%> contributes
a 3PN correction to the near-zone potentials. This post-Newtonian order is far
beyond the 1PN accuracy of our calculations in this section, and we shall therefore
ignore the wave-zone contribution to .

The wave-zone integral is
ab 1 N aa’ b’ 41
Xy = — G(z,2")0" ®9” ®d*z’,
47 w

where ®(2') is the solution to Eq. (4.1.25) evaluated in the wave zone. A relevant
expression was obtained in Sec. 3.3.2, and Eq. (3.3.16) gives

ab
ro 2 r

where I = 3", my4 is the total mass and 1% = >, m42%2Y is the quadrupole
moment, a function of retarded-time 7 = ¢ — r/c. (We drop the primes to simplify
the notation, and we have set the dipole moment I* = " , maz9 to zero by placing
the origin of the coordinate system at the system’s barycentre.) We recall from
Sec. 3.3.3 that the monopole term is formally of OPN order, that the quadrupole
term is formally of 1PN order, and that the discarded terms are of higher post-
Newtonian order.
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Ignoring all numerical and angle-dependent factors, the source term has a struc-
ture given schematically by

12 IIab Ijab I]"'ab JIb(3)
76 crd c2rd c3r3

8PP = G2

Each term is of the form f(7)/r™ required for the integration techniques of Sec. 2.5.3.
For example, for n = 3 we have f = GQII“I’(?’)/CS, for n = 4 we have f =
G%(I* + 11%%/c?), and so on. According to Eq. (2.5.19), an estimate of x% for
each contributing n is ¢~ ("2 f(n=2) 4 pe=(n=1) f(r=1) " (The factors of ¢ appear
when the wu-derivatives of Sec. 2.5.4 are converted into 7-derivatives; recall that
u = ¢r.) The dominant term in a post-Newtonian expansion is ¢~ (=2 f(»=2) "and
we find that for each n, X% is estimated as

G2 d4Iab

— I —.

ct drt
This, as was claimed in Eq. (4.2.28), is of order ¢~*. This result implies that Xi},b
is too small to contribute to our 1PN potentials, and for this reason we do not need
to calculate it in detail.

4.2.9 Computation of W®: Final answer
Collecting the results of Sec. 4.2.3-4.2.8, we find that W is finally given by

weab = pet L O(ch, (4.2.29)

where P = W[M] + x*® — 15°0y. Here W[M] is given by Eq. (4.2.12), and
X% = x% +O(c™*), with X% and its trace displayed in Egs. (4.2.23) and (4.2.25),
respectively. Explicitly,

" Gmav% b, G?*m? ns,
Pty = Y GmAYAtA | 4z| Al

~ |z — 24
QZZGWan
- AB™AB
T Ao Slza
G mamp b
+2 Y0 50 CIAE (0ls — nify) ) + 1)
A B>A
1
— §§ab(n,4 — ’I’LAB) “(np+ ’I’LAB):| . (4.2.30)

The unit vectors n4, np, and nap were introduced in Eq. (4.2.24). The trace of
P is given by P = W[M] — $x; with Eq. (4.2.25), this is

G G? 1
- RIS i 1% X G

A B>A

< 1 1 L1 1 1 >
| — zallza — 28] |@—zp|lza—2p| |®—zallr— 28]/
(4.2.31)

For our final expressions we have chosen to symmetrize the double sums »_ 4 3~ 4,
and to rewrite these as sums over pairs ) |, > 5. 4. Consider, for example, the term

G2
> TS (nh — i) (ny + i)

A B#A
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in x%. By interchanging the identities of A and B we may write this as

G?
Z Z mAmB (n% —n%a) (0 +1%4),
A BAA

where we note that S stays unchanged during this operation. Adding these results
together and dividing by 2 gives

G a a
Z Z mAmB 54 - ”543) (“Eg + "?4)3)
A B#A

where we used the fact that ng4 = —nap. Each term in the sum is now symmetric
under the exchange A < B. Each pair of bodies is counted twice in the sum, and
to eliminate this redundancy we write it in its final form as

G?*mam o a
222 A = A‘”E43)(”J§+”b) )
A B>A

This is a sum over pairs, and since each pair is counted only once, there is a factor
of 2 to compensate.

4.2.10  Summary: Near-zone potentials

We may finally collect the results obtained in this section and construct the near-
zone expressions for the gravitational potentials. Combining Eqs. (4.1.29)—(4.1.31),
(4.2.1), (4.2.5), and (4.2.29), we have

00 aQX 2 —5
4
Wt = U+ O(c—5), (4.2.33)
C
het = %P“b +0(c™®), (4.2.34)
C

where P = §,, P,
The Newtonian potential is given by Eq. (4.2.2),

U(t,z) Z ‘ Gma (4.2.35)

T —z4|

and the 1PN terms in h% were displayed in Eqs. (4.2.3) and (4.2.4):

ta) = 4.2.36
e =3 I (4.2:30
and
x) = Gmalz — zal. (4.2.37)
A
We recall from Eq. (4.1.13) that
=3 Gms (4.2.38)
B#A 24— 28]

is the Newtonian potential evaluated at € = z 4, excluding the infinite contribution
coming from body A. An alternative expression for v is

GmA'UA G*mamp 1 1
Z|:c—zA| >y P—— + ) (4.2.39)

A B>A 24 — 25|
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The vector potential is given by Eq. (4.2.6),

Z Gmavs (4.2.40)

|z — 24|

and the tensor potential is displayed in Eq. (4.2.30):

Pty = 3 GMAYAY GmAUAUA Z - G*m’ nfnt,

_ 2
~ |z za — za|
QZZGWan
- AB'YAB
T o Slza — 25|
G mAmB a a
#2305 CIAE (s < nify) )+ 1)
A B>A
1
— §6ab(n,4 — nAB) . ('ILB + TLAB):|, (4.2.41)

with the unit vectors of Eq. (4.2.24),

r—Zz r—z ZA— Z
na = npi=——">, nap = (4.2.42)
|z — za| |z — zp z4— 2B

and the distance function
S=l|x—zal+|x—2zp|+ |24 — 28] (4.2.43)

defined by Eq. (4.2.22).
Finally, the trace of the tensor potential is given by Eq. (4.2.31),

ZGmA’UA Z G2mA
|z — z4] |z — 242
G?*mam 1 1
P> E —AzB|<:c—z MCEE |>
A B>A 1FAT *B A B

+ % >3 Grmamp (4.2.44)

T ioa T~ zallz — 25

It may be noticed that ¢ and P have a number of terms in common, and that it is
the combination ¢ — P that enters h%°.

4.3 Conservation identities and equations of
motion

It was pointed out in Sec. 1.3, and also in Sec. 1.6, that the gravitational potentials
h# will satisfy the harmonic gauge conditions (and will therefore satisfy the full
set of Einstein field equations) whenever the effective energy-momentum tensor 7%
satisfies the conservation identities 57 = 0, or more explicitly,

9ot + 9,7 = 0, Bo7% 4 97" = 0. (4.3.1)

Because 77 depends on both matter and field variables, the conservation identities
give rise to equations of motion for the matter. In our specific context in which the
matter distribution is a system of N point masses, they give rise to equations of
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motion for each particle. We shall show in this section that with the effective energy-
momentum pseudo tensor of Sec. 4.1.5, we can derive the Newtonian equations of
motion

as=-3 %A_?) +0(c7?), (4.3.2)
B#A 24 — 25|

where a := dva/dt = d?>z/dt? is the acceleration vector of body A. In Chapter
5 we will use the results obtained in this chapter to obtain 1PN corrections to these
equations.

We begin with the second of Egs. (4.3.1), which we write in the form

19,7 + 97 = 0, (4.3.3)
and we recall from Sec. 4.1.5 that

c b = Z mavid(z — za) + O(c?) (4.3.4)
A
and

a a 1 a 1 a c _
T = ZA:mAvAvfM(w —za) g (a 29" — 250,90 <1>) +0(c?). (4.3.5)

Making the substitutions produces
1
0 = ZmAa‘j‘M:c — zA) + ZmAvj(at + v%&b)é(x — zA) + R(‘?Mbv?@
A A

+0(c™?),

in which we may replace ® by the Newtonian potential U. The second sum vanishes
by virtue of the distributional identity (9; + v%9)d(x — z4) = 0, and we obtain

0= ma(a4 — 0°U]a)o(x — 24) + O(c?)
A

after involving Poisson’s equation V2U = —47G Y , mad(x — z4). Here [9°U |4 is
formally the derivative of the Newtonian potential evaluated at © = z4. We have

a B GmB(.’szB)a
0 U_—%:—|m_z3|3 :

and this evidently diverges at @ = z4. As a plausible extension of our prescription
of Eq. (4.1.12), we regularize 0°U simply by excluding body A from the sum over
B. This yields Eq. (4.3.2), the Newtonian equations of motion for a system of N
bodies subjected to their mutual gravitational attractions.

The method of derivation that leads to Eq. (4.3.2) is not entirely satisfactory, be-
cause it requires an additional regularization rule beyond the one already introduced
in Eq. (4.1.12). We shall do better in Chapter 5, and derive the 1PN equations of
motion without invoking additional (and ad-hoc) regularization prescriptions. The
considerations of this section are still useful, however, because they reveal in a direct
manner the connection between the conservation identities and the concrete form
of the equations of motion. They also close a loophole left open in Sec. 4.2.2, in
which the Newtonian equations of motion were assumed to hold.

One might ask whether it may not be possible to establish Eq. (4.3.2) more
cleanly by dealing instead with the gauge conditions dgh%® 4 9,h® = 0. The answer
is in the affirmative, but this approach would require lengthy computations, and we
choose not to pursue this here.
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It may be verified that the first of Egs. (4.3.1) eventually produces the statement

G _
0=wv4- |:CLA + Z —mB(ZA §B) +O(C_2),
B#A 24 — 25|

which is already implied by Eq. (4.3.2). This is evidently a statement of the work-
energy theorem for our system of N bodies.

4.4 Wave-zone expressions

4.4.1  Computation of V

The wave equation for V' was written down in Eq. (4.1.33), and we copy it as

OV = —47G Y _m4d(z — za) + O(c™?), (4.4.1)
A

in terms of the “augmented mass parameters”

. 3vi _ [Ula
mA:mA<]_+2CQ— CQ s (4.4.2)

which are in fact functions of time. Recall that |U] 4 is the (regularized) Newtonian
potential evaluated at @ = z4, as given by Eq. (4.1.13). Notice that the source term
is confined to the near zone, so that Viy =0 and V =V 4.

Methods to integrate Eq. (4.4.1) in the wave zone were described in Sec. 2.4.1,
and according to Eq. (2.4.3) we have

a ab abc
VG[I*aa<I*> +1aab(f* )1aabc<f* )+} (4.4.3)
T T 2 T 6 r

where the “augmented multipole moments”

L= > mi, (4.4.4)
A

¢ =) mizs, (4.4.5)
A

I = ) T muzgeh, (4.4.6)
A

e = > mih2aahg (4.4.7)
A

are functions of retarded time 7 := ¢ —r/c. Recalling the discussion of Sec. 3.3.3, we
observe that the monopole term involving I, gives a contribution at 0PN order to
V', but that since I, includes a 1PN correction to the “bare mass parameters” m4u,
this term contributes also at 1PN order. Similarly, the quadrupole term involving
12 gives a contribution at 1PN order together with a correction at 2PN order. And
the octupole term involving I?*¢ gives a contribution at 3PN order together with a
correction at %PN order. For an expression accurate to 2%PN order, we can ignore
the O(c™2) corrections within 7%® and I12%¢.

The dipole term involving I? requires a separate discussion. This, potentially,
would contribute a leading term at %PN order and a correction at %PN order. We
should expect, however, that conservation identities will eliminate the leading-order
contribution. As we shall see presently, this expectation is indeed correct.
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Let us examine the multipole moments more closely. We first define

M= Z(l L Ry LUJA) +0(c™Y) (4.4.8)
A

2c¢2 2 2

as the total post-Newtonian gravitational mass of the N-body system. It is easy
to verify that M is conserved by virtue of the Newtonian equations of motion,
Eq. (4.3.2). And indeed, Mc? is easily recognized as the total energy of the system,
including rest-mass energy, kinetic energy, and gravitational potential energy. Next
we define

Z::lzmAzA<1+11;‘%—1LUJA) +0(c™) (4.4.9)

as the position vector of the post-Newtonian barycentre (also known as centre of
mass). We shall verify in Chapter 5 that Z is conserved by virtue of the 1PN
equations of motion for the N-body system. Placing the origin of the coordinate
system at the barycentre, we can set Z = 0. Next we reintroduce

I°%(r ZmAzAzA+O( %) (4.4.10)

and
Iebe(r ZmAzAzAZA—i—O( —2) (4.4.11)

as the Newtonian quadrupole and mu1t1pole moments, respectively. And finally, we
reintroduce the Newtonian angular-momentum tensor

b.— Z ma(vizh — 250Y%) +O0(c?) (4.4.12)
A
and its first moment
Jebe(r) = Z ma(vh2h — 2%0%) 25 + O(c?); (4.4.13)
A

these were first encountered in Sec. 3.3.1. As was indicated in the definitions, M, Z,
and J are conserved quantities, while 79, 1%*¢ and J%¢ are functions of retarded
time.

The augmented moments I, and I¢ can be expressed in terms of these funda-
mental quantities. To begin, we find from Eqs. (4.4.2)—-(4.4.4) and (4.4.8) that

1 1 _
I, :M—I—CQ;mA(U%—QLUJA) —I—O(c 4).

The second term, however, can easily be related to the second time derivative of
the Newtonian quadrupole moment. From Eq. (4.4.10) we have

= Z ma (2050 + 25a% + a%2h) + O(c?),
A

which leads to

[¢=2>"ma(vh+aa-za) +0(c?)
A

for its trace (summation over ¢ is implied). Involving now the Newtonian equations
of motion, Eq. (4.3.2), we find that

Gmam _
ZmAaA zZA=— Z Z |ZA—ZBB|3 —zp)-za+O(c 2).

A B#A
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After symmetrization of the double sum (see Sec. 4.2.9), this becomes
Gmam _ 1 _
ZmAaA'ZA:_ ZZ | f B‘ O(c 2):_§ZmALUJA+O(C %).
A A Bjia AT ZB A

Collecting results, we have obtained
1 Tcc -2

in which I¢¢ := §,.1%¢ is the trace of the Newtonian quadrupole moment. Following
similar steps we also find that

I8 = MZ° + — (1%° 4+ 4J°) + O(c™Y), (4.4.15)

+ ol

in which 19 := §,,.1%%¢ and J¢%° := . J"°.
Making these substitutions into our previous expression for V', we finally obtain

M 1 e 1 I9b 1 Jabe

vV o= G{ - ++aab<>aabc<)
T T T
~—~—

2¢2 r 2 6
——
OPN+1PN 1PN 1PN 2PN
1 facc + 4jcac MZe
g (AN, o 4.4.16
6c2 ( r ) ( r )+ } ( !
3PN =0

in which we indicate the post-Newtonian order of each term, and the fact that Z can
be set equal to zero by placing the origin of the coordinate system at the system’s
barycentre.

4.4.2  Computation of V¢

The wave equation for V* was written down in Eq. (4.1.34),

ave = —47TGZ mav%d(x — z4) + O(c™?), (4.4.17)
A

and we notice that this is the same as Eq. (3.1.11) if we replace A* by V* and set
J* = > 4mav%d(x — z4). The wave-zone solution to Eq. (3.1.11) was displayed
in Eq. (3.3.17), and expressed in terms of the same multipole moments that were
introduced in Eqgs. (4.4.10)—(4.4.13). We copy this expression here,

O 1. (I
Ve - G[ govsde 28b<r)+m]’ (4.4.18)
H,_/
1PN 1PN

and indicate the post-Newtonian order of each term. (Recall that the relation
between h%% and V@ involves a factor of ¢2, while the relation between h° and V
involves a factor of ¢=2.)

Once more a conservation identity was invoked to eliminate a potential contri-
bution at %PN order. Indeed, the leading term in the multipole expansion for V¢

should have been o a o
~ -a d& — E a _ 2 pa
r /] x r — mavy r )

where P is the total Newtonian momentum of the system. Having placed the origin
of the coordinate system at the (post-Newtonian) barycentre, we have set P =
0+ O(c™?), and the leading term vanishes. The correction of order ¢~2 contributes
a term at %PN order, and all such terms have been discarded in Eq. (4.4.18).
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4.4.3  Computation of W®: Organization

The wave equation for W4 was written down in Eq. (4.1.35), and we copy it as
oW = —4xGr?°, (4.4.19)

where the effective stress tensor

1 1
ab a,b a b ab c —2
= o(x — — PO°P — =50, PO°D 4.4.2
T EA mavivyd(x ZA)+47TG<8 %) 5 0,00 >+O(C ) ( 0)
contains both a matter and a field contribution. Recall that ® is the retarded
solution to Eq. (4.1.25). In the near zone,

d=U+0(c?) (near zone), (4.4.21)

where U is the Newtonian potential given by Eq. (4.1.10). In the wave zone ® can
be expressed as the multipole expansion of Eq. (3.3.16); for our purposes here, it is

sufficient to take
~GM n

r

) (wave zone), (4.4.22)

in which M differs from the actual monopole moment I = >~ , m by post-Newtonian
corrections that are discarded.

The source term of Eq. (4.4.20) is distributed over all space, and as a conse-
quence, the retarded integral for W contains both a near-zone and a wave-zone
contribution:

Wb =W + Wb, (4.4.23)

In the following two subsections we will endeavour to compute ij/’ and W;‘,/b SO as
to finally obtain a complete expression for Wa.

4.4.4  Computation of W®: Near-zone integral

Methods to integrate Eq. (4.4.19) in the wave zone were described in Secs. 2.4.1
and 2.5.2, and according to Eq. (2.4.3) the near-zone contribution to the retarded
integral is

wep = G[l / b gy —ac<1 / robg/e d%’) +} (4.4.24)
T T
M M

in which 7% is expressed as a function of retarded time w := ¢t — r and spatial
coordinates #’. The domain of integration .# is a surface of constant time bounded
externally by the sphere 1’ := |2’| = R.

Evaluation of the integrals is simplified by involving the conservation identities
of Egs. (1.4.3) and (1.4.4),

T = %800 (Tooxazb) + %86 (Tacxb + 7Pzl — 6‘dTCd:17a:Eb) (4.4.25)
and
Fabge %30 (r0axz 4 rgage — Tchaxb)
+ %361 (T“dxbxc + Thdgage — TCdxaa:b). (4.4.26)
Here,

2700 = Z mad(z —za) +O(c™?) (4.4.27)
A
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and
o100 _ Z mavsd(x — za) + O(c?) (4.4.28)
A

are the remaining components of the effective energy-momentum pseudotensor,
written to a degree of accuracy that will be sufficient for our purposes. Integrating
Egs. (4.4.25) and (4.4.26) over .# and inserting the definitions of Eqgs. (4.4.10)-
(4.4.13) produces

1. 1
/ Tab d3 r_ 7Iab + 7% (Tacx/b +Tbcxla o ad/TCd.’L'/a{E/b) dS(/: +O(C_2) (4429)
¥ 2 2 Jo.u

and
/ 7_abx/c d3$/ — lfabc + 1 (J'acb + jbca)
o 6 3

1
4= % (Tadx/bx/c 4 dexlax/c _ TCdJ?/al‘/b) dS(/j
2 Jo.n

+0(c™?). (4.4.30)

Here, the multipole moments are expressed in terms of 7 := ¢ —r/c and an overdot
indicates differentiation with respect to 7; the surface integrals are over the sphere
7" = R, and the surface element is dS/, = R2*QdSY, in which Q% := 2/%/r" and
dQY = sinf’ df’d¢’ is an element of solid angle.

The surface integrals in Eqs. (4.4.29) and (4.4.30) are evaluated outside the
matter distribution, at the boundary d.# between the near and wave zones. They
involve only the field contribution to 7%°, and we may use Eq. (4.4.22) to calculate

GM?> 1
ab __ layb _ ~ gsab L
= (Q Q-2 ) T (4.4.31)

This expression is valid everywhere in the wave zone, but in order to evaluate the
surface integrals we must set ’ = R. It is then easy to see that an integral such
as ¢ 7%°2’® dS!, is proportional to R !, and that an integral such as ¢ 7%%2"%2/¢ d S},
which might have given a result independent of R, actually vanishes because it
involves an odd number of angular vectors € (see Sec. 1.8.4). Because we are free
to ignore all R-dependent terms in the near-zone and wave-zone contributions to
Wab (such terms will cancel out — see the end of Sec. 2.3), we are therefore free to
ignore the surface integrals in Eqgs. (4.4.29) and (4.4.30).
Inserting Eqgs. (4.4.29) and (4.4.30) into Eq. (4.4.24) produces

1 I"ab 1 fabc 2jacb 2jbca
—~—

1PN
3PN

in which we indicate the post-Newtonian order of each term. (Recall that the re-
lation between A% and W involves a factor of ¢~*, while the relation between
h% and V involves a factor of ¢=2.) Notice that Eq. (4.4.32) appears to be identi-
cal to Eq. (3.3.18) for the tensor potential B2, which corresponds to We in the
first post-Minkowskian approximation to the gravitational potentials. The simi-
larity is deceptive, however, because our ijf/’ is truly a second post-Minkowskian
approximation; the apparently absent second factor of G appears when the multi-
pole moments are differentiated with respect to 7 and Eq. (4.3.2) is inserted within
terms involving the Newtonian accelerations a 4.
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4.4.5 Computation of W®: Wave-zone integral

Methods to calculate the wave-zone contribution W5 were described in Sec. 2.5.2.
These methods work for source terms of the form displayed in Eq. (2.5.2), and
our first task is to decompose the effective stress tensor of Eq. (4.4.31) in terms
of STF angular tensors (see Sec. 1.8.1). We therefore involve the identity Q°Q° =
Qfab) 4 36°" and rewrite Eq. (4.4.31) as

2M2 1
b — iwﬂl <Q/<ab> _ 65ab) b (4.4.33)

This is of the form of Eq. (2.5.2), with G7® playing the role of the source function
p, and we identify fr—s = G*M? and fi—o = —$G*M?6®*. In each case we have
that f is a constant, and for both contributions we have n = 4.

The contribution to W;}/b from each value of £ is given by Eq. (2.5.16), which we
copy as

ab _ QL)
K r

{/OR dsf(u— 25)A(s, 1) + /: ds f(u— 25)B(s, r)},

where A(s,r) = [ P(€)p~""Vdp, Bls,r) = [ Pi(e)p~ " dp, and € =
(r+2s)/r —2s(r +s)/(rp). Because f is a constant it can be taken outside of each

integral, and the remaining computations are simple. For £ = 2 we find

2n72 2172
Wab _ (G M G°M R>Q<ab) (62 2),

402 B3
and for £ = 0 we find
G*M?*  G*M?
ab __ _ ab —
Wy = ( 1272 6Rr )6 (€=0).

Adding the results, we arrive at

G2 M? 1
W%’ = 2 (Q<ab> + 35“17) + .-

after discarding (as we are free to do) all terms involving R.

We express our final answer as
G2M2
4r2
The post-Newtonian order of this contribution to W is %PN. To see this, we
multiply Wg? by ¢ to form h?, and we divide by h% ~ GM/(c?r) to obtain a
quantity of the form GM/(c?r). We next notice that the Newtonian acceleration
GM/r? is of order r./t?, which makes GM of order r3/t2. Setting r ~ \. ~ ct,,
we finally get h®®/h% ~ 73 /(c3t3) ~ (v./c)3, and we conclude that Eq. (4.4.34) is
indeed a contribution of %PN order.

Wb = Qb 4. (4.4.34)

4.4.6  Computation of W®: Final answer
Adding Eq. (4.4.34) to Eq. (4.4.32) yields

1 fab 1 jabc 2jacb 2jbca GM?2

web — | L2 L (2T + EM e |, (4.4.35)
2r 6 r 472
1PN 3PN %PN

2
our final expression for the tensor potential. Its trace is given by
1 fcc 1 facc + 4jcac GM?2
_ - _ 78(1 R I
2r 6 ( ) * 4r2 * }

W= G[ (4.4.36)
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4.4.7 Summary: Wave-zone potentials

We may finally collect the results obtained in this section and construct the wave-
zone expressions for the gravitational potentials. Combining Egs. (4.1.29)—(4.1.31),
(4.4.16), (4.4.18), (4.4.22), (4.4.35), and (4.4.36), we have

4G M 1 Iab 1 Jabe 7T GM?
hOO — el - 78 ) 78 - _
c? { r + 274\ Ty 6\ r + 4 c2r2
~~ —
OPN+1PN PN SPN 3PN
MZ®
—8a< : )+} (4.4.37)
=0
4GT1 Q1 (1%
hOa — M 2 ogabito  — _ 4.4.
=l () -
N——
IPN 1PN
4G T1 fab 1 jabc+2jacb+2jbca GM?
ab ab
= —|Z——_Z QQ° +...].(4.4.
h = {2 - 6@( . )+ 3 +---1.(4.4.39)
—_———
1PN 3PN 3PN

2

The potentials are expressed in terms of Q% = z%/r, and in terms of multipole
moments that depend on retarded time 7 = t —r/c; overdots indicate differentiation
with respect to 7. It is instructive to compare these expressions with Eqgs.(1.5.18)
and (1.5.19), which give the gravitational potentials for a static and spherically-
symmetric mass distribution; notice the agreement between all terms that involve
the total mass M.

The multipole moments were defined by Eqs. (4.4.8)—(4.4.13): We have the total
gravitational mass

1 02 11U]a
M= 1+ -4 -~ - 4.4.4
( +202 5 2 +0(c™%), ( 0)
A
the barycentre’s position vector
1 1vy 1|U]a 4
Z:M%:mAZA(1+202_2 62 +O(C ), (4441)

the mass quadrupole moment

I°(7) =Y “mazhh +0(c™?), (4.4.42)
A

the mass octupole moment

Ie(r) = > “mazizhzg + 0(c7?), (4.4.43)
A

the angular-momentum tensor

T = ma(vhzh - 240h) + 0, (4.4.44)
A

and the current moment

Jbe(r) = ZmA (v“AzZ - zf}lvg)zj +0(c?). (4.4.45)
A
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We recall that M, Z, and J% are conserved quantities, and that [U | is defined
by Eq. (4.1.13).

The multipole moments must be differentiated a number of times with respect
to 7 when they are substituted into the gravitational potentials. These operations
produce terms involving the acceleration vectors ay = dva/dt = d?z 4 / dt?. These
can be expressed in terms of the position vectors via Eq. (4.3.2),

as=— Z Gmp(za — 25) +0(c7?), (4.4.46)
bza  |Pa—z8l

the Newtonian expression for the acceleration of each body.
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In this chapter we import the near-zone potentials calculated in Chapter 4 and
derive the equations of motion for a system of N bodies moving under their mu-
tual gravitational attraction. We follow the general method devised by Itoh, Fu-
tamase, and Asada (2002), which is based on conservation identities formulated
on a spherical boundary surrounding each body. Our final expression for the ac-
celeration vector includes the leading-order, Newtonian term, as well as the first
post-Newtonian correction, which is smaller by a numerical factor of order (v/c).
The general framework is described in Sec. 5.1, and its implementation is carried
out in Secs. 5.2-5.4; the final answer for the acceleration vector of each body is dis-
played in Eq. (5.4.17). In Sec. 5.5 we specialize our results to a two-body system,
and formulate the equations of motion in terms of barycentric and relative-position
variables.

5.1 Conservation identities and laws of motion

Let V4 be a spherical, three-dimensional ball centered on body A, bounded by a
two-sphere S4 described by

Sac: |z — za| =: s4 = constant. (5.1.1)

The two-sphere moves rigidly with body A, with a velocity vq4 = dz4/dt, and our
central goal in this chapter is to find equations of motion for z4(t), the position
vector of body A.

Adopting the general strategy developed in Sec. 1.2, we define a momentum
four-vector P§ associated with body A by

1

P§ = 7/ (—9) (T + 112 dx, (5.1.2)
C Va

where T%% is the material energy-momentum tensor and tﬁf the Landau-Lifshitz
pseudotensor. Following the developments leading to Eq. (1.2.2), we use the Einstein
field equations in their Landau-Lifshitz form of Eq. (1.1.4) to express this as

3

Py =——7 H*dS, 1.
A7 167G Js, Or S (5:1.3)

63



64 Equations of motion

where
Howby — gaBgny _ gavgfu (5.1.4)

and where dS,. is an outward-directed surface element on S4. We recall that the
gravitational potentials are related to the “gothic inverse metric” by Eq. (1.3.2),
g8 =8 — hoB where n®? is the Minkowski metric.

In a time interval dt the volume V4(t) moves to a new volume Vy(t + dt).
In the course of this motion, an element of area dS on S, sweeps out a volume
dV = (vadt) - dS, because S4 moves with a velocity vy. It follows that in the
course of this motion, any quantity defined by

Ft):= [ ft,z) dx (5.1.5)
Va

will change according to
E — of a3

- -dS; 1.
7 v En T+ s fva ; (5 6)

the first term on the right-hand side accounts for the changes intrinsic to the function
f(t, ), while the second term accounts for the change in the domain of integration.
We apply Eq. (5.1.6) to the momentum four-vector of Eq. (5.1.2). Recalling that

29 = ct, we have

dP¢% 1 1
e / A |(—) (10 i) | ot () (T 4t esdS

and invoking the conservation statement of Eq. (1.1.7),
s [(—9) (T(w+t55)} =0,

we replace the volume integral by another boundary integral. Because 7% = 0 on
S, we arrive at

Py 0a V4
_ _ ac _ 40a A . 1.
7 %SA( g9) (tLL 1554 c dS., (5.1.7)

a generalization of Eq. (1.2.3) for moving boundaries. Notice that v4 is constant
over Sy, and that it can be taken outside the integral.
We next define a dipole-moment vector D 4 associated with body A by
1
Dj = ; (=)(T° +172) (z* — 24) d’. (5.1.8)
A
Using the field equations, as well as the symmetry properties of H**#¥ we write
( )(Too + tOO) _ ct 0. FOHov _ ! 9., FT0c0d
g ML) = 160G ~ 167G

and we integrate by parts. This leads to the alternative expression

C2

a — 0c0d a__ ,a\ _ 0a0c
T ]iA[(adH )(@* —=5) — H }dSc (5.1.9)

for the dipole moment, which involves a surface integral instead of a volume integral.
Returning to Eq. (5.1.8), we differentiate D% with respect to z° and involve
Eq. (5.1.6). We have
dD°, 1

= @), (o )] - d

— 2 () (T + 1Y) &

+ = 7{ (—g) (T + 1)) (z* — 2% )v5 dS.,
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and we convert the first volume integral into a surface integral by invoking the
conservation statement of Eq. (1.1.7) and integrating by parts. This produces

D’ 1 ¢ 0e\(ra_ 1 e
i @ng(@(TO +15) (2 — 24) dSe + /V ()T i) de
S o)
C Va
1
+= ¢ (—9)(T”+11]) (=" — 24) v dSe.
C Sa

In the first volume integral we recognize cP$, the spatial component of Eq. (5.1.2),
and in the second volume integral we recognize PY, its time component.

At this stage we may set 77 = 0 within all boundary integrals, and we have
obtained the identity

P4 = Mav% + Q% + DY, (5.1.10)
in which M4 := ¢~ P9 is a mass parameter associated with body A, and

b
QY4 = 17{ (—9) (tgbL - tﬁ%”ﬁ) (2% — 2%) dSp. (5.1.11)
Sa

C

The overdot in Eq. (5.1.10) indicates differentiation with respect to ¢ (instead of
20 = ct).

Equation (5.1.10) is a formal identity that relates a momentum-like quantity Py
to a product of a mass-like quantity M4 with a velocity v 4, the time derivative of
a dipole-like quantity D 4, and an additional vector Q4 that possesses no useful
interpretation; each one of these quantities is a function of time only. There is
nothing physically meaningful about this identity, but it nevertheless plays a useful
mathematical role. We differentiate it with respect to ¢, and directly obtain a law
of motion for each body A:

Maaa =Py — Mava—Qa—Da. (5.1.12)

Here, M4 are the mass parameters defined by Eq. (5.1.3),

2
C
MA‘

= 9. HO 48, 5.1.13
167TG s, by ( )

and these change with time according to Eq. (5.1.7),

. 1 vl
sa=-1f o -ars) as, (5.1.14
Cc Sa C

while
. ’Ub
Pi=-f (o)ih— %) as, (5.1.15)
Sa ¢

is the rate of change of the spatial momentum vector. Finally, Q‘j‘ and l'jfi‘ are ob-
tained by differentiating Eqs. (5.1.11) and (5.1.8) with respect to time, respectively.

In the following sections we will endeavour to turn Eq. (5.1.12) into something
more explicit. At the end of this calculation, the formal laws of motion will have
become concrete equations of motion for our system of N bodies; these are listed in
Sec. 5.4.4, below.
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5.2 Internal and external potentials

To proceed with our calculations we focus on a specific body, the one labeled by
A = 1, and to simplify the notation we let m := my, z := 21, v := vy, and so
on. In addition, we introduce the vector s := & — 2z, and decompose it as s = sn,
in terms of its length s := |s| and the unit vector n := s/s. As was indicated in
Eq. (5.1.1), the two-sphere S that surrounds our body is described by the equation
s = constant. The surface element on S is dS, = s?n, dS?, in which d2 is the usual
element of solid angle.
We list some useful identities involving s, n, and their derivatives:

5 = —n-v, (5.2.1)
048 = nNg, (5.2.2)
1
.a = - 6(1 — Ng b7 5.2.3
i ~ (Gap = mamp)v (5.2.3)
1
8a = - 611 — Ng 5 5.2.4
ny S( b — NaMp) ( )
1
§ = —nea+- [v* — (n-v)?], (5.2.5)
1
0,8 = —7(5,1;, — nanb)a
1
— S—Q(na&,c + 206N — Snanbnc) vPoC. (5.2.6)

Here, a := a; is the body’s acceleration vector, and v? := vy - v1.
The near-zone gravitational potentials were calculated in Sec. 4.2. According to
Egs. (4.2.32)-(4.2.34), they are given by

4 4 102X
00 __ - . 2 -5
R = SU+ 5 (w+28t2 P+2U > +O(c79), (5.2.7)
4
Oa _ a -5
W = SUTH 0, (5.2.8)
4
ab ab -5

where P = §,, P%°. The potentials U, ¢, X, U?, and P are displayed in Eqs. (4.2.35)—
(4.2.44). For our purposes it is useful to decompose them into “internal potentials”
that diverge at * = z, and “external potentials” that are smooth at € = z. We
write

G
U = Tm 4 Un, (5.2.10)
G
Y = —Zw + Pext (5.2.11)
X = Gms+ Xex, (5.2.12)
1 -
P = ZU2 + P, (5.2.13)
p = GZ”’ t P, (5.2.14)
G a
ve = M Lya,, (5.2.15)
S
where we have introduced
3 2 GmA
=2y A 5.2.16
pi= v > Z— 24 ( )

A#1
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and
1
vi=ot -2 |GmA (5.2.17)

The tensor potential P* also can be decomposed into internal and external parts,
but this is not required in the following computations. In Eq. (5.2.13) we have
indicated that since P approaches G2m? / (45?) as s — 0, it can neatly be expressed
as 4U 2 plus a less-singular quantity P, whose behaviour near s = 0 is given by

q. (5.2.14). We also remark that while X does not diverge as s — 0, it is its
second time derivative that appears within h°°, and Eq. (5.2.5) reveals this is indeed
singular at s = 0.

The external potentials are given by

GmA
Ut = Y (5.2.18)
A#l | — zA\

Gmavy G*mma
Voxt = Z\a)fz| Z|zfz\|acfz|
A;él Al aa A A

G? 1 1
-y Y AT ( + ) (5.2.19)
|za — zg| \|®x — 24| |z — 2zB|

A#1 B>A

Xe = Y Gmalz — 24, (5.2.20)
A#£1

~ Gm v>
P — E : At A
oxt |z — 24
A#1

1 G? 1 1
-3 PP < + ) (5.2.21)
o |lza — zp| \ |z — 24| |z — 25|

Ue, = ZGmA”A (5.2.22)

ext = |.’B—ZA‘

It is interesting to observe that by virtue of the nonlinearity of the Einstein field
equations, the “external part” of v still carries a dependence on m and z.

We shall be interested in the behaviour of the external potentials in the imme-
diate vicinity of our reference body, near s = 0. Because the external potentials are
all differentiable at s = 0, this behaviour is best expressed as a Taylor expansion.
We shall write, for example,

1 .
Uext () = Uext (2) 4+ $04Uext (2)n® + 5528abUext(z)n“nb + 0(5‘3). (5.2.23)

The relevant derivatives of the external potentials will be evaluated at a later stage.

5.3 Computation of M, M, P*, Q*, and D*

5.3.1 Computation of M

We begin with the evaluation of M := Mj, the mass parameter associated with our
reference body, as defined by Eq. (5.1.13). After substituting Egs. (5.2.7)—(5.2.9)
into Eq. (5.1.4), we find that

4 4 14 |
8 HOW — _gaaU -~ <8‘1¢ + 56“X —0°P+4U0°U + Ua) +0(c™).
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Substitution into Eq. (5.1.13) gives

M = —é<<s2na8“U>> - é(s%a (0°¢ + 10°X — 0°P + LUOU + U"))
+0(c™), (5.3.1)

where we return to the notation of Sec. 1.8.4 and let ((---)) = (4m)~* [(---)dQ
denote an average over a two-sphere s = constant. To get to Eq. (5.3.1) we wrote
dS, = s*n, dQ and involved Eq. (5.2.13) to eliminate P in favour of P.

To proceed we express each potential in terms of its “internal” and “exter-
nal” parts, as in Egs. (5.2.10)—(5.2.15), we use Egs. (5.2.1)—(5.2.6) to compute
the derivatives of the internal contributions, we Taylor-expand the external con-
tributions in powers of s, and finally, we involve Eqs. (1.8.18)—(1.8.21) to carry
out the angular averages. For example, from U = Gm/s + Usx we find that
90U = —Gmn®/s? + 0%Ueyxt, so that s?n,0°U = —Gm + O(s?), which leads to
(s°1,0°U)) = —Gm + O(s?). In this fashion we obtain

(s*n,0°U) = —Gm+O(s?),
(s’n,0"Y) = —Gmp+0(s%),
<<52na8“ ) = ngmvz + O(s),
<<82na(‘3a )y = —Gmv+0(s%),
(s* naU“>> = évaz + O(s),
2,2
<<32naU3aU>> = - G ;n — GmUext + O(s).
Notice that the last equation includes a leading term that scales as s~!, and an
s-independent term proportional to
Ust(@=2)= > ———— Gma (5.3.2)

pent |z — zal|
Recalling the notation employed in Chapter 4, thisis |U |1, the Newtonian potential
evaluated at the position of the reference body, excluding the infinite contribution
coming from this very body. Notice that in the context of this chapter, |U]; occurs
naturally, and not as a result of an ad-hoc regularization prescription.

Inserting these results into Eq. (5.3.1), we arrive at

11

This is the mass parameter of the reference body.

5.3.2  Computation of M

To compute M := M, we refer back to Eq. (5.1.14), which expresses it in terms of
the Landau-Lifshitz pseudotensor integrated over the two-sphere S. The relevant
components of the pseudotensor were calculated in Sec. 4.1.3, and the results are
displayed in Egs. (4.1.17) and (4.1.18). After substitution of Eqs. (5.2.7)—(5.2.9),
we find that

1
(—g)<t3 — 199 ”C) = o [3U8“U+4(8“Ub 8bU“)8bU—|—gv“80U8“U

+0(c™).
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Substitution into Eq. (5.1.14) gives

M= —GL<<52na [BU0U +4(0°U° —0°U")0,U + L0°0.U U] )+ O(c™*). (5.3.4)

2

This expression can be evaluated with the same techniques that were employed in
the preceding subsection. We obtain, for example,

<<s2naU6aU>> = %vaa&lUBXt — GmUey + O(s),

(*nq(0°U* = ’U")OU) = —%va“@aUQXt + O(s),

(s*nav®0.UU) —%va“@acht +0O(s),

in which the external potential Uy is evaluated at @ = z after differentiation.
Notice that after integration, there are no surviving terms of order s~2, in spite of
the fact that something like s2n,U8*U contains a contribution that scales as s~2;
such a terms disappears because it involves an odd number of unit vectors n, which
leads to a vanishing integral.

Inserting these results into Eq. (5.3.4), we arrive at
. m . _
M = 25 [40°0 Ut + 3Uens + 0(5)} L O, (5.3.5)

where, as we indicated before, the derivatives of the external Newtonian potential
Uoxt are to be evaluated at @ = z, the position of the reference body.

It is an instructive exercise to differentiate Eq. (5.3.3) with respect to ¢ and to
verify that the result is compatible with Eq. (5.3.5). This calculation requires an
expression for a, the acceleration vector of our reference body. Because this is the
very quantity that we are in the process of calculating, this exercise must, as a
matter of principle, be postponed until the information becomes available. Regard-
less, anticipating that the leading-order term in the acceleration vector will be the
Newtonian acceleration of Eq. (4.3.2), one can easily show that our expressions for
M and M are indeed compatible.

5.3.3 Computation of P*

The computation of P% := Pf” begins with Eq. (5.1.15), which once more involves a
surface integration of the Landau-Lifshitz pseudotensor. The relevant components
are displayed in Eqgs. (4.1.18) and (4.1.20), and after substitution of Eqs. (5.2.7)—
(5.2.9), we find the lengthy expression

b
_ ab _ ,0a U~ _ L a brr _ osab c
( g)(tLL tLLC) - 167TG{48 UPU — 26%9,U9 U}
1 . .
(agrgh) (argh) (o)
+16WGCQ{83 U + 40CUa) X + 3200UT

—16(0"U. — 0.U") (0°U° — 0°U"?)
_ gab [6U2 + 49U + 20,U8°X + 169,UU° — 89.U(8°U* — 97U°)
b {12U8“U +16(9°U° — aCU“)aCU] } +O(cY).

Substitution into Eq. (5.1.15) gives

P = —$<<52{4nbaaUabU—2naacUaCU}>>
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- 40102 <52{8nb5<aU OOy — A0, U0 + Anyd UM X — 2n90,U0° X

+32n,0°UUY — 1600, UU° — 160, (0°U, — 8.U*) (8°U° — 9°U")
+ 8n%0.Uy(0°U — 9U°) — 6n°U?
~ 120U AU — 16ny0°(8°U° — aCUa)aCU}>> Lo, (5.3.6)

The relevant angular averages are

P UPUY) = —gcmaaUeXt +0(s),

$2n9,U0°U —2Gmaa Uext + 0( ),

—Gmpud®Ueyy — Gma Yext + O(8),

U)
s2nb3aUab¢>>
)

—gGmuﬁ Uext Gmaawext + O(S)a

$nt 0 U0 = %Gmuaa ot — Gma“wcxt+0(s),

{
{
{
(s*np0pd°U
{
(s*np0°U"X ) = —%va Uy — Gmaacht+O(s),
(s*np0°U"X ) = ;va O Ueyy — ;Gmé)“jfext—kO(s),

2
<<82nb8aX8b >> 2 G

2
- 1—5Gm(v28‘1UEXt + 200 OpUext )
— Gma Xext + O(s),
.. 2 1 ..
n9.U0°X ) = ——Gm(v%“Uext + 20 0 O Ues) — 3GmO" Xesi + O(s),

1 G?*m?

1
a® + gavaa“Uext Gngxt + O(s),

2 ‘ra b G2m2 a 1 a, b a
s“npyU%0 U>> = —Ta + §va VO Uext — GmUeXt + O(s),

§

(

§

2, 2

<<82na86UUC>> = —%GTma“ + %va%babUext GmUext + O(s),
(s*np(0°U, — 0.U*) (0°U* — 8CUb)>> = —Gmuvy, (0” ngt "ULy) + O(s),
(s*n"0.Uq(0°U* — 07U°)) = ,,vab (09U, — 0°UL,) + O(s),
<<52n“U2>> = %va“(']cxt + O(s),

<<32nbva8“U>> = észﬂ@“Uext - lev“Uext + O(s),

(*np® (0°U° — 9°U*)0.U ) = —7vab(aa 2 — 0"ULL) + O(s).

Inserting these results within Eq. (5.3.6), we arrive at

Pa

3 1 .
= m |:8aUext + O(S):| 072 |:<2’U2 ext) 60‘Uext —+ 6awext + §6aXext
11G
ngt (aangt abngt)Ub + gjmaa + O(S)] + 0(0_4), (5.3.7)

in which the external potentials and their derivatives are evaluated at © = z, the
position of the reference body.
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5.8.4  Computation of Q*

The computation of Q% := @Qf begins with Eq. (5.1.11), in which we substitute
z® — 2% = sn?, dS, = s?ny, dQ), as well as the components of the Landau-Lifshitz
pseudotensor that were obtained at the beginning of Sec. 5.3.2. This gives

Q= G12<<8 nny [3U0U +4(0"U° = 0°U")0.U + 50°9.U0°U]| ) +O(c™*). (5.3.8)
We have
: 1 G?m?
(*n*n,U0'UY) = ~3 Sm v 4+ O(s),
(s*nny(3°U° — 9°U")OUY) = O(s),
1 G*m?
(Sn " QUOU) = ZTu +0(s),
and this gives
m Gm
Q=S5 "t O(s) +O(c™™). (5.3.9)
From this we immediately obtain
. mGm 4
Q"= 545 @ TO00) +0(c), (5.3.10)

because s is set equal to a constant during the integration over S.

5.8.5  Computation of D*
We return to Eq. (5.1.9), which we write in the form

2
D% = 4G<<S2nb (Snaa HObOc HOaOb)>>'
This becomes
D* = é<<52na (U — snbabU)>>
1 . L i

b g (20 [(6 = sm@P) + 5 (X — smydX) — (P~ smd" )
+I(U? - snbabUz)}>> — é(sznb (P — sn"0.P"))

+0(c™) (5.3.11)

after inserting Egs. (5.2.7)—(5.2.9) into Eq. (5.1.4). Evaluation of the angular inte-
grals reveals that there are no surviving terms of order s~! or s°, and we conclude
that

D= 0(s) +O(c™%). (5.3.12)

This conclusion is a consequence of the fact that the internal contributions to the
potentials U, 1, X, and P are spherically symmetric. Consider, for example, the
Newtonian potential U = Gm/s + Uext. The Combmatlon of terms that appears
within the angular integral is U —sny0°U = 2Gm /s+Ueyt — fs P10y Uexs +O(5%),
in which Ugy and its derivatives are evaluated at s = 0. After multiplication by
s2n® and angular integration, we get a result of order s®. Examination of the terms
in U? reveals that these contribute a result of order s2. The terms in P* must be
examined more carefully. According to Eq. (4.2.41), the most singular term in the
tensor potential is equal to G?m?n®n®/(4s?), and this vanishes after multiplication
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by s2n;, and angular integration; less singular terms would give a O(s) contribution
to D®. Finally, the term involving 0,P can be written in terms of Ut by invoking
the harmonic gauge conditions, and this contribution also can be shown to be of
order s. All in all, we arrive at Eq. (5.3.12).

It follows immediately from Eq. (5.3.12) that

D= 0(s) + O(c™4). (5.3.13)

5.4 First post-NNewtonian equations of motion

5.4.1 Acceleration in terms of external potentials

The results obtained in the preceding section, namely Eqgs. (5.3.3), (5.3.5), (5.3.7),
(5.3.10), and (5.3.13), may now be substituted into Eq. (5.1.12), which we write in
the specialized form Ma = P — Mv —Q — D that applies to the reference body. On
each side of the equation we have terms of order s~!, terms independent of s, and
terms of higher order in s that have not been calculated. Because the equation is
an identity, and because s has been set equal to an arbitrary constant, the equality
must be true order-by-order in s. It is easy to verify that as expected, all terms
of order s~! cancel out of the equation. It is then clear that an expression for
the acceleration vector will come from the s-independent terms, and that the O(s)
terms would generate redundant information.
In this way, we obtain

1 .
a® = 8aUext + g (U2 - 4Uext)aaUext - 4'UavbabUext — 3v® ext T 8a’(/}ext

1 ..
+ 50" Xex +4Ug — 4(0°Ul — 0°ULy ) vp| + O(c™™), (5.4.1)

an expression for the acceleration vector of the reference body, in terms of the
external potentials of Egs. (5.2.18)—(5.2.22); it is understood that these are to be
evaluated at @ = z, the position of the reference body. To arrive at Eq. (5.4.1) we
have moved the factor 1 + ¢=2(20? + 3Uext) + O(c™*), which originates from the
mass parameter M, from the left-hand side of the equation to its right-hand side.
We recognize, in Eq. (5.4.1), the Newtonian acceleration field 0*Ueyxt; the terms of
order ¢~2 are 1PN corrections to the acceleration vector.

5.4.2  Geodesic equation

It is instructive to work out the geodesic equations for a test mass moving in a
spacetime whose geometry is determined by our original system of N bodies. The
metric of this spacetime is determined by the gravitational potentials of Eqs. (5.2.7)—
(5.2.9), and Eq. (1.6.4) allows us to obtain an explicit expression. To the appropriate
post-Newtonian order, we have

2 2 1. .
goo = —1+02U+C4<1/)+2X—U ) +O(c ), (5.4.2)
4 -5
goo = —5Uat O, (5.43)
2 2 1. 9
Gab = 6ab + *QU(Sab + = 2Pab + ’(/} +=-X-2P+U 6ab
c c 2
+0(c™), (5.4.4)

in which 2° = ¢t and an overdot indicates differentiation with respect to t. The
potentials U, 1, X, U?, and P® were introduced in Sec. 4.2, and explicit expressions
are given in Eqs. (4.2.35)—(4.2.44).
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An action functional for geodesic motion is

dz® dxP

in which the parametric relations () give a description of the particle’s world
line. The action is invariant under reparameterizations, and we choose t as the
parameter \. This gives us the Lagrangian

L = —cy\/ —gapv®0?, (5.4.6)

in which v® = dz®/dt = (¢,v) is the velocity four-vector of the test mass. More
explicitly, using the metric of Egs. (5.4.2)—(5.4.4), we have

14 1/1, 3 1y 1.,
S U+ = (<ot + 200 — 4U0" “X-zUu
TR +02(8U+2 Y et Xy

+0(c™), (5.4.7)

L = -+

after truncation at the appropriate post-Newtonian order.
Substitution of L into the Euler-Lagrange equations produces

i 12 —4 a a l §2_ arr _ ,.a b
{1—1—62(20 +3U)+O(c )}a = 8U+62K2v U)@U vivpa

— 30’0, U — 30U + 0™ + %aaX + 40 — 4(0°U" - 8bU“)vb} +0(c™™).

After moving the factor multiplying a® from the left-hand side to the right-hand
side of the equation (as we did in the preceding subsection), and after substituting
a® = 9°U + O(c™?%) within the 1PN term on the right-hand side, we finally arrive at

1 .
a* = U+ (v? — 40U — 4 °0,U — 30U + 0™
1 .. .
+ 50X +4U° — 4(0°U" — 0°U*) vy | + O(c™™). (5.4.8)

This is the acceleration vector of a test mass moving on a geodesic in the post-
Newtonian spacetime.

Equation (5.4.8) looks virtually identical to Eq. (5.4.1), and for this reason it
might be said that the reference body moves on a geodesic in a spacetime whose
geometry is determined by all remaining (external) bodies; the metric of this space-
time would be given by Egs. (5.4.2)—(5.4.4), with all potentials replaced by the
external potentials of Eqs. (5.2.18)—(5.2.22). This interpretation of Eq. (5.4.1) is
attractive and perhaps technically correct, but it is also misleading. It gives the in-
correct impression that the acceleration of the reference body should be determined
by the external masses only, and should not contain a dependence on m itself. This
is indeed incorrect: As Eq. (5.2.19) reveals, the “external potential” ey does, in
fact, depend explicitly on m and z. The nonlinear nature of Einstein’s theory im-
plies that the reference body exerts a force on itself, and this effect appears at the
first post-Newtonian order; one must therefore be careful with the geodesic-equation
interpretation of Eq. (5.4.1).

5.4.3 Deriwvatives of the external potentials
The external potentials Uext, Yext, Xext, and U%, were listed in Sec. 5.2, Egs. (5.2.18)—
(5.2.22), and their derivatives may be computed by involving Egs. (5.2.1)—(5.2.6),
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in which we change the identity of s from its old value | — z| to a new value

s:=|x — z4|. After evaluating the results at @ = z := z;, we obtain
GmA
Uext = Z > 5
Az A
GmA
0°U. ext — Z ntllAa
A#1 lA
. GmA
Uext = Z 22 (nlA : UA)7
A#l 1A
GmAU G? mmA
OVYext = —5 Z ——n nia+ Z —5 N
A;él lA A#1 lA
G?’mamp ”1,4 nlB
_|_
2> — P
A#1 B>A 14 1B
.. Gmy
aacht = - Z |: y (nlA : G/A)n(llA]
Z1A
A#£1
GmA 2
S S RN
A#1 lA
Gm
o3 I )
A#£1 1A
Gmy Gmg
ue, = Z ~ a’y + Z (n1a-va)vh,
Az “tA A1 4
GmA
b b
aG‘Uext = - Z ZT”%A”A?
A#1 1A
where 214 1= |z — z4| and n{, 1= (z — 24)%/|z — z4|.

Substitution of these results into Eq. (5.4.1) leads to an explicit expression for
a, the acceleration vector of our reference body. At the leading order we get

G
© = U+ O(c2) = = 3 THng, + 0(c7),
A#1 ZlA

the expected expression for the Newtonian acceleration. At the next order we
obtain the 1PN corrections to the acceleration vector. At this stage it is useful to
take our attention away from the reference body A = 1, and to start writing down
general expressions that are valid for each mass within the N-body system. We
shall therefore rewrite our previous result as

Gm
aas=— Y —5onap+0(c?). (5.4.9)
B#£A ZAB

This is the acceleration vector of body A, accurate to OPN order, and expressed
in terms of the interbody distance zap := |z4 — zp| and the unit vector nap :=
(za — zB)/|2a — 28|

To obtain the post-Newtonian corrections to this result we must perform a sim-
ilar change of notation in the derivatives of the external potentials (which are now
external to body A). We will also insert Eq. (5.4.9), written as

Gm Gm
ap = AnAB— Z CnBC+O( )
ZAB C+#A,B BC
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to isolate the term C' = A in the original sum over C # B (notice that nap =
—np4), within our previous expressions for 9°X and U®. After some simple algebra,
we obtain

G
Uext - § me 5 (5410)
ZAC
C#A

DU = — Y —5—nlp, (5.4.11)
B+#A ZAB

- G
Uext = Z 72n3 (nap - vB), (5.4.12)
B#£A “AB

2 2
o% _ 3 GmBUB a GmAmB a
wext = _§§ 22 *TLAB“FE ——3  NaB
B+#A AB B#A AB

G?*mpmc
+ E E W’I’L%B, (5413)
B#AC#A,B ~AB*BC

. G*mpme
0Xext = — ———(nap -npc)nip
ZA32’2
B#£AC+#A,B BC

+Z Z GQmBmcn%o

2
z z
B#AC#A,B “AB*BC

G
B LA PR
BZA “AB

G
-2 g Z;BB (nAB "UB)'U%, (5.4.14)
B#A

a G?*mamp “ G?*mpmc u

U = E —n%5 — E E —n

ext 23 AB P 22 BC
B#A AB B#AC#A,B ~AB*BC

Gm
+ D g (nap - vp)vh, (5.4.15)
B+#A AB
G
VL = = %RZBU%- (5.4.16)
B+#A AB

The derivatives of the external potentials are now written explicitly in terms of
the masses m 4, the position vectors z4, and the velocity vectors v4. We recall
that zap := |24 — zp| is the distance between bodies A and B, and that nap :=
(za — zB)/|za — zp| is a unit vector that points from body B to body A.

5.4.4 FEquations of motion: Final answer

It is now straightforward to substitute Eqgs. (5.4.10)—(5.4.16) into Eq. (5.4.1) for
a 4. Noting that we must also let v become v 4 in this equation, we obtain our final
expression

GmB
as = — E 22 NAB

1
+ 2{_ > L;nB [U% + 205 —4(va - vp) - g(nAB +vp)’

_5GmA_4GmB_4 Z Gmc_ Z Gmc
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1 G
> TCEAB (1 ap 'nBC):|'nAB

z
C+A,B BC

G
+ Z ganAB'(ll’UA—S’UB)(’UA—'UB)

B#£A ZAB
7 G?
Y B ey + O, (5.4.17)
2 ZABZHCo
B#A C#A,B
where
zAB = |za — zB| (5.4.18)

is the distance between bodies A and B, and

ZA — 2B

== 7 5.4.19
2 —2n] ( )

nap :

is a unit vector that points from body B to body A.

Equations (5.4.17) are the standard post-Newtonian equations of motion for a
system of N point masses. These equations were first obtained in 1917 by Lorentz
and Droste, and they were made famous by Einstein, Infeld, and Hoffmann, who
rederived them in 1938. Our expression in Eq. (5.4.17) differs only superficially
from the equation displayed in Exercise 39.15 of Misner, Thorne, and Wheeler; it
is easy to show that these are equivalent by rearranging some of the double sums.

5.4.5 Post-Newtonian barycentre

In Sec. 4.4.1 we introduced

M=) ma <1 + %Z—z‘ - % L(g“‘) +0(c% (5.4.20)

as the total post-Newtonian gravitational mass of the N-body system, and

L ]_ ].’0124_1|_UJA —4
Z.MzA:mA<1+C St a0l (5.4.21)

as the position vector of the post-Newtonian barycentre. Here,

Ula=)_ G (5.4.22)

z
bra FAB

is the Newtonian potential external to body A.
It is easy to show that M is conserved by virtue of the Newtonian equations of
motion,

M =0(c?). (5.4.23)

It is also possible to show that the barycentre’s acceleration vanishes by virtue of
the post-Newtonian equations of motion,

Z =0(c. (5.4.24)

The barycentre therefore moves freely, and Z can be set equal to zero by placing
the origin of the coordinate system at the post-Newtonian barycentre.

To see how Eq. (5.4.24) comes about, we differentiate Eq. (5.4.21) with respect
to time and replace, within the terms of order ¢~2, all occurrences of the acceleration
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vector ay by its Newtonian expression. This produces the equation
MZ = Zm UA+l 1meﬂm
A ’ |2 A !

_ %Z Z M[UA + (nas - UA)”AB]}

A BrA AB
+0(c™) (5.4.25)

for the barycentre’s velocity vector. An additional differentiation gives M Z , and
substitution of Eq. (5.4.17) reveals (after a long computation) that indeed, Z van-
ishes at 1PN order.

5.5 Two-body dynamics

5.5.1 Two-body equations

In the special case in which the system contains only two bodies, Eq. (5.4.17) reduces
to

Gmg
a, = — B n
z
1 Gmo 3 2 bGmyp  4Gmy
+C2{—Z2{Uf+2v§—4(v1~v2) - §(n~112) L T L n
Gmg —4
+ e n- (41;1 — 31}2) ('ul — ’Ug) +O(c™7), (5.5.1)
and
Gm1
a; = z2
1] Gm 3 2 4Gmy  5Gmy
C2{Z2|:’U§+2’U%—4(’Ul‘v2)_2(n"vl) — > _T n
Gmy —4
+—n (4vy — 3v1) (v1 —v2) p + O(c™?), (5.5.2)
where
Z:i=2z1 — 22 (5.5.3)
is the position of body 1 relative to body 2,
z:=|z| =21 — 22| (5.5.4)
is the distance between the two bodies, and
ni=2=21"% (5.5.5)
z |z — 29|
is a unit vector that points from body 2 to body 1.
In this two-body context, Eq. (5.4.20) becomes
1 (1 Gmim
M =mi +mo+ CQ{Q(mlvf +mov3) — ; 2 } +0(c™), (5.5.6)
and Eq. (5.4.21) reduces to
1(1 Gmim
MZ = mizi +maza+ CQ{Z(mlvle + m2v§z2) — 21,2 2 (Zl + 22)}

+0(c™). (5.5.7)
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5.5.2  Dynamics of the relative system

It is useful at this stage to impose the barycentre condition
Z =0, (5.5.8)

and to express z; and 2, in terms of z := z; — 25, the relative separation vector.
At Newtonian order we get the usual relations z; = (mz2/m)z + O(c™2) and 25 =
—(m1/m)z + O(c™?), where m := mj + ma. These imply v; = (ma/m)v + O(c™?)
and vy = —(my/m)v + O(c™?), where v := dz/dt = v; — v, is the relative velocity
vector. These Newtonian relations can be inserted within the post-Newtonian terms
in Egs. (5.5.6) and (5.5.7), and this produces

111 5 Gngm 4
for the total gravitational mass, and
A G
0=m121 +mazs — 772 gn (vz — m)z +0(c™) (5.5.10)
c z

for the barycentre condition.
We have introduced the mass parameters

m = mj+my : total mass, (5.5.11)

n = %22 :  dimensionless reduced mass, (5.5.12)
(ma +mo)

A = M2 gimensionless mass difference. (5.5.13)
mi + mo

The solutions to Eq. (5.5.10) and z = z; — 25 are

_mz  NA[L ., Gm -
z1 = mz+202 (v . >z+0(c ) (5.5.14)

and
ve— >Z+O(C_4). (5.5.15)
We recall the definitions

z =2z — 29, Vi=v] — Vg (5.5.16)

for the relative position and velocity vectors, respectively.
Subtracting Eq. (5.5.2) from Eq. (5.5.1) produces an expression for

a:=a; — ag, (5.5.17)
the relative acceleration vector. After some simple manipulations, we obtain
Gm
a = —777,
1 Gm 9 3 2 Gm
+C2{—Z2[(1+37])v —in(n%;) —2(2+77)7 n

Gm 4

+2(2 —n)7(n~v)v +O(c™%). (5.5.18)

This, together with the definition a = d?z/dt?, gives us an evolution equation for
z, the relative position vector. Once z(t) is known, the position of each body is
determined by Egs. (5.5.14) and (5.5.15).
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5.5.8 Lagrangian and conserved quantities

The post-Newtonian equations of motion for z, given by Eq. (5.5.18), can be repro-
duced on the basis of the Lagrangian L = nmL, where

L = 1v2+G7m
2 z
l Lo 4 1 m o  Gnm 2 G*m?
+ 2{8(1 3Iv* + =(3+1n) + P ( ) 5,2
+0(c™) (5.5.19)

is the Lagrangian per unit of reduced mass nm.
The generalized momentum p := 9L/0v associated with this Lagrangian is

11 G G
p=v+— [(1 —3n)v* + (3 + n)m] v+ 727m (n-v)n+0(c™?), (5.5.20)
c? 2 z c*z
and it follows that
dp Gm |1 9 .9 Gm Gm .
% - % an {2(1 Smv” + 302"+ (3 + 277)7 n @(4 3n)zv
+0(c™), (5.5.21)

where Z := dz/dt = n -v. To arrive at Eq. (5.5.21) we involved the identity
n® = (v* — 2n”)/z and inserted the Newtonian expression for the acceleration,
a = —Gmn/z? + O(c™?), within the post-Newtonian terms; as a consequence of
this equation, we have that ? = (v? — 22 — Gm/z)/z + O(c™2), and this also was
required to obtain Eq. (5.5.21).

On the other hand,

oL Gm Gm [1 s 3 ., Gm Gnm . 4
F e e R e 5(3—!—77)1} +§77z - n+ 2,0 v+ 0(c™"), (5.5.22)

and Eq. (5.5.18) follows directly from the Euler-Lagrange equations, dp/dt = OL/dz.

The conserved energy associated with L is E = p - v — L, and according to
Egs. (5.5.19) and (5.5.20), this is

= 1, Gm
E = 2U -
13 . Gm 9 )] G*m?
+c2{8(1 B’ + 2 (3 mo? +n(n-v)?2] + T2
+0(c™). (5.5.23)

The system’s actual conserved energy is £ = nmE, and this ezcludes the rest-mass
energy of each body. The angular momentum associated with L is J = z X p, and
this is given by

Gm

J= {1 + c% [;(1 —3n)v* + (3+n) ] + O(c4)}z X v; (5.5.24)

z
this must be multiplied by nm to obtain the actual angular-momentum vector of

the two-body system. It is a straightforward exercise to show that dJ/dt = 0, so
that the angular-momentum vector is a constant of the post-Newtonian motion.
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5.5.4  Orbital equations

The facts that J, as defined by Eq. (5.5.24), is a constant vector, and that it is at
all times orthogonal to both z and v, imply that the motion of each body must
take place within a fixed orbital plane. We take this plane to be the z-y plane, and
we use polar coordinates z and v to describe the orbital motion (z should not be
confused with the third coordinate of the Cartesian system; it continues to stand
for the distance between the two bodies). We write z = [zcos, zsine, 0], and
we resolve all vectors in the basis n = [cos,sin, 0] and ¥ = [—sin, cos v, 0]
associated with the polar coordinates. We have

= zn, (5.5.25)
= in+ (2), (5.5.26)
a = (- zwz)n + %%(221@1/:, (5.5.27)

and Eq. (5.5.18) gives rise to the set of equations

%W%%” = gZ;K?,72”)22(1+3n)(z¢)2+2(2+n)? +0(c™*) (5.5.28)

%(z%) =2(2— n)%mz'q,z} +0(c™). (5.5.29)

In Newtonian theory, the right-hand sides of Egs. (5.5.28) and (5.5.29) are zero, and
the orbital equations are those of Kepler’s problem. In post-Newtonian theory, the
orbital equations contain small corrections of fractional order (v/c)? ~ Gm/(c*z),
and the motion is no longer Keplerian. Because the corrections are small, the equa-
tions can be handled by any suitable perturbation technique of celestial mechanics.
This leads, for example, to the well-known prediction that the angular position of
the post-Newtonian periastron advances by an amount equal to 67Gm/(c*p) per
orbit, where p is the semilatus rectum of the Keplerian orbit.
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In this chapter we formulate a post-Newtonian theory of gravitational waves.
We follow closely the general methods devised by Will and Wiseman (1996), and
rely on many results obtained in preceding chapters. We begin in Sec. 6.1 with an
examination of the gravitational potentials in the far-away wave zone. We show
that it is always possible to refine the harmonic gauge into a transverse-tracefree
(TT) gauge that is ideally suited to the description of gravitational radiation, and
we introduce efficient techniques to carry out the TT projection. In Sec. 6.2 we
launch a calculation of the gravitational-wave field to %PN order beyond the leading,
Newtonian expression. This calculation is extremely lengthy, and it occupies the
bulk of the chapter, from Sec. 6.3 to Sec. 6.10. The results obtained in these sections
apply to a general N-body system, but they are stated in somewhat abstract terms.
In Sec. 6.11 we convert them into more concrete expressions by specializing to a
two-body system, and in Sec. 6.12 we specialize them even further to the case of
circular orbits. At this stage our results are fully explicit, and expressions for h,
and hy, the two gravitational-wave polarizations, are given in Egs. (6.12.17) and
(6.12.18), respectively.

6.1 Far-away wave zone and TT gauge

6.1.1 Gravitational potentials in the far-away wave zone

The notion of a wave zone was introduced back in Sec. 2.2; this is the region of
three-dimensional space in which r := |z| is much larger than A., the characteristic
wavelength of the gravitational-wave field. The notion of a far-away wave zone
was introduced back in Sec. 2.4.1; this is a neighbourhood of future null infinity
in which the r—! part of the gravitational potentials h*? dominates over the parts

81
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that fall off as »—2 and faster. As we shall see below, the gravitational-wave field is
the transverse-tracefree (T'T) piece of these 7~! potentials; this is what we aim to
calculate in this chapter.

We constructed wave-zone potentials back in Sec. 4.4 (in the second post-
Minkowskian approximation), and from the summary provided in Sec. 4.4.7 we
gather that their behaviour in the far-away wave zone is given by

4GM = G

00 —2

W= 5 +—C4TC(T,Q)+0(T ), (6.1.1)
a G a —

- =D (1,Q) +0(r=?), (6.1.2)
a G a —

h b = EA b(T,Q)"‘O(T’ 2). (613)

Here, M is the total gravitational mass of Eq. (4.4.40), while C, D% and A are
functions of retarded-time
Ti=t—r/c (6.1.4)

and of the unit vector Q := x/r. The functions C, D% and A% were calculated
in the second post-Minkowskian approximation in Sec. 4.4, but we shall not need
their precise form here. In fact, the validity of Eqgs. (6.1.1)—(6.1.3) extends beyond
the post-Minkowskian domain of Sec. 4.4. Indeed, it is easy to show that these
equations provide solutions to the wave equations Jh*? = 167GT*#/c* provided
only that 7@7, the effective energy-momentum pseudotensor, falls off at least as fast
as 72, The impact of the harmonic gauge conditions dsh*” = 0 on these solutions
will be examined below.

6.1.2 Decomposition into irreducible components

To proceed it is useful to decompose the vector D and the tensor A into their
irreducible components. We write

D = DQ" + D&, (6.1.5)

with DQ® representing the longitudinal part of D*, and D7 its transverse part; this
is required to satisfy
Q.D% = 0. (6.1.6)

The three components of D® are therefore partitioned into one longitudinal com-
ponent D, and two transverse components contained in D%; these are functions of
7 and €. Similarly, we write

1 1
A% = <A+ (me - 35‘“’)19 L QoAb 4 QP AL 4 A% (6.1.7)
which is a breakdown of A% into a trace part %éabA, a longitudinal-tracefree part

(e — %5‘“’)3, a longitudinal-transverse part QA% + QA% and a transverse-
tracefree part A%fif; these also are functions of 7 and . We impose the constraints

QA% =0 (6.1.8)

and
QuAS = 0 = 6ap ASr, (6.1.9)

so that the six independent components of A% are contained in two scalars A and
B, two components of a transverse vector A%, and two components a transverse-
tracefree tensor A%.. The last term in Eq. (6.1.7) is called the transverse-tracefree
part, or TT part, of A?’. As we shall see, the radiative part of the gravitational
potentials are contained entirely within A%.
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6.1.3 Harmonic gauge conditions

The harmonic gauge conditions are
P + 8bh0b =0, R0 + 8bhab =0,

in which an overdot indicates differentiation with respect to 7. Spatial derivatives
have a simple structure in the far-away wave zone. Going back to Eq. (1.8.5), we
see that 9,71 = O(r=2) and 9,9 = O(r~1), but that 9,7 = Q,. It follows that
when 0, is acting on the gravitational potentials of Eq. (6.1.1)—(6.1.3), the only
term that survives comes from

0o = —c10,. (6.1.10)

We therefore have 9,h*? = —¢1h*?Q, + O(r~2), and the gauge conditions reduce
to
0 — uh% =0, A% — Q% =0 (6.1.11)

in the far-away wave zone.
After substituting Egs. (6.1.5) and (6.1.7) into Egs. (6.1.1)—(6.1.3), and these
into Eqs. (6.1.11), we find that the harmonic gauge conditions imply

C = D, (6.1.12)
1, 2

D = -A+:B 11
34+ 3B, (6.1.13)

D& = A% (6.1.14)

We have set the constants of integration to zero, because an eventual T-independent
term in C' would correspond to an unphysical shift in the gravitational mass M,
while a 7-independent term in D® would be incompatible with Eq. (4.4.38) —
the time-independent part of h%® is associated with the spacetime’s total angular
momentum, and it must fall off as r—2.

Incorporating these constraints, the gravitational potentials become

4GM G 1

% = ——(A+2B -2 1.1
c2r + C4’I“ 3( + ) + O(T )a (6 5)
G 1

Oa a a —2

a G 1 a a 1 a a a a

het 647{35 bA+ (Q - 26 b)B+Q Al QP AL 4+ A%,

+0(r=?), (6.1.17)

in which A, B, A%, and A% are functions of 7 and £2. We have now a total of six
independent quantities: one in A, another in B, two in A%, and two more in A%%..
The harmonic gauge conditions have eliminated four redundant quantities.

6.1.4 Transformation to the T'T gauge

It is possible, in the far-away wave zone, to specialize the harmonic gauge even fur-
ther, and to eliminate four additional redundant quantities. We wish to implement
a gauge transformation that is generated by a four-vector field £%(¢, x). It is well-
known that if the spacetime metric is expressed as gang = 7ag + 09ag, Where 143
is the Minkowski metric and dg,ps is a perturbation, then the gauge transformation
produces the change

6gaﬁ - 5gaﬁ - aagﬁ - aﬁfav
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where &, = naggﬁ . In the far-away wave zone we can neglect terms quadratic in
he? (because they fall off as r=2), and Eq. (1.6.4) reduces to

1 _
9o = Map + hap — Shilap + o(r=2),

where hag = Naung W and h = 1, hW*. It follows that hag = 6gap — %5917043,
where g = n*"0g,,,, and that the gauge transformation produces the change

hF — 1P — 9%¢P — 0P E™ + (06" ) Nap (6.1.18)

in the gravitational potentials. It follows from Eq. (6.1.18) that the harmonic gauge
conditions will be preserved whenever the vector field satisfies the wave equation
LE* = 0, because 8gh0‘f3 — 8gh°‘f3 — e~

We wish to preserve the harmonic gauge, and we construct a solution to the
wave equation by writing

€O = CTGra(T’ Q)+ 0(r?), (6.1.19)
a G a -
e = = (7,9) +O0(r™?), (6.1.20)

where o and 3% are arbitrary functions of their arguments. As before we decompose
the vector in terms of its irreducible components,

B = pQ" + B, Q.8% = 0. (6.1.21)

We differentiate £° and £ using the rules spelled out in Sec. 6.1.3, and we insert the
results within Eq. (6.1.18). After also involving Egs. (6.1.15)—(6.1.17), we eventually
deduce that the gauge transformation produces the changes

A — A+3a-4, (6.1.22)
B — B+28, (6.1.23)
AL - AL+ (S, (6.1.24)
A — A% (6.1.25)

in the irreducible pieces of the gravitational potentials.

We see that the transverse-tracefree part of A? is invariant under the gauge
transformation. We see also that «, 3, and % can be chosen so as to set A, B,
and A% equal to zero. Implementing this gauge transformation, we arrive at the
simplest expressions for the gravitational potentials in the far-away wave zone:

4GM

00 __ —2

P = +0(r—2), (6.1.26)
R = O(r?), (6.1.27)
a G a —

het = EATQF(T,KD—I—O(T 2). (6.1.28)

By virtue of the conditions imposed in Eq. (6.1.9),
QA = 0= 0ap ATy,

the number of time-dependent quantities has been reduced to two. The gravitational
potentials of Eqgs. (6.1.26)—(6.1.28) are said to be in the transverse-tracefree gauge,
or T'T gauge, a specialization of the harmonic gauge that can be achieved in the far-
away wave zone. It is clear that the radiative degrees of freedom of the gravitational
field must be contained in the two independent components of A%%..
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6.1.5 Geodesic deviation

This conclusion, that A2%%, contains the radiative degrees of freedom, is reinforced
by the following argument. Suppose that a gravitational-wave detector consists of
two test masses that are moving freely in the far-away wave zone. The masses are
separated by a spacetime vector n®, and they move with a four-velocity u®. As-
suming that the distance between the masses is small compared with the radiation’s
characteristic wavelength (this defines a short gravitational-wave detector such as
the LIGO instrument), the behaviour of the separation vector is governed by the
equation of geodesic deviation

D2no¢
ds?
in which D/ds indicates covariant differentiation in the direction of u*, and where

R s is the Riemann tensor. Assuming in addition that the test masses are moving
slowly, this equation reduces to
d277a
dt?
which involves ordinary differentiations with respect to t = 2%/c, as well as the
spatial components of the separation vector.

It is a straightforward exercise to compute the Riemann tensor associated with
the metric gog = Nag + hag — %hnag, even when the gravitational potentials are
expressed in their general form of Eqgs. (6.1.15)—(6.1.17). Alternatively, one can
proceed instead from Egs. (6.1.26)—(6.1.28) and appeal to the fact that the Riemann
tensor is invariant under gauge transformations. In any event, the computation
reveals that

G

Ry = _72647,*4%121‘ +0(r7?),

= —Ro‘ﬁwuﬁnﬁyu‘s,

_ 2 pa b
= —c"R 00",

and the equation of geodesic deviation becomes
n* G
2 2cir

We conclude that our gravitational-wave detector is driven by the TT part of the

gravitational potentials, and that the other pieces of the potentials contain no ra-
diative information.

. B 1., B
Aty + O(r™%) = Shir + 0(c7).

6.1.6 Extraction of the TT part

Given gravitational potentials presented in the general form of Eq. (6.1.3),

G
h = —— A7, Q)+ 0(r™?), (6.1.29)

ctr
the radiative pieces can be extracted by isolating the transverse-tracefree part of
A? . This can be done efficiently by introducing the TT projector (TT)% ,, and by

writing

A%, = (TT)? A, (6.1.30)
The TT projector is constructed as follows. We first introduce the transverse pro-

jector
b = 0% — Q% (6.1.31)

which removes the longitudinal components of vectors and tensors. For example,
for a vector A% = AQ® + A% with Q,A% = 0, we have that P3A* = A%. The
transverse projector satisfies

PiQb =0, P% =2 PP =P%. (6.1.32)



86 Gravitational waves

The TT projector is obtained by acting with the transverse projector twice and
removing the trace:

1
(tT)? , ;= P2 P" — 5P“”Pcd. (6.1.33)

It is easy to see that this possesses the required properties. First, (TT)“bchd =0
second, (TT)? ,6°! = 0; and third, (TT)% ;A% = A% if the tensor A%Y. is already
transverse and tracefree. For a general symmetric tensor A% decomposed as in
Eq. (6.1.7), it is easy to verify that

(TT)% ;A = A% (6.1.34)

This equation informs us that the TT part of any symmetric tensor A%’ can be
extracted by acting with the TT projector defined by Eq. (6.1.33).

It is useful to introduce a vectorial basis in the transverse subspace. Having
previously introduced

Q := [sin 6§ cos ¢, sin 6 sin ¢, cos 0] (6.1.35)

as the unit vector that points in the longitudinal direction, we introduce now the
unit vectors

6 := [cos 0 cos ¢, cos 0 sin ¢, — sin 6] (6.1.36)

and
¢ = [—sin ¢, cos ¢, 0], (6.1.37)

which are both orthogonal to €2, and also orthogonal to each other. The vector
0 points in the direction of increasing 6 on the two-sphere, while ¢ points in the
direction of increasing ¢; they span the transverse subspace orthogonal to €2, which
points in the direction of increasing r. The basis gives us the completeness relations

6% = QQ° + 690° + 9", (6.1.38)
and it follows from Eq. (6.1.31) that the transverse projector is given by
P = 979° 4 ¢, (6.1.39)

This can be inserted within Eq. (6.1.33) to form the TT projector.

Any symmetric, transverse, and tracefree tensor A%%. can be decomposed in a
tensorial basis that is built entirely from the vectors 8 and ¢. Such a tensor has
two independent components, which we denote A and Ay. We write

A = AL (0°6° — ¢7") + A (079" + ¢"0°), (6.1.40)

so that A, represents the 6-6 component of the tensor (and also minus the ¢-¢
component, in order to satisfy the tracefree condition), while Ay represents its 6-¢
component. It is easy to check that Eq. (6.1.40) implies

Ay = (0405 — datr) AT,

Ay =

[N R

(Bap + Pabh) A%y

Because the tensorial operators acting on A4% are already transverse and tracefree,
this can also be written as

Ay = (0205 — dadhy) A™, (6.1.41)

DN = N =

Ay = (0a0p + ¢abh) A", (6.1.42)
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in which the projection operators are acting on the original tensor A% instead of
its TT part A%

Equations (6.1.41) and (6.1.42), together with the definitions of Eqs. (6.1.36) and
(6.1.37), provide an efficient way of extracting the transverse-tracefree components
of a general tensor A?°. With A, and A, known, the TT part of the original tensor
can be constructed with the help of Eq. (6.1.40).

6.2 Computation of h*: Strategy and
requirements

We wish to integrate the wave equation

167G

ab __
Oh™ = =5

Tt (6.2.1)

for the spatial components of the gravitational potentials, and evaluate the solution
in the far-away wave zone. Here,

7% = (—g)(T* + t{}, + ti7) (6.2.2)

are the spatial components of the effective energy-momentum pseudotensor first
introduced in Sec. 1.3, decomposed into a material contribution 7%, the Landau-
Lifshitz pseudotensor tgg , and the harmonic-gauge contribution t?{b. We wish to
integrate the wave equation to a degree of accuracy that surpasses what was achieved
in Chapter 4, and we wish to extract from h® the transverse-tracefree pieces that
truly represent the gravitational-wave field.

Techniques to integrate Eq. (6.2.1) were developed in Chapter 2. In Sec. 2.3 we
learned to express the solution as

h® = L% + h9Y, (6.2.3)

in terms of a near-zone retarded integral hfj’/ and a wave-zone integral h“wb. In
Sec. 2.4.1 we derived an expression for h%‘/ that is valid in the far-away wave zone;
this is given by Eq. (2.4.5), which we copy as

h = 4G i lQ 9 q/ 7% (u, ") 2'? BBz’ + O(r=?) (6.2.4)
N Ay q e\ u o ’ ’ o
q=0
where u 1= ¢t —r = c(t — r/c) =: cr is a retarded-time variable, Qpaz'? :=
Qay Qay - Qg 2’42’92 - "% = (@ - x’)9, and where the domain of integration

A is defined by r' := |x’| < R, with ' = R representing the boundary d.# of the
near and wave zones. And in Sec. 2.5.2 we devised a method to calculate h?,,? when
79 can be expressed as a sum of terms of the form

790, n) = = F(w) Q)

4T rm

: (6.2.5)

in which f is an arbitrary function of w, n is an arbitrary integer, and Q) is an
angular STF tensor of degree ¢, of the sort introduced in Sec. 1.8.1. According to
Eq. (2.5.16), h4} is a sum of terms of the form

R oo
hab [0, n] = jﬁmw{/o dsf<u—25)A(s,r)+/R dsf(u—Zs)B(s,r)}, (6.2.6)

where

r+s r+s
A(s,r) = / (&) dp, B(s,r) = / Pi() dp, (6.2.7)

R pnfl n—1
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in which Py is a Legendre polynomial of argument & = (r + 2s)/r — 2s(r + s)/(rp).

We shall return to h% at a later stage. For the time being we focus our attention
on the near-zone contribution ~%, and we write Eq. (6.2.4) in a form that reveals
the early terms of the sum:

4 1 2
hi’;/ = TG / 7_ab d?’x/ + Q. 0 / Tabx/c d3x' + *Qcﬂdi/ Tabxlcx'd de/
cAr g ou J 4 2 ou? | 4
+ 1Q Q40 83/ T/ @By’ 4 (g > 4]t + O(r7?)
6 ciéd eau?) ” ft )

in which [q > 4] stands for the remaining terms in the sum over ¢q. To evaluate the
first two integrals we invoke the conservation identities of Sec. 1.4. According to
Eq. (1.4.3), for example,

1 02 1
7_ab _ *7(7’00‘%“%1)) + §8c (Tacxb + Tbcxa _ 8dTCd!Ea.’Eb)
and 7% can be replaced by 17%°2%2% inside the volume integral, at the price

of adding an integral over 0.# to account for the total divergence. We involve
Eq. (1.4.4),

10 1
Tab{EC _ 567(7_0al,bxc + 7_Obxaxc o Tchaxb) + §ad(7_adl,bxc + dexaxc o ’TCd.’Ea.’Eb),
u

in a similar way.
Introducing some notation to simplify the writing, we have

2G 9? 1
h‘(j)/ — 42{Qab + Qachc + Qabchch 4 7Qab0dchQdQe 4 [q > 4]}
ctr or 3
2G
+ S P 4 P b 4+ O(r72), (6.2.8)
ctr
in which the radiative multipole moments are defined by
1
Q® = —2/ 7005795 @3y (6.2.9)
& S
1
Qabc = — (TOam/bm/c + TObl'/a.’Elc o Tchlam/b) d&’;x/7 (6210)
& S
1
QW = = | ¥ d (6.2.11)
c Joa
abcde 10 ab,_rc_1d,_te 33,1
Q = 55 (I A A el (6.2.12)
¢ M
and where
pe = % (Tacw’b + rhegle — 8&7’0%3'“96’1’) ds., (6.2.13)
oM
abc 10 ad, /b, ./c bd,.la ,.lc cd,.la,.lb
rP = Ty (1% 2 4+ 7/ 2’ — 7% 2") dSq.  (6.2.14)
COT Jow

In the volume integrals, the components of the effective energy-momentum pseu-
dotensor are expressed as functions of 7 :=t —r/c and @’. The same is true within
surface integrals, except for the fact that 2’* is now set equal to RE'?; the surface
element on 0. is dS, := R?Q,dQ)'. The multipole moments Q%, Q¢ Q% and
Qabede a5 well as the surface integrals P2 and P%¢, are functions of 7 only.

In the following sections we will endeavour to calculate the quantities that appear
within Eq. (6.2.8), and we will extract the transverse-tracefree part of h%. In



6.2 Computation of h%’: Strategy and requirements 89

Chapter 4 (see Sec. 4.4.7 for a summary) we saw that at leading order in a post-
Newtonian expansion,
hab — Eiab

ctr”
where 1% is the Newtonian quadrupole moment of the mass distribution, and an
overdot indicates differentiation with respect to 7. This leading term was labeled as
a 1PN term, and it could be calculated on the basis of the leading-order (Newtonian)
contribution to the effective mass density 7°°. For our purposes in this chapter, it
is useful to reset the post-Newtonian counter, and to call the leading term in h®®
the Newtonian contribution to the gravitational potentials; additional terms will be
labeled %PN, 1PN, %PN, and so on. This new convention will have the virtue of
keeping the post-Newtonian orders of the solution in step with those of the source,
and those of the multipole moments.

In this new post-Newtonian counting, we wish to compute h*® accurately to %PN
order. Schematically, we want

pab — %(Co+c—1+c—2+c—3_~_”.),
ctr

in which the leading term is called a OPN contribution, the correction of order ¢—*
a %PN term, and so on. To achieve this we need to calculate:

700 A4+ toobtain Q¥ =L+ ¢ 24,
9% = ¢4l 4. toobtain QW =t 44

and
7% =0 4 ... to obtain Q¥ = ¢72 ... and QW =3 4 ...
And on 0.4 we need to calculate
7 = 472 4. toobtain P =4+ ¢ 24 and P =c 43 4

All in all, this will give us the %PN accuracy that we demand for h?0.

Our considerations have so far excluded h%. We postpone a detailed discus-
sion until Sec. 6.10, in which this contribution to the gravitational potentials is
computed. For the time being it will suffice to say that h% contributes to the
gravitational potentials at %PN order. It is therefore needed to achieve the required
level of accuracy for he?.

The calculations that follow are lengthy. They are considerably simplified by
the observation that ultimately, we wish to extract the transverse-tracefree part
of he®. Tt is therefore not necessary to calculate any term that will not survive
the TT projection introduced in Sec. 6.1.6. For example, a term in h®® that is
proportional to %%, or to Q¢, will not survive the projection, and does not need to
be computed (there are many such terms, and ignoring them will be a substantial
time saver). As another example, terms in Q%°? that are proportional to §%¢, or
st or 594, or 6@ (but not §°¥!), can all be ignored because they will produce
contributions to h® that are proportional to Q% or Q°, and these will not survive
the TT projection. To indicate equality modulo terms that do not survive the
transverse-tracefree projection, we introduce the notation =, so that

Aab m Bab

whenever
(r1), A% = (11", B,
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in other words, A% and B differ by a tensor C® that contains no TT part:
(TT)® ,C = 0.

An additional source of simplification — an important one — was exploited
previously, back in Sec. 4.4.4, with a justification provided in Sec. 2.3: We are free
to ignore all R-dependent terms in hfl/f/, and all R-dependent terms in h"Wb, because
any dependence on the arbitrary cutoff parameter R (the radius of the artificial
boundary between the near zone and the wave zone) is guaranteed to cancel out
after hfj’/ and h‘;} are added together to form the complete potentials h*®. We shall,
therefore, feel completely free to drop all R-dependent terms from our expressions,
and this is another significant time saver.

6.3 Integration techniques for field integrals

In the course of our calculations we shall encounter a number of field integrals, an
example of which is

1
E® .= — UaaUxb dz, (6.3.1)
4
where . is the domain of integration r := || < R, and where
G
U= § ool A (6.3.2)

T — 24|

is the Newtonian potential. In this section we introduce techniques to evaluate such
integrals. We will examine the specific case of Eq. (6.3.1), but the techniques are
quite general, and they will apply equally well to many similar field integrals.

6.3.1 Ezplicit form of E®°; Change of integration variables

After evaluating 0°U we find that the field integral can be expressed in the more
explicit form

= GEmAEY =Y > GPmampEYy, (6.3.3)
A A B#A
where .
1 _ a
B | (AL Vi S (6.3.4)
dr | 4 |z — z4|
and ( o
1 x — zp)%
E%y = — d’z. 6.3.5
AB 477///, e — zallx — 2|3 v ( )
To evaluate the first integral we make the substitution
r=12z4+uy, (6.3.6)
and integrate with respect to the new variables y. This leads to
1 y* y
B =— 4 6.3.7
= v+ [ L (637)
where y := |y|. To evaluate the second 1ntegral we use instead
r=zp+y (6.3.8)
and integrate with respect to y. This leads to
1 1 yayb Zb 1 ya
E :—/ - By+LB [ ————— 2By, 6.3.9
Y P T AR

where z4p := 24 — 2.
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6.3.2 Translation of the domain of integration

The schematic form of each integral that appears in Eqgs. (6.3.7) and (6.3.9) is

/ﬁ fly) dy,

where f is a function of the vector y, which is related to the original set of variables
x by a relation of the form & = y 4+ z, with z independent of . The domain of
integration . is defined by || < R, or |y + z| < R, and it will be convenient to
replace it by the simpler domain .#, defined by y := |y| < R.

To effect this replacement we note that the cutoff radius R can be assumed to
be large compared with z := |z|. (Recall the discussion of Sec. 2.3, in which R is
chosen to be comparable to A., the characteristic wavelength of the gravitational
radiation. Recall also the discussion of Sec. 3.3.3, in which A, is shown to be
large compared with both |z4| and |z4p|, because in a slow-motion situation the
matter distribution is always situated deep within the near zone. Conclude from
these observations that z/R < 1, as claimed.) The condition that defines .# is
y? + 2z -y + 22 < R?, and this can be expressed more simply as

y <R —zcosy+ O(2%/R)

when z/R < 1; here « is the angle between the vectors y and z, defined by the
statement zycosy :=z-y.
Switching to the spherical polar coordinates (y, 8, ¢) associated with the vector

y, the integral is
R—zcosy+---
[ao ] £(y.6.6)y*dy
0

| swy
/dQ/OR f(y,0,9) y2dy+/d9/:Zcosw.llf(yﬁ?fb) y2dy,

where d) = sinf dfd¢ is the element of solid angle. In the second line, the first
integral is over the domain ., while the second integral is estimated as

[rasR R 0. 0)d0=~§ sz ds
o,
to first order in z/R, where dS? := R2Q%d) (with Q := y/y) is the surface element
on 0.#,, the boundary of .#, described by the equation y = R.
We have obtained the useful approximation

/ fly)dy = / fW)dPy— ¢ fy)z-dS+--, (6.3.10)
M My oy

in which the domain of integration .#, is defined by y := |y| < R, and 9.4, is its
boundary at y = R. In Eq. (6.3.10), the integration variables y are related to the
original variables x by the translation @ = z 4+ y, and . is the original domain of
integration defined by |z| < R. It is clear that the surface integral in Eq. (6.3.10)
is smaller than the volume integral by a factor of order |z|/R < 1; the neglected
terms are smaller still.

6.3.8  FEvaluation of Efff’

We now return to the field integral of Eq. (6.3.7). We begin by working on the first
term, which we copy as

Ar J o y!

1 yyP
d>y.
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Inserting this within Eq. (6.3.10), we find that the volume integral is

i yabe_]'/ ab _ ab/R _lab
= " dy—47T %yQQdde—<<QQ>> ; dy—35 R,

in which ((---)) := (47)~! [(---) dQ denotes an angular average; the identity (2°QP))
%(5‘“’ was established back in Sec. 1.8.4, along with other similar results. This con-
tribution to E%’ can be discarded, because it is proportional to R, and it was agreed
near the end of Sec. 6.2 that all R-dependent terms can indeed be ignored. With
the understanding that z stands for z 4, the surface integral is

b

7i yay . _ 1 ayb c o anboc)
wha i edS = - [ 000720040 = —2(20'0%) =0,

The neglected terms in Eq. (6.3.10) are of order R~! and smaller, and because they
depend on R, they can be freely discarded. We conclude that the first term in
Eq. (6.3.7) evaluates to zero.

We next set to work on the second term, which involves the integral

1 y* 3
— — d’y.
A | 4 vt y

Inserting this within Eq. (6.3.10), we find that the volume integral is

%///{ yt d3y_<<m>>/oni/y:0'

The volume integral is zero, and it is a fortunate outcome that the logarithmic
divergence at y = 0 (which occurs because the matter distribution is modeled as a
collection of point masses) requires no explicit regularization, because the angular
integration vanishes identically. The surface integral is

1 ye z 1z

" b, ST TR = 5%

in which z stands for z4. The additional terms in Eq. (6.3.10) are smaller by

additional powers of z/R < 1, and because they all depend on R, they can be

freely discarded. We conclude that the second term in Eq. (6.3.7) evaluates to zero.
We have arrived at

EY =0, (6.3.11)

modulo R-dependent terms that can be freely discarded.

6.3.4 FEvaluation of E%,

To evaluate the right-hand side of Eq. (6.3.9) we continue to make use of Eq. (6.3.10)
to express an integral over the domain .# in terms of a volume integral over .#,
and a surface integral over 0.#,. We also make use of the addition theorem for
spherical harmonics,

m Yim(Q 3.12
|y_ZAB| Z Z 2€+1 4+1 Yim(nap)Y ™ (Q), (6.3.12)

in which r< := min(y, zap), >~ = max(y, zap), Q@ :=y/y, and nap = zap/24B-
We recall that zap := 24 — 25.
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We insert Eq. (6.3.12) within the first integral on the right-hand side of Eq. (6.3.9).
Recalling Eq. (6.3.10), we approximate this by

1 1 ayb 1 1
—/ 7%’ &y = —/ —Q%0by dyd
At J 4, |y — zaB| y A Jou, |y — zaB|

1 ® TZ< \/ m ab
= ;244—1/0 dyy@;/Yzm("AB)Y (02)Q*Q° 2.

To evaluate the angular integral we express Q%O as

QaQb _ Q<ab> + %50,17,

where Q¢ is an STF tensor of the sort introduced in Sec. 1.8.1, and we invoke the
identity displayed in Eq. (1.8.16),

> Vim(nap) / Yo () dQ = 6 nl. (6.3.13)
m=—~¢
This produces
1 1 1 b)
— d3 SK(2,1 <"+ ZK(0,1) 8%,
47r///[ \y—zAB\ 5 (2,1) 3 0,1)

where the radial integrals

R 0
K(¢,n) ::/O " ZH dy (6.3.14)

will be evaluated in the next subsection. This expression must be corrected by the
surface integral of Eq. (6.3.10). We have

1 1
7{ 1y y z- dS— /7Q“Qb§2°dﬂ
dn Jo.u, 1y —zanl y dr ) |y — zasl

in which z stands for zp. Because the leading term of |y — z4p|~! in an expansion
in powers of zap/R < 1 is equal to R}, the surface integral potentially gives rise
to an R-independent contribution to E%’B. But this leading term is proportional to
(Q2QbQe) = 0, and we find that the surface integral does not actually contribute.
At this stage we have obtained

1 1 Yy’ 4 1 (aby 1 b
— | —— 27 By=-K(21 ~K(0,1) 5"
47T///[|y_zAB| 5 Y =3 (2, 1) nyg T3 (0,1)

for the first integral on the right-hand side of Eq. (6.3.9).
We next set to work on the second integral, and we begin by evaluating

1 1 a . 1 1
7/ Y gy = 7/ Q% dydD
A Jo4, 1y — zaBly Am Jou, |y — zaB]
1 R ;
_ %:2“1/0 Mz/nm (nap)Y " (Q)Q" dO.
Using Egs. (6.3.13) and (6.3.14), this is

1 1 y® 5 1
—_ —— 2 d’y = =K(1,0) n%p.
477//4, ly — zan| y° Y 3 (1,0)n%p
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This must be corrected by the surface integral of Eq. (6.3.10), and it is easy to show
that in this case also, the result scales as R~! and does not contribute. We have
therefore obtained

1 1 oy, 1
— [ =Y By = ZK(1,0)n4
47r/,,,|y_z,43|y3 y= 3K (1,0 nt

for the second integral on the right-hand side of Eq. (6.3.9).
Altogether we find that

1 a1 1
Bl = ZK(2,1) ni 4 SK(0.1) 5 4 S K (1,0) nfy 2. (6.3.15)
where . R
nap= 22 = "A""D (6.3.16)
zap  |za — 2B

is a unit vector that points from body B to body A, and where nf:? =n%znY g —

%5‘“’ is an STF tensor.

6.3.5 Radial integrals

To complete the computation we must now evaluate the radial integrals defined by
Eq. (6.3.14),

R -
K(¢,n) ::/ y"ﬁ dy, (6.3.17)
0 rs
in which r< := min(y, z) and r~ = max(y, z), with z standing for zap := |24 — 25|.

Excluding the case n = ¢, which never occurs in applications, we have

1 z R o,
Kitn) = g [ oyt [y

=7 +Z:+ 1- nzjz [1 - (Z/R)H]

We discard the last term, because it depends on the cutoff radius R, and we conclude

that
20+ 1

-—n)l+n+1
In particular, K(2,1) = ngB, K(0,1) = —%ZAB7 and K(1,0) = %

K(¢,n)=

Slzanl”s (€4 ) (6.3.18)

6.3.6 E®: Final answer
Substituting Eq. (6.3.18) into Eq. (6.3.15), we find that F%%; becomes

1 a 1 w1 o4
EYy = ZZABniUg) - 62,435 b4 5nAB,sz_

This, together with Eq. (6.3.11) for E%’, can now be inserted within Eq. (6.3.3).
We arrive at

1 1 1
E®=-3"%" G*mamp (4ZABH%§> - EZAB(SGb + 2”%3#3)7
A B#A
and this can also be expressed as
1

1 a a 1 a
B — _ Z Z G*mamp <4ZABNf4§> — EZAB6 b_ 2”,43”«'?4)
A B£A
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if we interchange the identities of A and B and recall that ng4 = —m 4. When
we add these expressions and divide by two, we obtain the symmetrized form

1 1 1
E% = — Z Z G2mAmB (4ZAB71§:1§> - EZAB(sab - 4ZAB”?4371213)~
A B#A

This becomes

1
b_ b 2
W@ = 16‘1 E E G*mamp|za — 2B (6.3.19)

A B#A

after simplification, and this is our final answer.

6.3.7 Summary

To sum up, let us retrace the main steps that led us from the definition
1 a b ;3
= — UoUx’ d’x,
T Joa

to its evaluation

1
b Lcab 2 _
w90 = 46a E g G*mamp|za — zB].

A B#A

These steps will allow us, in the following sections, to evaluate many similar field
integrals.

After inserting the Newtonian potential and its derivative within the integral,
we change the variables of integration from « to y = x — z, in which z stands
for either z4 or zp, depending on the context. We also translate the domain of
integration from .# (defined by || < R) to .#, (defined by |y| < R), and we make
use of the identity

/‘ﬂwﬁy=/‘f@m%— fly)z dS+ -, (6.3.20)
/A My oM,y

in which the surface integral is smaller than the volume integral by a factor of order
|z]/R < 1 (and the dotted terms are smaller still).
Next we invoke the addition theorem for spherical harmonics,

Z Z 2€+1 e+1Y€m(nAB)Yem(Q)7 (6.3.21)

|y_ZAB| =0 m=—¢

in which zap = z4 — 2B, r< := min(y, za5), r> = max(y, zap), 2 := y/y, and
nap = zap/2ap. After expressing all factors such as Q in terms of STF tensors,
the angular integrations are carried out with the help of the identity

> Yim(nas) / Yo () dQ = 6 nl7. (6.3.22)

m=—/

This leaves us with a number of radial integrations to work out, and these are given
by

R ’
r 20+1
K{,n): = "= dy " 6.3.23
)= [0 = ey e (6323
provided that ¢ # n.

And at last, after simplification, we obtain our final expression for the field
integral. All the while we are justified to throw away any term that contains an
explicit dependence on the arbitrary cutoff radius R.
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6.4 Computation of Q®

We launch our calculation of the gravitational-wave field with a computation of
Q?, the radiative quadrupole moment. According to Eq. (6.2.9), this is defined by

1 .
—2/ 790(r, 2) 22’ dx, (6.4.1)
& Ja

Q(1) =
in which 7 := ¢ — r/c is retarded time, and where we suppress the primes on the
integration variables to simplify the notation. (It should be kept in mind that r is
the distance from the origin to the field point, which is very distinct from the source
point now identified by the vector x.)

According to the discussion of Sec. 6.2, to calculate Q% to the required degree
of accuracy we need an expression for ¢=27% that includes terms of order ¢ (New-
tonian, or OPN) and terms of order ¢~2 (1PN). Such an expression was obtained in
Sec. 4.1, and it can be read off the right-hand side of Eq. (4.1.26). We have

2,00 Zm ( SL?“‘)a(m—zA) 161G2a UOU+0(c™), (6.4.2)

where we used the fact that in the near zone, and at this order of accuracy, the
gravitational potential ® defined by Eq. (4.1.25) can be set equal to the Newtonian
potential
G
U= Z | ma (6.4.3)

T —zal|

We recall that

=3 |szB (6.4.4)

) A — ZB]

is the potential external to body A, evaluated at @ = z4. In Eqgs. (6.4.2)—(6.4.4),
the position vectors z4 and velocity vectors v4 evaluated at the retarded time 7.

The quadrupole moment contains both a matter contribution that comes from
the é-functions in 7%, and a field contribution that comes from the term involving
0.U0°U. The matter contribution can be calculated at once:

Q™M Zm ( 4 3LUJA)z§,zf4. (6.4.5)

The field contribution is

Q™[F] = / DU Uz 2’ d3x, (6.4.6)

167rG’ 167Gc2

and its computation requires a lot more work. The complete radiative quadrupole
moment is

Q™ = Q" M] + Q[F] + O(c™™), (6.4.7)
and it will be calculated accurately through 1PN order.
To evaluate the field integral of Eq. (6.4.6) we first express the integrand in the
equivalent form
c a,.b c a,.b 1 a 2..b 1 b 2 .a
oUUz%" = 0.(U8Ux :c)—§8 (U:U)—§8 (U?z)
+ U%6% —U(V2U)za®
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which allows us to integrate by parts. We may discard the term U2§? on the
grounds that it will not survive the T'T projection introduced in Sec. 6.1.6. We may
also replace V2U by —47G Y , mad(z — z4), and write

/ .U Uz dPPr = 7{ UdUz®z® dS, —7{ U2x@qsh
M oM oM
+ 47TGZmA LUJAzsz,
A

where the notation = was introduced near the end of Sec. 6.2, and where dS® =
R2Q d) is the surface element on 9.#. Making this substitution, we obtain

Q[F] =

4 b 30772 b
o (R (UBUQ Q") — R3(U20°Q) ) o ZmA Jaz32Y,
in which the angular brackets denote an average over the unit two-sphere.

We must now think of evaluating the surface integrals, on which x is set equal
to RQ. Recalling that R is large compared with z4 (refer back to Sec. 6.3.2), it
is appropriate to expand U in powers of 7! before we insert it within the surface

integrals. We have
Gm

U=—+ Gfabaabfl +0(r™3), (6.4.8)
where m = EA my is the total mass, and % := ZA mAszlzﬁ‘ is the Newtonian
quadrupole moment of the mass distribution. It is important to notice that the
Newtonian dipole moment, I* := )" , maz%, has been set equal to zero. This is
allowed, because I = mZ + O(c™?), where Z is the post-Newtonian barycentre
(refer back to Sec. 5.4.5), and we work in a coordinate system such that Z = 0.
From Eq. (6.4.8) we also get

1
U = GmO,r~ + iclbcaabcr—l +0(r™). (6.4.9)

These results indicate that on 0., the potential and its gradient are given schemat-
ically by U = R™'+R 3+ .- and 8,U = R24+R~*+- ... This implies, for example,
that RAUO.U =R +R ' +--- and R3U? = R+ R~ 4 ---. This reveals, finally,
that the surface integrals produce no R-independent contrlbutions to Q[F].

We have obtained

QIF] £ — QQZmA 142425, (6.4.10)

and combining this with Eqgs. (6.4.5) and (6.4.7), we conclude that the radiative
quadrupole moment is given by

QY = ZmA (1 + ELA B % ng )ZZZZ +0(c™). (6.4.11)

This expression leaves out a term proportional to 5% that would not survive the
action of the transverse-tracefree projector (TT)* 40 as well as R-dependent terms
that can be freely discarded.

6.5 Computation of Q%

6.5.1 Definition of auxiliary quantities

We turn next to the computation of Q®*¢, the radiative octupole moment. According
to Eq. (6.2.10), this is defined by

Qabc = Aabc_|_Abac_Acab7 (651)
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where
1

—/ 70 (7, @) a2 d3x, (6.5.2)
M

Abe(r) = =
in which 7 := ¢ — r/c is retarded time, and where we suppress the primes on the
integration variables to simplify the notation.

According to the discussion of Sec. 6.2, to calculate Q% to the required degree
of accuracy we need an expression for ¢~27% that includes terms of order ¢=* (1pPN)
and terms of order ¢—3 (%PN). Such an expression was worked out in Sec. 4.1, and
it can be obtained by adding the contributions provided by Eqgs. (4.1.11), (4.1.18),
and (4.1.22). After inserting h%° = 4U/c?* + O(c™*) and h%* = 4U%/c3 + O(c™%)
within Eq. (4.1.18), we find that

_ 1 vi | 3|UJa
2_0a a A
cor = - EA mAvA<1+202 + =2 5(:8sz)

[12(78“U +16(0°U? — [“)dU“)adU} +0(c®). (6.5.3)

1
+ 167Gc3

Here, U is the Newtonian potential of Eq. (6.4.3), U is its derivative with respect
to 7, |U| 4 is its regularized value at & = z4, and

Z Gmavi (6.5.4)

|z — z4|

is the gravitational vector potential. We recall that the potentials satisfy the Poisson
equations V2U = —47G Y ,mad(z —z4) and VU = —A7G Y, mav4d(x —z4).

The octupole moment contains a contribution Q®¢[M] that comes directly from
the matter distribution, and another contribution Q%¢[F] that comes from the
gravitational field. They are obtained from A%¢ = A%¢[M] + A%¢[F] + O(c79),
which is then substituted into Eq. (6.5.1). We have introduced

A“bc : ZmAv ( UA —i—3LUJ )25‘422 (6.5.5)

and

1

abc o
ATR] = 167Gc?

/ [1203‘@ +16(0°U? - 8dU“)8dU] 2brtd®z,  (6.5.6)
M

and the remainder of this section will be mostly devoted to the computation of
Aabc[F].
6.5.2  Computation of the field integral: Organization

To simplify our computations, we invoke the harmonic gauge conditions, specifically
its near-zone consequence U—|—8dUd = 0, to eliminate U from Eq. (6.5.6). It becomes

4
abc _ abc abc abc
where
1
B = —/ O"UdgU s x¢ dx, (6.5.8)
Bgbe = — / 0qU0 U bz dPe, (6.5.9)

B§be = — / 0qU U xbxe d3. (6.5.10)
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After integration by parts, which is designed to leave one factor of U undifferen-
tiated, we find that each field integral B¢ breaks down into a volume integral
B®¢[.#] and a surface integral B¢[.#]. A number of terms are found to be
proportional to 6%, or §%¢, or §°¢. All such terms will not survive the transverse-
tracefree projection effected by Eq. (6.1.34), and according to our discussion near
the end of Sec. 6.2, they can all be dropped. For example, if B¢ contains a term
5P B¢, then its contribution to Q®° will be of the form 26%° B¢ — §%°BY. The first
term is a pure trace, and the second term is longitudinal, because it becomes pro-
portional to Q% after Q¢ is multiplied by €Q.; in each case the contribution does
not survive the TT projection.
After eliminating all such terms, we find that

Bizbc g Babc %] abc[aﬁ] (6511)
Bil#) = / Uo U atz d’e, (6.5.12)
Bi*[0.4) = UdaU? 2’2 dS*, (6.5.13)
47T oM
that
ngc o Babc %] +Babc[8%} (6514)
Bs*la] = _7/ U(0°U% 2%2° + 0°U" 2° + 0°U° 2*) d®x, (6.5.15)
Bs"od) = - U@“Ud a’x® dSq, (6.5.16)
T /-
and that
By = B§™La) + B*[o.4), (6.5.17)
1
Bl = —E//”U(WU%%C+8bU“xC+8CUaxb) d*z, (6.5.18)
1
BS™0.M) = — ¢ UIU" "2t dSs. (6.5.19)
I8

We recall that .# is the domain r := |z| < R, with a boundary 0.4 described by
r =R, and that dS® = R2QdS) is the surface element on 0. .
There are many volume integrals to evaluate, but they are all of the form of

1
cmnpbe . — —7/ UommuP abzt d*x (6.5.20)
T J.a
and
1
DM = _T/ Uomun af da. (6.5.21)
T
Specifically,
Bilbc[.///] _ Caddbc,
Babc[%] _ Cfaddbc_,'_Dabc_i_l)acb7 (6522)
Byl#) = C%4™° + D"+ D

Similarly, the surface integrals are of the form of

1
Emnbcp = 47% Uvomy” xbxc dSP7 (6523)
T Jo.n
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with

Blo.d) = B, Blo.#] = BV, B§™o.#] = B, (6.5.24)
The key is therefore the evaluation of the generic volume integrals of Egs. (6.5.20)
and (6.5.21), as well as the evaluation of the surface integral of Eq. (6.5.23). Once
these are in hand, the computation of B, B$*¢, and B¢ is soon completed, and

Eq. (6.5.7) gives us A%*¢[F]. Adding the A%¢[M] of Eq. (6.5.5) produces A*¢ and
from Eq. (6.5.1) we get our final answer for Q.

6.5.3 Computation of C™nrbe

We follow the general methods described in Sec. 6.3. We begin by differentiating
Eq. (6.5.4) twice, which gives

omnYP = — Z GmB’U% |:_3 (33 - ZB) <$ — ZB) +
B

67’””

4m
Zhsmns(p —
|l — zp|° |a:fz3|3+ 3 (@=24)

after inserting the distributional term to ensure that UP satisfies the appropriate
Poisson equation. After insertion of Eq. (6.4.3) and some algebra, Eq. (6.5.20)
becomes

Cmnpbc — Z GQW%UZ (6manc _ 3F£nnbc)
A
2 b b 1 ZbBZJCB
+3 0N GPmampvl (6™ FYy — 3FREY + o™ EEEE ) (6.5.25)
3 ZAB
A B#A
where ) . .
ppeve .= L [ @2 20@ 2 e o, (6.5.26)
dr [ 4 |z — z4|
and ) ) . .
Fipte = — / @ = 26)"(@ —25)" bpe g, (6.5.27)
A | 4l — z 4| |z — zp|°
and where
F = S Fme 8 = 6 Y. (6.5.28)
The term involving 2%2% /245 in Eq. (6.5.25), where zap := |24 — zg|, originates

from the distributional term in ™" UP; a similar term that would involve 2% 24 /244
has been set equal to zero by invoking the regularization prescription of Eq. (4.1.12),
according to which é(x — z4)/|x — 24| = 0.

We first set to work on Fzmbc. Following the general strategy summarized in
Sec. 6.3.7, we substitute * = y + z4 inside the integral, and get

pnve _ L / ymy”ﬁybyc iyt B / Y s
At Ju Y AT Ja Y°
ZCB ymynyb 3 ZbBZ% ymyn 3
+ 47 6 d Y+ 4 6 d Y.
TS Y T Ja Y

According to Eq. (6.3.20), each integral over .# can be expressed as a volume
integral over the simpler domain ., defined by y := |y| < R, plus a correction of
fractional order |bmzg|/R given by a surface integral over 0.7,,.

The first integral produces

1yt s mnbc/R
47r/,,,y . dy_<<QQQQ>>Ody

_ i mn sbe mb snc me snb
= 1572(5 8% 4 6™ 4 6e6™),
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where we involved Eq. (1.8.21). Because it is proportional to R, this contribution

to F}{mbc can be discarded. The surface integral that corrects this will potentially

give rise to an R-independent contribution, and it must be evaluated carefully. It

turns out, however, that it is proportional to z%(QmQ"QPQ09), and it vanishes

because the angular average of an odd number of vectors €2 is necessarily zero. The

neglected terms in Eq. (6.3.21) are of order R ™! and higher, and we conclude that
mnbc

the first integral in F§""*¢ makes no contribution to C™"#be.
The second and third integrals produce terms such as

1 YY" Y s monoe /R dy
= [ YV Y By = (amarn YW
4m My yo Y << >> o ¥

and this vanishes by virtue of Eq. (1.8.20); the logarithmic divergence of the radial
integration requires no explicit regularization. The surface integral that corrects
this is easily shown to be of order R~!, and we conclude that the second and third
integrals do not contribute to C™"Pbe,

The fourth integral produces

A ) g, YO dy = (@) 0 y2_35 o ¥

and this involves a radial integration that is formally divergent. Once more the
surface integral does not contribute, and we have obtained

mnoc 1 mn c R dy

for the field integral of Eq. (6.5.26), modulo R-dependent terms that can be freely
discarded. It is disturbing to see that Fgmbc is proportional to a diverging integral,
but it is a fortunate outcome that the combination 6™ F4¢ — 3F7¢ that appears
into C™"%¢ happens to vanish by virtue of the fact that F7"*¢ is also proportional
to 0™". The divergence does not require explicit regularization, and all in all we
find that F7"* makes no contribution to C™n¢.

We next set to work on F}{‘gbc. Once more we follow the general strategy
summarized in Sec. 6.3.7, and we substitute & = y + zp inside the integral. We get

pme _ L / L y™ymyys 5 2 Ly s,
At J o4 |y —zapl  Y° Ar o ly —2zas|l  y°
¢ 1 m,,mn,,b Zb »C 1 m,n
“B Y 3/53! By + BB/ yé/ &y,
AT J 4 ly —zaBl Yy A J 4 ly —zaBl y

Relying once more on Eq. (6.3.20), each one of the four integrals over .# is approxi-
mated as a volume integral over .Z,, and this is evaluated by utilizing Eqgs. (6.3.21),
(6.3.22), and (6.3.23). This expression is then corrected by evaluating the corre-
sponding surface integral over 0.4,,.

We begin with the first integral, which produces

1 / 1 ymymyly©
Am )4, |y —zaBl  YP

d®y.
To evaluate this we involve Eq. (6.3.21), and we express Q" Q"Q°Q° as

1
anQnQch — Q(mnbc) + ? (&an(bc} + 67an(nc) + 57TLCQ<’I’Lb> + 5an<'rrLc)

1
ncy{mb) bey(mn) mn sbe mb snc me snb
+ ™) + 67°Q )+715(6 67+ MV 4+ ™S )7
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in terms of the angular STF tensors Q(*°® and Q). We evaluate the angular
integrations with the help of Eq. (6.3.22), and the remaining radial integrations are
in the form of Eq. (6.3.23). After some algebra, we obtain the expression

]‘ mnoc (& .
9K(4 ny < be) 4 3 K(2 1)(5’”"715:]3) +permutat10ns>

1 mn sbc mb snc me snb
+1—5K(o,1)(5 gbe + smbsne 4 § 5)

for the volume integral. The corresponding surface integral is easily seen to be of
order R~!, and we arrive at

1 1 m,n,b,c 1 b 1 b
ar ///z ly — zaB]| : yy5y Sy = 1782’43?1%3" 7t ggan (5””7122

28

5mb ("(' 4 §men ng 5nb + 5ncnf4me> + 5bcn<A"§”>)
1

= 5mn6bc 6mb5nc 6mc6nb)

30 ZAB ( + +

after using Eq. (6.3.23) to evaluate the radial integrals.
We next turn to the second and third integrals, which are both approximated

by
1 / 1y iy
A Jo4, 1y —zaBl  y°

To evaluate this we involve Eq. (6.3.21), and we express QmQ"QP as

QanQb — Q (mmnb) 4= (6anb 6men + (SanWL)7
in terms of the angular STF tensor ("), We carry out the angular integrations
with the help of Eq. (6.3.22), and the remaining radial integrations are in the form
of Eq. (6.3.23). After some algebra, we obtain the expression

1 mnb mn m
=K (3.0)n < >+15K(1 0)(5 b+ 6™, + §" nAB)

for the volume integral. The corresponding surface integral is once more of order
R, and we arrive at

1 1 ymynyb 3 1 (mnb) .
E///z\y—zmﬂ Yo dy:ﬁnAB +T0(5 nhp + "Nl g + 6" nA)

after using Eq. (6.3.23) to evaluate the radial integrals.
The final step in the computation of F77%2%¢ is the evaluation of the fourth inte-
gral, which is approximated by

1 1 m,,n
1 / L Vg,
AT J o, |y — zaB| Yy
After following the familiar steps, this becomes
gK(Q, -Dnyp ' + gK(O, —1)6mn",

and the corresponding surface integral is of order R~2. We arrive at

1 / 1 ymy" g 1 (mn) 1
— _— d’y=——n + =K(0,-1)5m",
dr | 4 ly — zap| o° Y 6245 2B 3 ( )
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and we note that K(0,—1) is formally a divergent integral of the same sort that
was encountered in Eq. (6.5.29). We shall see that this divergence requires no
explicit regularization, because (as it happened before) it eventually drops out of
the calculation.

Collecting results, we have obtained

mnbc 1 mnbc 1 mn,_(bc m n me,, n
Fripbe — 182,4an45 )+ %z ((5 nf43> +9 bnfM; 0 +6"n
6nc 6bc ) _ %zAB (6mn6bc 4 5mb6nc + 6mc5nb)

1 mn 1 mn mb,_n n m c
E”fw Y + 10 (5 "l + 6" 0l + 6 b”A’B)ZB

mnc 1 mn, .c mc
Eni‘B >z%+10(5 nig +0"ng +0" nAB> b
1 1 .
S n{mm b oo 4 SK(0.-1)3 2028 (6.5.30)

for the field integral of Eq. (6.5.27), modulo R-dependent terms that can be freely
discarded. The trace of this is

1
—nSp2h + K(0,-1)2%2%,  (6.5.31)

1 " 1 e 1 .
FAB = ZABn1<4bB> — fZAB(Sb + *HZBZB + 5

4 6 2
and we see that, as claimed, the terms involving K (0, —1) cancel out in the com-
bination 6m"FfoB — 3FY mnab (hat appears in Eq. (6.5.25); these terms make no
contribution to C™"Pbe,

We may now substitute Egs. (6.5.29)—(6.5.31) into Eq. (6.5.25). After simplifi-
cation, our final result is

1
cme — Y G [—zAan;m

A B#A 6
3 ne m mn
_ %ZAB (5mbn< c) 5mc (snb 4 6"n ( b 5bc >)
1 (pe 1 . .
Ny Bémn <7nf4bB> _ ﬁébc> + EZAB (67nb5nc + 5m66nb>

- i”%anb)'z% - infﬁ‘"é"@z% 130 (5mb 4p 0" nAB)ZB

= B (5t + Gy )b+ L (4 )
L (—%ng’? n ;5%)2%2%] : (6.5.32)
We recall that zap := |24 — zp| is the distance between bodies A and B, and that
nap:= (za — zp)/|za — zp| is a unit vector that points from body B to body A.

6.5.4 Computation of D™

After inserting U from Eq. (6.4.3) and U? from Eq. (6.5.4) within Eq. (6.5.21), we
obtain

DM — Z GQmA’UAEmp + Z Z GQmAmBUBEAB7 (6533)
A B#A

where

1 —za)"a?
ETP = 7/ (@ = za)"a? s, (6.5.34)
dr | 4 | —zal*
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and

1 — zp)maP
ET ;:7/ (@ = 2p)" s, (6.5.35)
A | 4 |l — zallz — 283

were already introduced in Egs. (6.3.4) and (6.3.5), respectively. These integrals
were evaluated in Secs. 6.3.3 and 6.3.4, respectively, and we obtained

BT = (6.5.36)
and
mp __ ]- (TH,;D) ]' mp ]‘ m p.
EAB = ZZAB'”AB - EZ'AB(S + inABZB” (6'5'37)

these are Egs. (6.3.11) and (6.3.15), respectively. Making the substitutions, we
arrive at

1 m 1 m 1.
pmne — Z Z GQmAvag (4ZAan43p> _ EZAB(S P4 2nABZII73> . (6.5.38)
A B#A

6.5.5 Computation of E™nbep

The surface integrals

1
— 7{ UdmU" zx¢ dSP
oM

47

Emnbcp _

are evaluated at r := |x| = R, and to do this we may substitute Eq. (6.4.8) for U,
which has the schematic form U = R™! + R™3 + ---. Similarly, we may expand
Eq. (6.5.4) in powers of r—!, and express the result schematically as U% = R~2 +
R~3 + ---, which implies that 9°U® = R™3 + R™ + ... We recall that U does
not include a term in R~2 because the Newtonian dipole moment 1% := 3" , maz%
can be set equal to zero, and similarly, U™ does not contain a term in R~! because
Ie = ZA mav4 = 0. With z¢ = ROQ? and dS* = R20® dQ, we find that the leading
term in the surface integral is of order R, and that it must be evaluated carefully.
Further investigation reveals that at this order, 9*U? involves an even number of
angular vectors 2%, which implies that the surface integral involves an odd number
of such vectors. This guarantees that

Emnber — (), (6.5.39)

modulo R-dependent terms that can be freely discarded.

6.5.6 Computation of A®[F)

It is now a straightforward task to substitute Eq. (6.5.32) for C™"P>¢ Eq. (6.5.38) for
D™ and Eq. (6.5.39) for E™™P into Eqgs. (6.5.22) and (6.5.24). These results,
in turn, can be inserted within Eq. (6.5.11) for B{*, Eq. (6.5.14) for B$*, and
Eq. (6.5.17) for B$*. The final step is to substitute these expressions into the
right-hand side of Eq. (6.5.7). The end result, after much simplification, and after
discarding terms that will not survive the TT projection, is

TT 1 1
AR = = Z Z GmAmB{ZAB [—G(nAB ~vp)nh i pnis

A BZA
11 , , 1, ,

+ EnZB (v +vpnap) — FU%nABniXB
1

7
_ Z(nAB ~UB)71?43 (nIABzCB + z%n%B) + anB (v%z% + z]bngB)
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7 1 [1
a b c b, c a b c
4713 (nABZB + ZB”AB) > D) (nAB : 'UB)nABzBZB

7
+ 21)%2%2%} } (6.5.40)

6.5.7 Q»: Final answer

Equation (6.5.40) for A%*[F] and Eq. (6.5.5) for A%*¢[M] can finally be combined
to form A%, as defined by Eq. (6.5.2). After inserting > pzaGmp/zap for [U]a,
and after additional simplification, we obtain

Acbe = me <1+>vAzf’42A

GmAmB

—|(n VA)NY BZAZ 0% 25 26

QCSZZ ZAB [( AB VA B2z + V2425
A B#A

1 b e b e

+@ EA BiAGmAmB [(nAB~vA)nf43nquzf4) —7nf‘43vf422

+7v,‘2n55323]

1

a b c a b o
—35 E Gmampzap |(nap - va)npnhpnis — 11n%gny vy
A B#

+ 117121715’437123]
+O0(c™). (6.5.41)

To arrive at this result we have rearranged the sums in Eq. (6.5.40), and switched
the identities of bodies A and B; this permutation affects the signs of some terms,
because npgs = —nap.
The final expression for Q"¢ is obtained by inserting Eq. (6.5.41) within Eq. (6.5.1),
which we copy as
Qabc _ Aabc + Abac _ Acab. (6542)

We shall not display this result here, as it is more convenient to perform the sub-
stitution at a later stage.

In Eq. (6.5.41), all position and velocity vectors are evaluated at the retarded
time 7 :=t —r/c, and A% is a function of 7 only. We recall that z4p = |24 — 25|
is the distance between bodies A and B, and that nap = (24 — 25)/24p is a unit
vector that points from body B to body A.

6.6 Computation of Q*«

Our next step is the computation of Q%<4 the radiative 4-pole moment. This is
defined by Eq. (6.2.11),

1 -
= / 7%(7, 2) 22 dx, (6.6.1)
M

abed
T) =
QUei(r) =
in which 7 := ¢ — r/c is retarded time, and where we suppress the primes on the
integration variables to simplify the notation.
According to the discussion of Sec. 6.2, to calculate Q*¢ to the required degree
of accuracy we need an expression for ¢=279 that includes terms of order ¢=2 (1PN
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terms), but we do not need higher-order terms. Such an expression was obtained
in Sec. 4.1, and it can be read off the right-hand side of Eq. (4.1.28). We have

Ly 1 1
—2 __ab a,b a b ab ¢ -4
c °T 20—2 - mAUAUA(S(m—ZA)+47TG02 (a U@ U—§5 acUa U) +O(C )7

(6.6.2)
where we used the fact that in the near zone, and at this order of accuracy, the
gravitational potential ® defined by Eq. (4.1.25) can be set equal to the Newtonian
potential

U= Z | Gma (6.6.3)

T — zal|

The multipole moment contains both a matter contribution that comes from the
S-functions in 79, and a field contribution that comes from the terms involving the
Newtonian potential. The matter contribution can be calculated at once:

1
QUM = 5 S maviolid. (6.6.4)
A

The field contribution is

Qabcd[ ]

47rG02

a b c..d g3,
/8U6Uxx d’x 87rG02

—— / 0.U0Uz 2" d*z, (6.6.5)
and the second integral, because it comes with a factor §%° in front, will not survive
a TT projection; it does not need to be evaluated. The complete 4-pole moment is
Qabcd Qabcd[ ] 4 Qabcd [F} + 0(074).

To evaluate the first integral we employ our usual strategy of integrating by
parts so as to leave one factor of U undifferentiated. We find that the integral splits

into a volume integral over the domain .# and a surface integral over 0.4, and
that Eq. (6.6.5) becomes

QWed[F] = QbR _gr] + QR O], (6.6.6)
where 1

QWF, 4] = e ///l U™ 2¢2% b (6.6.7)
and

QF, 9.4] = e 7{9% USPU 2% dS®. (6.6.8)

To arrive at Eq. (6.6.6) we have discarded additional terms that will not survive
a TT projection. For example, a contribution to Q®°? of the form §%¢A"® would
become Q¢ AYQ), after contraction with .04, and this would make an irrelevant,
longitudinal contribution to h®b.

To evaluate the volume integral in Eq. (6.6.7) we substitute Eq. (6.6.3) for U,
as well as

abrr _ _ (w_zA)a(m_zA)b 5ot am ab _
"0 = zA:GmA{ e o F T map T30 ez

Once more we can ignore the terms in 6*°, and we find that

Qabcd[F % T ZG abcd 2 Z Z GmampF (Jr,bcd7

A B#A

where the field integrals Fﬁb“l and F' g%d were already introduced in Sec. 6.5.3, and

are defined by Egs. (6.5.26) and (6.5.27), respectively. From Eq. (6.5.29) we learn
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that Fjde is proportional to % and therefore will not survive a TT projection, and
Eq. (6.5.30) gives us an explicit expression for F%9. After discarding additional
terms that will eventually be projected out, and after some further simplification,

we find that

o 1 . ) 1 1 .
FE4 = —zapntpn’ip (2nGpntp+6°)— *n%B”%B”SB'Z? +——nhpnpzazh.
36 6 GZAB
Inserting these results within Q*°¢[F, .#], we arrive at
TT 1
QWU 4] = o2 Z Z Gmampzapn’gn’p(2nSsns +6°Y)
A BAA
+ 50 2 3 Gmamsnisntionip
92 MAMBNABNABT A% A
A BAA
1 Gmamp . b o 4
— 550>, —————nhpnhpzazh.
25 Bra AB

This expression can be simplified. Consider the second line, which we write as

1 .
) Z Z Gmampn® gnb gnSpzd + (c < d).
A B#A

By rearranging the sums, we see that this is also

1
7 2 O Gmampnipnlip (nhp2h +njazh) + (c o d),
A B>A
or .
b d_ .d
A2 Z Z Gmampntpnipnip (24 — 25) + (¢ < d).
A B>A

The term within brackets is z4pn? g, and we see that the second line in Q¢[F, .|
can be joined with the first line. Our final expression is

abe TT 1 a C >
Q* d[Fa///] = 122 Z Z GmAmBZABnABnilB (nABn%B - 56(1)
A B#A

1 Gmamp
~ 52 E E 7717437111’432'221‘2. (6.6.9)
c ZAB
A B#A

Moving on the surface integral of Eq. (6.6.8), we recall our previous work in
Sec. 6.2, in which U was seen to have the schematic structure U = R"1+R 3+ ..
when evaluated at » = R, while 9°U is given by 0°U = R™2+ R4 +.... With
7% = RO and dS* = R2Q% df), these statements imply that Q***¢[F, §.# contains
terms at orders R, R !, and so on, but that there is no R-independent contribution.
For this reason, we may set

Qabcd[F7a%} _ 0’

modulo R-dependent terms that can be freely discarded.
Collecting results, we find that the radiative 4-pole moment is given by

1
abed 1T a,b _c _d
Q = 0—25 MAVRUYZ52%
A

1 Gmamp , b o 4
T 92 E E T oan NABMABRARA
A BzA < AB

1
b d d
12¢2 Z Z Gmampzapnipiap(Napnis —0%)
A B+#A

+0(c™?). (6.6.10)

+
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In this equation, all position and velocity vectors are evaluated at the retarded time
T :=t—r/c, and Q¢ is a function of 7 only. We recall once more that z4p =
|z4 — zp| is the distance between bodies A and B, and that nap = (24 — 25)/z4B
is a unit vector that points from body B to body A.

6.7 Computation of Qe

Next on our list of radiative multipole moments is Q¢ the 5-pole moment defined
by Eq. (6.2.12),

10
Qbede(r) = i //” (1, 2) a2’ . (6.7.1)
To compute this, with the effective stress tensor displayed in Eq. (6.6.2), requires
the same familiar steps that were followed in the preceding sections. We shall not
labour through the details here, and simply present the final answer:

10 1 Gmam

abcde  TT a,b _c _d_e AT'B g b c d e

Q = 3Bor E mAUAUAZAZAZA_§E E T NABTNABRARARA
A A BxA “AB

1 a c e e
+ 7 EA: g;‘ GmAmBZABnABnZABZELX (nfqunA)B — o )ﬂ

+0(c7P). (6.7.2)

In the last sum, the index symmetrization is over the trio of indices cde. We shall
leave the differentiation with respect to 7 unevaluated for the time being; it is
advantageous to take care of this at a later stage.

6.8 Computation of P® and P

The multipole expansion of Eq. (6.2.8) involves also a pair of surface integrals, P
and P which are defined by Eqgs. (6.2.13) and (6.2.14), respectively. Our task in
this section is to evaluate them.

We begin with

pab .= ?{ (T“Czb + 7P — 8dTCd9:“xb) ds., (6.8.1)
oM

in which 79? is expressed as a function of 7 and x, and where we suppress the primes
on the integration variables to simplify the notation. The effective stress tensor 7%
is given to leading order — order ¢ — by Eq. (6.6.2), but to achieve the required
degree of accuracy (as specified in Sec. 6.2), we must also incorporate terms of
order ¢=2. A sufficiently accurate expression can be obtained from Egs. (4.1.20) and
(4.1.23); there is no need to include also the material contribution of Eq. (4.1.11),
because 7 is evaluated on 0.#, away from the matter distribution. In this we
must substitute the near-zone gravitational potentials of Egs. (5.2.7)—(5.2.9), and
such a computation was already carried out at the beginning of Sec. 5.3.3. We
obtain, finally,

1
ab TT a b
g o 47‘(’G8 vo'u + 4G

[28(“U8b)1/) + 9l Udv X + 8oteuu®

—4(0°U. — 0.U") (0°U*° — aCUb)} +0(c™), (6.8.2)
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after discarding all terms proportional to 6%, for the usual reason that they will
not survive a TT projection.

To calculate P we also need 937°?, which we express as —c~17% by involving
the conservation identities 937*? = 0. With Eq. (6.5.3), this is

cd 1 0

_ - dacrr _ crrd _ adrre
= g 5y [304U OV 4(0°U* — 9'U°) 04U |, (6.8.3)

8d7‘

where we have also used the gauge condition U = —9,U?. The derivative operator
can be taken outside of the surface integral.

From the explicit expressions obtained in Sec. 5.2 for U, U®, 1, and X, we
observe that each one of these quantities has an expansion of the schematic form
r~l 47724+ .... It follows that when 0°U, 8%, 99X, 8U%, and U® are evaluated
on 0.4, they each have the schematic form R=2 + R~3 + --.. This means that
7% = O(R~*), and it follows that a quantity such as 7%z’dS,. must scale as R~};
this will give no R-independent contribution to the surface integral. A similar
argument reveals that 9;7°Y = O(R ™), so that dy7°?2x2dS. scales as R~!; this
also makes no contribution. We conclude that

P =0, (6.8.4)

modulo R-dependent terms that can be freely discarded.
We next evaluate

pabe .— 19 ]{ (T“dxbmc + rbdgage — TCdx“xb) dSg, (6.8.5)
C 87’ oM

using the effective stress tensor displayed in Eq. (6.8.2). Relative to P, this surface

integral involves an additional power of &, and therefore an additional power of R;

because P was seen to be of order R ™1, there is a chance that the surface integral

might contain an R-independent contribution. As we shall see presently, however,

this does not happen, and as a matter of fact,

pabe =, (6.8.6)

modulo R-dependent terms that can be freely discarded. This conclusion emerges
as a result of a closer examination of the terms that make up 7. It was stated
previously that at leading order, U, 8%, 8°X, 8°U?, and U® all scale as R ™2
when they are evaluated on 9.4, so that 7% = O(R~*). With the four powers
of R that are contained in the position vectors and the surface element, we find
that the integral does indeed scale as RY. It can be verified, however, that 0°U,
9%, 8*X, 9°U*, and U® are all proportional to an odd number of angular vectors
Q := x/R. This implies that 7 is proportional to an even number of such vectors,
and this, in turn, implies that the integrand in Eq. (6.8.5) contains an odd number
of angular vectors. Integration gives zero, and we have established the statement
of Eq. (6.8.6).

6.9 Summary: h“f’V

Our computation of the near-zone contribution to h® is essentially complete, and for
easy reference we copy our main results in this section. The gravitational potentials
are expressed as a multipole expansion in Eq. (6.2.8),

2G 0?

hab _ 27
N Ay §72

1
{Q“” + Q%0 + Q%0 Oy + §Q“"CdchQdQe + 0(0_4)}, (6.9.1)
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in which the surface integrals P and P*° were set equal to zero by virtue of

Egs. (6.8.4) and (6.8.6).

According to Egs. (6.4.11), (6.5.41), (6.5.42), (6.6.10), and (6.7.2), respectively,

the radiative multipole moments are given by

o Gmam -~
ot = S gh)ak - 3 S Pt o 60
A B#A
Qabc _ Aabc+Abac _Acab (693)
abc T 1 ’U./24 a_ b _c
A = EZ?’TLA 1+@ VAR AR A
A
1 GmAm a c a c
5 23 T (o)t + ook
© A Bza “AB
1 c a c
+ @Z Z Gmamp [(nAB UA)”AB”EaxBZA) 7nABUEsz
A B#A
+ 7vAnABzf4)}
— 673 Z Z GmAmBzAB l:(’nAB . 'UA)TLZ‘B’N}ABTL%B — llniBnS)BvA)
“ B#A
+ 11vjnf43nf43}
+0(c™), (6.9.4)
TT 1
QW = meAUZU?AZEAZfX
A
1 GmAmB a b c d
52 Z Z . NaABNABZAZA
2c % bz ZAB
1
+ 122 Z GmAmBzABnZBnlAB (n%anqu — (5Cd)
A B#A
+0(c™), (6.9.5)
abede IT 1 a a c e 1 GmAm a c [
Q bede 2 3= ZmA'UAUZZAZiZA -3 Z Z 737%43”?432142%%
3 or 2 ZAB
A B#A
7 Z Z GmAmBZAB”Aan‘BZ,(q (nflaanA 5de))]
A B#A
+0(c™?). (6.9.6)

In these equations, all position and velocity vectors are evaluated at the retarded
time 7 := t — /¢, and the multipole moments are functions of 7 only. We recall

that

zap = |24 — 25|
is the distance between bodies A and B, and that

ZA — 2B

nap = —————
|za — 25|

is a unit vector that points from body B to body A.

(6.9.7)

(6.9.8)
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6.10 Computation of h%

6.10.1 Construction of the source term

The wave-zone contribution to A% is obtained by evaluating the integrals displayed
in Eq. (6.2.6), and this relies on a decomposition of 7% into irreducible pieces of the
form of Eq. (6.2.5). Our first order of business, therefore, is to obtain an expression
for the effective stress tensor; this expression must be valid everywhere in the wave
zone.

The source term is constructed from the gravitational potentials, and wave-zone
expressions for these were obtained in Sec. 4.4. According to Eqs. (4.4.37)—(4.4.39),

we have
4GTM 1 It M o3
RO = = 4 g, — o —= 6.10.1
02_r+2 b<r>+ <r03)]’ ( )
A4GT1 o 1, (I M v®
e = | T — =9 — ) +O( ——= )|, 6.10.2
2 |2¢ 72 2cb<7‘>+ <rc3 ( )
4G 1 [ M v®
Mt = —l——+0—= ]| 6.10.3
2|22 r + <r c3>} ( )
The potentials are expressed in terms of Q% := z%/r, and in terms of multipole
moments that were introduced in Sec. 4.4. We have the total gravitational mass
1 v2 11U]a
M= 14+--4 -2 - 10.4
;(H@ 52 ) o™, (6.10.4)
the angular-momentum tensor
T =3 "ma(v42h — 2504) + O0(c7?), (6.10.5)
A

and the Newtonian quadrupole moment

I°(7) = > “maz42h + 0(c7?). (6.10.6)
A

We have indicated that the mass and angular momentum are conserved quantities,
while 7% depends on retarded-time 7 :=t — r/c.

The post-Newtonian order of each term in Egs. (6.10.1)—(6.10.3) was clearly
indicated in Sec. 4.4.7: Relative to GM/(c*r), each term involving I° is of 1PN
order, and the term involving the angular-momentum tensor also is of 1PN order;
the expressions are therefore truncated at 1PN order, and the neglected terms are
of %PN order. The rules to count the post-Newtonian order of wave-zone potentials
were derived back in Sec. 3.3.3. It is useful to recall that in the wave zone, r is larger
than \. = ct., the characteristic wavelength of the gravitational radiation (which
is defined in terms of ¢., the characteristic time scale of the source); it follows that
if r. is a characteristic length scale of the source, then r./r ~ (r./t.)/c = v./c,
where v, is the source’s characteristic velocity. It is also useful to recall that for
gravitationally bound sources, GM /r. ~ vZ.

In the wave zone, away from the matter distribution, the effective stress tensor
7% is made up of the Landau-Lifshitz pseudotensor (—g)t¢¢ and the harmonic-
gauge contribution (—g)t%. Sufficiently accurate expressions for these quantities
were obtained in Secs. 4.1.3 and 4.1.4, respectively. The leading term comes from
the Landau-Lifshitz pseudotensor of Eq. (4.1.19), which is

c* 921,00 §b 1,00.
647G ’
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here we ignore the term proportional to 6%® because, as we observed many times
before, it will not survive a TT projection. Using Eq. (6.10.1), we find that this is

equal to
G [M? M Icd
T qgage _ P lagh) (L
. r4QQ 7‘29 6cd<r>+ ]

It is easy to show that relative to GM?/r?, the second term is of order (v./c)?, and
the neglected terms are smaller by an additional power of v./c.

We wish our expression for 7% to be as accurate as what was displayed previ-
ously. In particular, we want to be sure that our expression contains all occurrences
of terms that involve a product of M with derivatives of I%°; all such terms will
contribute at order (v./c)? relative to GM?/r*, and they must all be included. A
careful examination of Eq. (4.1.20) reveals that the relevant terms are contained in

A

1
(7g)tili —_ e ZaahOOabhOO + aah0080h0b + abhOanhOa

1 1
4 Z6(1}'100811}100 4 Z8bhOO8ath 4. .:|7

and that the additional terms are smaller by additional powers of v./c.
A careful examination of Eq. (4.1.24) reveals that

4
(_g)tﬁb = 1607TG —h%8pgh + - ]

also is a relevant term. It is easy to see why: After writing Opg = ¢~20,,, we find
that this contribution to 7% is schematically

2 .
= hOO hab ~

G MI®
G ct

r2
in which ) stands for four derivatives of the quadrupole moment tensor. We have
that 1% ~ Mr2, so that I ~ M7r2/t!, and in the wave zone r > X\, = ct.. All
together, these scalings imply that this term is of order (v./c)? relative to GM? /r?,
and that it contributes at the required post-Newtonian order.

This is the first time that (fg)tgﬁ explicitly enters a computation. As we saw
in Sec. 1.3, this contribution to 7®? comes from the difference between O H apBy
and —[Jh®? on the left-hand side of the Einstein field equations. It is this term that
informs us that the gravitational waves are propagating not in flat spacetime, but
in a curved spacetime whose metric g, must be obtained self-consistently from the
gravitational potentials. It is this contribution to 7%?, therefore, that will reveal
the differences between the light cones of the mathematical flat spacetime, and
those of the physical curved spacetime. And as we shall see, this term will generate
interesting physical consequences.

Collecting results, we find that the appropriate starting expression for the source
term is

sab ct laahooabhoo + laahoohm; + labhoohm
167G | 4 c c
1 1 1 one
+ zaahooabhz + Zabhooaahz - ghooh‘“’ -], (6.10.7)

In the next subsection we will turn this into something more concrete, a set of
expressions that will be ready for substitution within Eq. (6.2.6).
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6.10.2 Evaluation of the source term

The first step is to insert Egs. (6.10.1)—(6.10.3) within Eq. (6.10.7). We need

AG[ M 1 Icd
ahOO _ Qe ~aa
a 02_ 7‘2 +286d<r>+ :|7
. 4G 1 Ioe
RO — 2 |__9
2| 2 C< r )+ ]’
4G 1 T
O he — Z|__= Za
¢ 2| 2272 + }’
'}'Lab _

4G [ 1 1M
@ |22 - N } ’

in which I := I, and I°°*) stands for the fourth derivative of I** with respect to
7. After some algebra, we obtain

GM [M Iy, 4 e
ab —_ a(ya (a b) — (a
= =0 - Q Q
4 47Tr2|:7‘2 aCd( r )+02 8C< T >
1L/1 110 2
N + QaQb _ 7101)(4) . 6.10.8
+ 2 (r2 c r ) ct * ( )

The next step is to evaluate the derivatives. From Sec. 1.8.1 we recall that
ar = Qg and 9, = 171 (6ap — ). We recall also that I%* depends on the
spatial coordinates through 7 =t — r/c, so that 9.1% = —cmLjabQ).. Using these
rules, we calculate that

jac fac 1 Jec(3)
(5) G
r T C r

Y Jcd Jed 15 jcd 6 jcd 1 ch(3) "
aCd() - _<15r4 +?T3 +072r2 +ci3 r )Q 2e8a

and

r

Jed 3jcd 1 ]"'cd
+ (3 +25+ 5

ETT 2,2 > (Q“éed + 5ach + 5adQc).

r

With these results, Eq. (6.10.8) becomes

ot 1
(2
_ <3i . %% 4 ;’2% + ;Ib;(3)>Q“QC - 024]‘“’(4)} (6.10.9)

The final step is to express the angular dependence of 72 in terms of STF tensors
Q). We involve the definitions of Eqs. (1.8.2)—(1.8.4), and write Q*Q*QcQ¢ in
terms of Q(0cd) QeOPOC in terms of Q) and Q%O in terms of Q. After
discarding all terms proportional to 6%, our final expression for the effective stress
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tensor is

9 . . (3)
Tab = GM Q(ab> + GiM |:(15ICd + B@ 6 lea 1ICd)Q<ade>

ré crd c2r2 3 or

. .. 5
(6160 6T 810N,
Trd  Terd  TcZr2 0 7ed v

(a ila 7(a (a(3)
e 9T 9 I 1217w
7 rd Tc r3 Tc? r2 Tc3 r

S 4I<“b>(4)} (6.10.10)
This expression is a sum of terms that have the structure of Eq. (6.2.5),

robfe ) = I W, (6.10.11)

4T rm

For example, the first group of terms inside the square brackets has £ = 4, and it
consists of four terms with n = —6, n = —5, n = —4, and n = —3; for each of these
contributions we can easily read off the appropriate function f (which is currently
expressed in terms of 7 =t — r/c instead of u = ¢t — ).

We shall keep in mind that it is the last term of Eq. (6.10.10), the one involving
four derivatives of () (), that originated from (—g)tg’. It is this term that will
reveal the differences between the light cones of the mathematical flat spacetime
and those of the physical curved spacetime.

6.10.3 FEvaluation of the wave-zone integrals

Each term 7%°[¢,n] in Eq. (6.10.10) makes a contribution to the gravitational-wave
field h®®, and according to Eq. (6.2.6), this is given by

R oo
h32[l,n) = iGTQ@){/O dsf(u—QS)A(s,r)—i—/R dsf(u—Zs)B(s,r)}, (6.10.12)

where

A(s,r)=/T+s Fe(€) dp, B(M):/Hs Pu(®) dp. (6.10.13)

R pn—l pn—l

Here, Py is a Legendre polynomial of argument £ = (r + 2s)/r — 2s(r + s)/(rp).

To begin, we shall work through the specific, but representative, case of £ = 0
and n = 3. Extracting this piece of 7% from Eq. (6.10.10) and comparing with
Eq. (6.10.11), we find that in this case the function f is given by

6
w) = _76;]\4[((&))///7
in which a prime indicates differentiation with respect to u = cr.

We must first evaluate the functions A and B. With £ = 0 and n = 3, the
computations are elementary, and the results are

1 1
Als,r) = R r+s
and ) )
B(s,r)=—-—
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We next set to work on the integrals that appear in Eq. (6.10.12). The first is

R R

1 1
Fy = d —2s5)A = d -2 — —
wim st 29a) = [ ass-29 (5 - ).

and we rewrite it as
1 (R R
FA:—/ f(u—ZS)ds—/ flu—2s)dIn(r + s).
R Jo 0
After integrating the second term by parts, our final expression is

1 R
Fy = —f(u—2R)1n(r+R)+f(u)1nr+§/ flu—2s)ds
0

R
T—:S ds+2/ f'(u—2s)Insds.
0

R
—2/0 f'(u—2s)In

The second integral is

Fp :—/oodsf(u25)B(s,r)—/oodsf(u25)(1 ! >

R R S r4+s

and we rewrite it as
r+s

S

FB:f/ flu—2s)dIn
R
Integration by parts yields

r+R r+s

Fg=f(u—2R)In —2/Oof’(u—23)ln ds,
R

assuming that f(u — 2s) goes to zero sufficiently rapidly as s — oo to ensure that
there is no boundary term at s = co. (Physically, this condition implies that the

system is only weakly dynamical in the infinite past.)
The sum of F'4 and Fp is

1 (R
F = —f(u—ZR)lnR—&—f(u)lnr—&—ﬁ/ flu—2s)ds
0
R oo
+2/O f'(u—2s)1nsds—2/0 f’(u—?s)lnrl—sds.

This result is exact, but to simplify it we use the fact that we may remove from
this all R-dependent pieces. As a formal tool to achieve this, we express f(u — 2s)
and its derivative as infinite Taylor series in powers of s, and we evaluate the two
integrals from s = 0 to s = R. We find that they combine to give f(u), plus terms
that can be discarded because they come with explicit factors of R. After also
expanding f(u — 2R) in powers of R, we find that

r4+s

F = f(u) [1+1n(r/73)} —2/ f'(u—2s)In ds,

0
modulo R-dependent terms that can be freely discarded. This still contains a
logarithmic dependence on R, but it could be removed by writing In(r/R) =
In(r/rg) + In(ro/R) and discarding the second term. This alternate expression
would then contain a dependence on an arbitrary constant ry, and it is perhaps
preferable to stick with the original form, in spite of the residual R-dependence.
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Our final answer is obtained by inserting our expressions for f(u) and F' within
Eq. (6.10.12). After also changing the primes into overdots, we get

haWb [07 3] =

4GM{ 6G

4 53

— [1 4+ In(r/R) | 10 4 Kab} (6.10.14)

in which the tail integral

G (o)
K(rr) = & / 1@ (7~ 96 /ey in "5 g (6.10.15)

€ Jo
must be left unevaluated. Notice that the tail integral involves the entire past
history of the system, from the infinite past (at s = co) to the current retarded
time (at s = 0). We recall the notation
A Jtab)

7lab)(@) —
drd

)

and we shall see what fate awaits the logarithmic term In(r/R) in Eq. (6.10.14),
when this contribution to h%? is combined with others.

The same techniques are employed to calculate all other contributions to h%.
We shall not labour through the details here, but simply list the final results for

h3p[¢, n):

he[0,2] = 4§M{—2K“b}, (6.10.16)
h3p[0,3] = 4S4M { gi [1+ln T/R):|I<ab>(3)+ 5K“b} (6.10.17)
he[0,4] = 45424{25{ +In(r /R)} Jlab)(3) _ 52K“b}, (6.10.18)
heb[2,3] = 454‘:4{ igﬂﬁ}mc@ + (a < b), (6.10.19)
hbo.a] — 4§M {_ % ac<3>}Q<cb>+(aHb)7 (6.10.20)
hp(2,5] = 4?4];4{6: [;1070 + %1 (r/R)} % ;’51(“0}9@

+(a =), (6.10.21)
hp[2,6] = 451?4{; {—79070 - %m( /R)} o®) 4 36 K }Q<cb>

+ (a < b), (6.10.22)
hib[4,3] = 4515\”4{23;3 éj)}mabc@ (6.10.23)
hip[d, 4] = Aff {30003 §§)}Q<ﬂbcd>, (6.10.24)
hypl4,5) = 454]7\,4{ 4;31§2)}Q<abcd>, (6.10.25)
hiP[4,6] = 4i¥{5§§1§3)}9<“”0d>. (6.10.26)

To arrive at these results we have freely discarded all R-dependent terms, except
when the dependence is logarithmic. In some cases we have also removed terms
that fall off as 7=2, =2, or faster, because these are negligible in the far-away wave
zone.
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From the preceding listing of results we find that the sum of contributions for

£=01is
= 0] = ﬂ{gg >—2K“b}.
Similarly,
hpl = 2] = 45’;];4{ ;gg B 1 (a b)}
and

. AGM [ G (3) s tabe
hple=4=— {803 19a! b‘d>}.

Notice that the logarithmic terms have all canceled out, and that the tail integral
appears only within the contribution from ¢ = 0. Tracing the origin of the tail
integral, we see that it comes from 72°[0,2], the term in 7% that involves four
derivatives of the Newtonian quadrupole moment with respect to 7. This term,
the last one in Eq. (6.10.10), originates from (—g)t%’, and it reveals the differences
between the light cones of the mathematical flat spacetime and those of the physical
curved spacetime. The tail integral, therefore, informs us that the gravitational
waves propagate in a curved spacetime instead of the fictitious flat spacetime of the
post-Minkowski expansion.

6.10.4 Final answer

Adding the contributions from ¢ = 0, £ = 2, and ¢ = 3, we find that the wave-zone
part of the gravitational-wave field is given by

ab
h“/ﬂ

AGM { 3G any(s) _

4

2Kab 13G (Ia(3)Q (cb) + Ib(3)Q ca )
cr

5c3 28¢3

G (3) (y(abed)
@I(/dQ

From this we may remove any term that will not survive a TT projection. In
particular,

Ia(3)Q<cb> — Ia(?)) <QCQb _ 16(313) o _1]((11))(3)
(& c 3 3

and similarly,

2 1ab)(3).
35

Collecting these results, we find that h% reduces to

4GM [ 11G
ab 1 (3) ab
= 1@ — 2K .
v ctr { 12¢3 }

IC(Z) Q(abcd} m

To arrive at our final expression we substitute Eq. (6.10.15) for the tail integral,
and we clean it up by setting s = %CC and adopting ¢ as an integration variable.
We obtain, finally,

(ab)(3) = by () _ ¢
{121 ()+/0 L@ (7 ¢)In §+2r/cd<} (6.10.27)

4G*M

hab T
L

To get a useful alternative expression, we differentiate the first term and insert it
within the integral. This produces

o 4G2M ¢
ab T (ab)(4) (- _
ny = = | O (r—¢) (1 raret )dg (6.10.28)
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The wave-zone contribution to h® depends on 7 and 7 = t —r/c, and we notice that
it is isotropic — the angular dependence has been eliminated by the T'T projection.
It is expressed in terms of the total gravitational mass of Eq. (6.10.4),

M=) ma+0(c?), (6.10.29)
A

as well as the Newtonian quadrupole moment of Eq. (6.10.6),

I =Y "mazi2h + 0(c™?). (6.10.30)
A

Recalling our discussion near the end of Sec. 6.2, we see from Eq. (6.10.28) that hi},b
is a correction of order ¢=3 relative to the leading term in h®®, which is of order ¢~*.
The wave-zone contribution to the gravitational-wave field is therefore a term of %PN
order. And we recall from the end of Sec. 6.10.3 that the tail integral originates from
(—g)teb, the harmonic-gauge contribution to the effective stress tensor; it reveals
the differences between the light cones of the mathematical flat spacetime and those

of the physical curved spacetime.

6.11 Specialization to a two-body system

The gravitational-wave field is given by the sum of h%, given by Eq. (6.9.1) and
the following equations, and h%’, given by Eq. (6.10.28). These expressions are
still fairly implicit, and to make the results more concrete we specialize them to a
two-body system.

6.11.1 Motion in the barycentric frame

We shall work in the post-Newtonian barycentric frame (Z = 0), and according to
Egs. (5.5.14) and (5.5.15), the position vectors of the two bodies are given by

_my nA [ 5, Gm 4
zlmz+202<v *7 Z+O(C ) (6111)
and A o
_om n 2 m —4
ZQ——mZ+2C2(’U —Z>Z+O(C ) (6112)
They are expressed in terms of the relative position
Z:=21— 29 (6.11.3)
and the relative velocity
V1= V] — Vg (6.11.4)
these vectors have a length z = |z| and v = |v]|, respectively. We also have re-
introduced the mass parameters
m = mi+ me (6.11.5)
mimso
= — 6.11.6
U iy & ma)? ( )
A o= T2 (6.11.7)
mi + mo

Differentiation of Egs. (6.11.1) and (6.11.2) returns the velocity vectors of each
body:

m 2c2 z z

A
. :WUJF”[(vz_Gm)U_GmZ-n] L0 (6.11.8)
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and
02__7711”+77A{(v2_Gm)v_G;n§m} +0(c™4), (6.11.9)

where

Z=mn-v (6.11.10)
is the radial component of the velocity vector, and

ni=2=217% (6.11.11)
z |z — 29|

is a unit vector that points from body 2 to body 1. To arrive at these expressions
we had to involve the relative acceleration of the two bodies, which according to
Eq. (5.5.18) is given by

a = —G—mn
+612{—Gm[(1+377)v — n(n-v)? 2(2+77)Gm
Gm } 4
+2(2—n)7(n~v)v +0(c%). (6.11.12)

6.11.2 Radiative multipole moments

We make these substitutions into Eqgs. (6.9.2)-(6.9.6) and simplify the resulting
expressions. The sums that appear in these equations must be specialized to two
bodies, and in these we set z15 = 291 = z and n1s = —no; = n. In the course of
these (lengthy, but straightforward) computations we encounter various functions of
my and mgy that can be re-written in terms of the mass parameters of Eqgs. (6.11.5)—
(6.11.7). For example, it is easy to show that

mi —mj

(my +mg)?

3 3

m3 +msy
=1-2n, —== =1-3n,
" (my + mg)3 "

m%—!—m%

CEEE = A(1 —2n),

and we make many such substitutions while simplifying our expressions.
We obtain

1 21 G
QQ? = mn{1+2(1—3n)22—2(1 2 )—m+0( )} axb (6.11.13)
A 1 V2 7 Gm
Aabc _ mmn _I1 21— v ’ on) &7 | e b e
c +2( 5n)c2+(6+ n)CQZ e
1 Gm a b_c 5Gm b_c —4
+ (6 —n) 2, in%2°2 + 32,7 ®29 £ O(c™) ¢, (6.11.14)
Qabc —_ mnA{Zazbvc (’U Py +Zavb)
c

2

1 v 1 Gm a, by c a b, c
- {2(15n)62+6(7+12n)62z} [(v 2’4 2%0%)2% — 2 zv}

1 G
+o- 6n)£73n“2bzc + 0(c4)}, (6.11.15)
1 Gm
Qobed  — nc?{(l 3n)viobzCz? — 3 -(1- 37]) M anb e yd
1Gm

a b cd —2 .1 .1
~ s 54+ O(c )}, (6.11.16)
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A 1
Qabcde _ mz aa{_(l _ 2n)v“vbzczdze + Z(l _ QW)Gﬂnanbzcdee
C T z
1G
+ Z—mz“zbz(céde) + O(c_z)}. (6.11.17)
z

Equation (6.11.15) is obtained from Eq. (6.11.14) by involving Eq. (6.9.3), Q¢ =
Adbe 4 Abac _ Acab e also observe that to simplify the writing, we have replaced
the qualified equality sign = (“equal after a TT projection”) by the usual equality
sign.

6.11.3 Computation of retarded-time derivatives

The near-zone contribution to h% is given by Eq. (6.9.1), and in this we must
substitute the radiative multipole moments displayed in the preceding subsection;
the computation involves taking two retarded-time derivatives of these moments.
Similarly, the wave-zone contribution to h® is given by Eq. (6.10.28), and this
involves four retarded-time derivatives of 1% = mnz®z® + O(c=?), which is equal
to the Newtonian piece of Q. Our task in this subsection is to compute these
derivatives.

The general strategy is clear. The radiative multipole moments of Egs. (6.11.13)—
(6.11.17) are expressed explicitly in terms of the position and velocity vectors, and
these are functions of the retarded time 7. Differentiating one of these moments
with respect to 7 therefore involves taking derivatives of the position and velocity
vectors. Differentiating z gives v, and differentiating v gives a, the post-Newtonian
acceleration vector of Eq. (6.11.12). After making this substitution, the result is
once more expressed in terms of z and v, and it is ready for further differentiation.

More concretely, consider the task of computing Q®. The quadrupole moment
is a function of z at order ¢, and a function of z and v at order ¢~2. Taking a
first derivative with respect to 7 produces terms in z and v at order ¢, and terms
in z, v, and a at order ¢~2. In the post-Newtonian term we may substitute the
Newtonian expression for the acceleration vector, a = —Gmz/z3 + O(c™?), because
the error incurred occurs at order ¢=% in Q. The end result is a function of z and
v at order ¥, another function of z and v at order ¢~2, and neglected terms at order
c¢~*. Taking a second derivative introduces the acceleration vector at orders ¢® and
¢~2. In the Newtonian term we must now substitute the post-Newtonian expression
for the acceleration vector, because its PN term will influence the ¢=2 piece of Q“b;
we are still, however, allowed to insert the Newtonian acceleration within the ¢ =2
piece of the second derivative. The end result for Q® is a function of z and v at
order ¢°, and another function of z and v at order ¢—2.

Derivatives of higher multipole moments are computed in a similar way. These
computations are tedious and lengthy, but they are completely straightforward.
They are aided by the identities

vi = —i—Té’—i—O(c_Q) (6.11.18)
and a
25 =0 5% Tm +0(c72), (6.11.19)

which are consequences of the Newtonian expression for the acceleration vector.
We display the final results:

Q" = mn{Q (v“vb — szn“nb> }

1 3 19Gm| G
+ { [—2(7 + 2n)v? + 5(1 —2n)3% + 2T I paph

2 =z z
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+ {(1 —3n)v? — (1 — Zn)czn} v4b 4 (3 + 277)G7m2"(v“nb + n“vb)}

+0(c™?), (6.11.20)
- A G G
Q" = o {—3m n®nbnt 4+ 3 (v*n® + n)n®
c z z
Gm a, b, c a, b, c mnA 3 2 9 32
—|—?nnv 2vvv}+c3 5(2—77)7} +§(1+n)z
1 Gm|G
- -(31— 9n)m} il (v*n® +n*®)n® — (15 + 27})G—mé vn®
3 z z z
3 5 2 Gm| Gm
—Z(4—-3 2 Z(1 - 22 Z(29 — ey MY . a b
—|—{2( n)v+2( 377)z+3(9 3n)z}zznnn
1 3 1 Gm|Gm
74_ 2_71_ '2_72_ 77&[)(1
+ |5 = J- e - o5 -3 S| ety
— (34 27) 2 (vt + oyl
34 2n Gz
G
+ {—(1 —5n)v* + (1 — 47]):1} Uavbvc}
+0(c™?), (6.11.21)
; G
QU = 777;77 {5(1 - 3n)—jz’(v“nb + n")nn?
+(1-3n) <v2 — 537 4 7Gm) G—mn“nbncnd
3 z z
14
221 - 3p) 28 yaybpend
L1 -3
8 G
- §(1 - 377)—m (v + n®) (v°n? + no?)
z
+2(1 = 3n)vvPvu? 4+ 2(1 — Sn)G—mé n®n® (vn? + nv?)
z
2 G 1G G
--(1- 3n)—mnanbvcvd b (2 3s2 4 T ) pagbsed
3 z 6 =z z
1G 4 1G :
4= mz(vanb + navb)écd - mvavb(scd
3 z 3 z
+0(c™), (6.11.22)
. Al 1 Gm\ G
Qabede — mz {—(1 —27) (211}2 — 10522 + 44m> bl (v*n® + n®®)nnon®
c 4 z z
1
+ Z(l —2n) (451)2 — 10522 + 90Gm> G—mz nn’nnin®
z z
51 G
- ?(1 - 27])%73 v"0Pnnin®

G
- ?(1 - Qn)—mz'(v“nb + 1) (v°nn® + nvn® + nnv®)
z
1 G
- S(1—2) (91}2 — 4552 4 28m) Gm
P

——nonb (Ucndne +nfv¥n® 4+ ncndve)
z

29 Gm ,

+ ?(1 —2n)—ov% (vcndne + nvin® + ncndve)
z
15 G
+ 5(1 - 277)7m( “n’ + nt?) (vcndne + nvn® + nntv®)

9 G
—6(1 — 2n)v vPvvdv® — 5(1 - 2n)—m2 nn® (vcvdne + venv® 4 ncvdve)
z
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3 G 1 Gm\ G
+ 5(1 - 2n)—mn“nbvcvdve +1 (91}2 —152% + 10m) T 5 nenbnlesde)
z z z

1 G G
— 1 (31}2 —9:2 4 4m> —m( apb 4 n“vb)n(céde)

z z

1

- = (31}2 —9:2 4 4Gm) G—mn“nbv(c§de)
4 z z
3G 3G 3G

— S s pspbplegde) f—m,é(vanb + navb)v(céde) + 2T 5 pagbylegde)
2 2 z 2 z

+0(c™?). (6.11.23)

In addition, we have that
G G
Jovd)  — zmnz—gn {(31}2 — 1522 + Zm)nanb +92(v*n® + n®) — 4vavb]

+0(c™?). (6.11.24)

6.11.4  Gravitational-wave field

We may now substitute Eqgs. (6.11.20)—(6.11.24) into Egs. (6.9.1) and (6.10.28) and
obtain the gravitational-wave field. These computations are straightforward, and
we express the result as

pab 2Gmn

[H“b[N] + A" [1PN] + A®[1PN] + A®[3pN] + A%[tail] + O(c™*) |,

(6.11.25)
in which we group terms according to their post-Newtonian order (the last term,
with the label “tail,” is also of %PN order). We have

cir

Aab[N} = 2 [Ua’Ub _ Czrnnanbl , (61126)
A
A®[ipN] = = 3G—m(n ) (v’ + n’ — 2nn’)
z
a,b Gm a,b
+ (v- Q) —2v%" + —n’n , (6.11.27)
z
1(1 Gm
Aeb[q = = | =301 = 3n)v? —2(2 - 3n)— v
e = [ [30- s -2 -3 o
2
+ 5(5 + 37])G7mz"(vanb +nv’)
1
+ gGﬂ [_(10 + 317)1;2 +3(1-— 317)732 + 29Gm] nen?
2 2
+ %(1 —3n)(v - Q)? <3vavb - Gmn“nb>
z
4303 @) ST | Sa(tn? 4 nte?) + 320’
1
+ 5(1 —3n)(z- Q)QGTm [—l4v“vb + 152"(vanb + navb)
+ <3v2 152+ 7Gm)nanb} ] : (6.11.28)
z
abr: Al 1l Gm]| ,
A®[3pN] = = ﬁ('u : Q){—6 {2(1 —5n)v? — (3 - 877)2}1’ v’
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—6(7+ 4n)07m,é(v“nb + nvP)

+ GTm {3(7 —2m)w? — 9(1 — 217)5% — 4(26 — 37;)6’2”} n“nb}
1

Gm . a,b
+12(z-Q)Z{—6(31+4n)zv v

+ {3(11 — 6m)v? + 9(7 + 6n)2% — 4(32 — 977)62”} (v*n® + n"?)
3 2 .2 Gm a. b
—2 [9(7 — 6m)v* — 15(1 — 67)2* — 2(121 — 1277)Z]n n }
+ %(1 —2n)(v - 9)3{4v“vb + Gmn“nb}
z

+-(1—=2n)(v-Q)*(n- Q)G?m{5(v“nb +n’) — 3z"n“nb}

+-(1-2n)(v-Q)(n- Q)QGm{’éSv“vb — 542 (v™"nb + nP)
z

1R = N W

— |ov? — 4552 + 28Gm} n“nb}
z

1 3 Gm s b
+T2(1—277)(”'Q) Z{—102zv v

G
— |210% — 10532 + 44m] (vanb + n“vb)
z

+152 [31;2 — T2y 6Gm} nanb}] : (6.11.29)
z
4 o0
Alfail] = G / &;1[(3112—15224—Gm)n“nb+9é(v“nb+navb)
A Jo z z
¢ 11
— 4 mn{—> )+ —|dc. 11.
UU” <[n<c+2r/c T (6.11.30)

The gravitational-wave field is expressed in terms of the relative position vector
z = z1 — 29, the relative velocity vector v = v; — vs, the radial velocity z = z - v,
and the mass parameters m = mj + ma, 1 = mymg/m?, and A = (m; — mg)/m.
In addition, h*® depends on retarded time 7 =t — r/c as well as the angular vector
Q := x/r, which specifies the direction from the barycentre to the field point .
In the tail integral of Eq. (6.11.30), the terms within the large round brackets are
evaluated at 7 — ( instead of 7, and the integration from ¢ = 0 to { = —oo involves
the entire past history of the two-body system.

The expressions listed here are not fully optimal, because it is still necessary
to extract the transverse-tracefree part of h®. While the TT projection has been
invoked repeatedly in the preceding sections to discard irrelevant terms and simplify
expressions, Egs. (6.11.26)—(6.11.30) still contain unwanted traces and longitudinal
pieces. As was discussed in Sec. 6.1.6, these are removed by subjecting h®® to the
TT projection operator of Eq. (6.1.33): We must write

R4 = (T7)% ,he?, (6.11.31)

and subject each post-Newtonian contribution to the T'T projection. Because the
final expressions are rather large, we shall not display them here.
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6.12 Specialization to circular orbits

6.12.1 Circular motion

In this section we make a further specialization to circular orbital motion. This is
defined by the condition
z2=0, (6.12.1)

so that the two bodies move while maintaining a constant relative separation. This
is undoubtedly a restriction on all possible motions, but more than that, Eq. (6.12.1)
is also an approximation, because as the system loses energy to gravitational radi-
ation (an effect that will be examined in Chapter 7), the orbital separation slowly
decreases, and even for circular orbits, Z should actually be negative. But because
this radiation-reaction effect appears at %PN order in the equations of motion, we
are justified to neglect it here.

We refer back to the orbital equations of Sec. 5.5.4, and describe the motion
in terms of the polar coordinates z and 1, where z is the (now constant) distance
between the two bodies, and 1 is an angular coordinate in the fixed orbital plane
(chosen here to be the z-y plane). The position and velocity vectors are given by
Egs. (5.5.25) and (5.5.26), respectively:

z=zn, v =wz, (6.12.2)

where w := 1 is the angular velocity, and
n = [cos 1, sin 1, 0], 1 = [—sine, cos, 0] (6.12.3)

are the basis vectors. Equation (5.5.29) informs us that w is constant when the
motion is circular, and Eq. (5.5.28) gives rise to a relation between w and z. After
setting 2 = # = 0 and solving for w?, we obtain

Gm
w=—|1-(B-n)—=5-+0( |, 6.12.4
- -G o] (6.12.4)
the post-Newtonian generalization of the usual Keplerian relation w? = Gm/23.
(When radiation-reaction effects are included, z decreases as time increases, and
this causes w to increase.)

The orbital velocity is v = wz, and according to Eq. (6.12.4) we have

Gm Gm
=1 -3B-n)— “H. 2.
= i- - ST o (6.125)
Making the substitution into Eq. (5.5.23), we find that the orbital energy per unit
mass is G ) o
~ m m
EFE=—|1—-——-(7T—1n)—5 —H. 2.
13- G o] (6.126)

The system’s actual energy is £ = nmE; this includes kinetic energy and gravita-
tional potential energy, but excludes the rest-mass energy of each body.

6.12.2 Post-Newtonian expansion parameter

The post-Newtonian expansion is formally an expansion in powers of ¢~2, but phys-
ically it is an expansion in powers of a dimensionless quantity such as v?/c?. There
are many such quantities that could be adopted as an expansion parameter. Equa-
tion (6.12.5) suggests, for example, that Gm/(c?z) could be selected, and this would
indeed be a valid substitute to v?/c?. Another choice is

2/3
x = (Gm”) : (6.12.7)

3
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and this has the important advantage of directly involving w, a quantity that is
directly measurable in the gravitational-wave signal. As we shall see in Sec. 6.12.4,
the orbital frequency w is directly related to the frequency of the gravitational
waves, and it can therefore be measured directly. This is unlike v or z, which are
coordinate-dependent and cannot be measured directly. It is easy to show, using
Egs. (6.12.4) and (6.12.5), that

(v/c)? :x{l - §(3—77)x+0(x2)] (6.12.8)
and o .
£ :x{l—&- 3(3—77)33—&-0(332)]. (6.12.9)

We shall henceforth adopt = as a meaningful post-Newtonian parameter, and reex-
press Eq. (6.11.25) as an expansion in powers of .

6.12.3 TT projection

The transverse-tracefree projection of h® is accomplished with the techniques de-
veloped in Sec. 6.1.6. We re-introduce the vectorial basis (2, 0, ¢), with

Q = [Scosg,Ssing, (], (6.12.10)
6 = [Ccosg,Csing,—S9], (6.12.11)
¢ = [—sing,cose,0], (6.12.12)
where
C := cos¥, S :=sinb. (6.12.13)

Here, the angles (6, ¢) determine the direction of the field point @ at which the
gravitational wave is measured. The polar angle 6 refers to the z direction, which
is normal to the orbital plane. The azimuthal angle ¢, and also the angular posi-
tion v of the relative orbit, refer to the x direction, which is arbitrary within the
orbital plane; as we shall see, the gravitational-wave polarizations depend on the
combination ¥ := 1) — ¢, and this is invariant under rotations within the plane. The
unit vector 2 = x/r points in the longitudinal direction, and the transverse space
is spanned by 6 and ¢. In terms of these, the two independent components of the
transverse-tracefree piece of ha® are given by Eqgs. (6.1.41) and (6.1.42),

1
hy = 5(eaeb — ¢atp) (6.12.14)
and 1
hy = 5(9a¢b + Gaby) . (6.12.15)

The tensorial field is then constructed as in Eq. (6.1.40),
e = hy (096" — 6°¢%) + b (09" + ¢0°), (6.12.16)

so that h, represents the 6-0 component of the tensor (and also minus the ¢-¢
component, in order to satisfy the tracefree condition), while hy represents the 6-¢
component.

6.12.4 Gravitational-wave polarizations

We take the gravitational-wave field of Egs. (6.11.25)—(6.11.30) and specialize it to
circular orbits by substituting Eqgs. (6.12.1)—(6.12.3). Next we expand it in powers
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of z by involving Eqs. (6.12.8) and (6.12.9). And finally, we extract its TT part by
making use of Egs. (6.12.10)—(6.12.15). After simplification, and after evaluation of
the tail integrals (as described in the next subsection), we arrive at

hy = QGﬂ <Gmw> 2/3{H[0} + Azt/2gl/? + cHY + Az3/2 13/
2y 3 + + + +
+ 232 el O(x2)} (6.12.17)
and
Sy a2y O($2)}, (6.12.18)
where
HY = —(1+C%) cos20, (6.12.19)
72 = —%5(5 +C?)sinl — %S(l + C?)sin 30, (6.12.20)
gl = é {(19 £9C% —20%) — (19 — 11C? — 6(14)77} cos 20
+ 2(1 —31)S?(1 + C?) cos 4V, (6.12.21)
HE = 5125[(57 +60C2% — C*) — 2(49 — 12C2 — 04)77} sin ¥
+ %S {(73 £40C% — 9C) — 2(25 — 8C% — 904)77} sin 30
+ %(1 —21)83(1 + C?)sin 57, (6.12.22)
ol = 41+ C?) B cos 2U + (v + In4wr/c) sin 2\11} (6.12.23)
and
7Y = —2Csin2v, (6.12.24)
H[Xl/Q] = ZCSCOS\IJ-F %CSCOS?)\I/, (6.12.25)
gl = éC[(l? —40?) — (13— 1202)77} sin 20
+ 2(1 —31)CS%sin 4V, (6.12.26)
qb2 - —%CS[(% ~502) — 2(23 — 502)77] cos U
- 6%05 {(67 —1502) — 2(19 — 1502)77] cos 30
- %(1 —2n)CS? cos 5, (6.12.27)
HEl = _8C {g sin2¥ — (y + In4wr/c) cos 2\11} . (6.12.28)

We recall that m = mq+ms is the total mass of the two-body system, n = mlmg/m2
is the dimensionless reduced mass, A = (m; — msg)/m is the dimensionless mass
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difference, r is the distance from the barycentre to the detector, 8 and ¢ give the
angular position of the detector relative to the orbital plane, C = cosf, S = sinf,
and z = (Gmw/cs)Q/ 3 is the post-Newtonian expansion parameter, expressed in
terms of w, the orbital angular velocity. The phase of the wave is determined by

U:=¢p—p=w(t—r/c)— ¢, (6.12.29)

where ¢ = wr is the (retarded) angular position of the relative orbit. Equations
(6.12.20) and (6.12.24) imply that at leading order, the gravitational-wave signal
oscillates at twice the orbital frequency; the post-Newtonian corrections contribute
additional frequencies and the signal is modulated. Our results for the gravitational-
wave polarizations agree with the expressions listed in Blanchet, Iyer, Will, and
Wiseman (1996), except for a different convention regarding angles and phases.

The tails terms of Egs. (6.12.23) and (6.12.28) are interesting. They involve the
mathematical constants 7 and v ~ 0.5772 (Euler’s constant), and they also involve
a logarithmic term that depends on wr/c. The tail terms are best interpreted as
giving rise to a correction to W, the quantity that determines the phase of the
gravitational wave. Indeed, it is a simple matter to show that the Newtonian and
tail contributions to hy and hy can be combined and expressed as

HY 4 232 = (14 C?) (1 + 272°/?) cos 20%, (6.12.30)
HO 4 g3/2ppteil —20(1 + 272*/?) sin 20~ (6.12.31)

These expressions involve an amplitude correction equal to 27r2%/2, and a new phase
function given by

2G 4
Cgm In % + constant). (6.12.32)

U* =0 — 22%/%(y + Indwr/c) = w(t—T/c—

It is this shifted phase function that informs us, at long last, that the radiation
propagates not along the mathematical light cones of Minkowski spacetime, but
along the true, physical light cones of a curved spacetime. Indeed, the logarith-
mic term in Eq. (6.12.32) represents the well known Shapiro time delay, the extra
time required by a light wave, or a gravitational wave, to climb up a gravitational
potential well created by a distribution of matter with total mass m.

6.12.5 FEvaluation of the tail integrals

We must still evaluate the tail integrals, and show that they lead to Egs. (6.12.23)
and (6.12.28). We start with Eq. (6.11.30), which we specialize to circular or-
bits by involving Egs. (6.12.1)—(6.12.3), and we extract its TT part by making
use of Egs. (6.12.10)—(6.12.15). After converting Eq. (6.11.25) to the notation of
Egs. (6.12.17) and (6.12.18), we find that

H = 8(1+ C?)w /Oo cos(2¥ — 2w() [m s + 11} d¢

0 C =+ 27’/0 E
and
H = 160w / h sin(2¥ — 2w() |In _¢ _,u d¢
x o C+2r/fc 12]

We next change the variable of integration to y := 2w( and we introduce k := 4dwr/c.
The tail integrals become

tail 2 > Y 11
HM =4(14+C%) ; cos(2¥ — y) lnm—i-ﬁ dy
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and

. o0 11
H““:SC/‘ (2 — ) |In —4— + 2| dy.
x ; sin Y) ny+k+12 y

Expanding the trigonometric functions, this is

erail _ 4(1 + 02)(JC cos2V¥ + Jg sin 2\:[/)

and
HP = 8C (Jsin2W — Jg cos2¥),
where
00 y 11
c = 1 2| ?
J /0 cos(y){ny+k+12} Y
and

> Yy 11
Jy = 1 — | d
s A $Mw{ny+k+lJ Yy

These integrals are ill-defined, because the function within the square brackets be-
11

haves as 33 — k/y for large y, and the constant term prevents each integral from
converging. This, however, is an artificial problem that comes as a consequence of
our (unphysical) approximation w = constant. In reality, the two-body system un-
dergoes radiation reaction, and w slowly decreases as ( increases toward co. (Recall
that z decreases as time increases, which causes w to increase as time increases; but
recall also that the tail term integrates towards the past, so that w decreases as ¢
increases.) This effect does not alter substantially the logarithmic portion of the
integral, but it is sufficient to ensure the convergence of the constant term.

The integrals can be defined properly by inserting a convergence factor within
the integrand. Alternatively, and this practice is consistent with what was done
back in Sec. 6.10.3, we can integrate by parts and simply discard an ambiguous
(and unphysical) boundary term at y = oco. Proceeding along those lines, we find
that our integrals are equivalent to

* ksiny
o yly+k)

> k(cosy — 1)
Js:/ Meosy—1) 4,
o yytk)

and we observe that these integrals are indeed well defined. They can be evaluated
in closed form. We have

and

Jo = ,g + gcosk+Ci(k) sin k — Si(k) cos k
_ _T -1
= —5t O(k™)
and
Js = —y—Ink— g sin k + Ci(k) cos k + Si(k) sin k

= —y—Ink+0(k™?),

where 7y is Euler’s constant, Ci(k) is the cosine integral, and Si(k) is the sine integral
(these are defined, for example, in Sec. 5.2 of Abramowitz and Stegun’s Handbook
of mathematical functions). The approximate forms neglect terms of order k=1 =
(4wr/c)=t ~ (X./r) and smaller, and these are small by virtue of the fact that the
gravitational-wave field is evaluated in the far-away wave zone, where r > A..
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Collecting results, we find that
Pl = —4(1+ C?) {;T c0s2¥ + (v + In4wr/c) sin 2\11}

and
H = 8¢ B sin 2¥ — (v + In4wr/c) cos 2\11} ;

and these expressions were already presented in Egs. (6.12.23) and (6.12.28).
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In this final chapter we calculate the energy carried off by gravitational waves,
and we construct a radiation-reaction force that acts on each body within an N-
body system. We begin by constructing an expression for the rate at which energy
is dissipated by gravitational waves. We provide two very distinct derivations. In
Sec. 7.1 we use the Landau-Lifshitz pseudotensor as a basis for the calculation, and
in Sec. 7.2 we recreate the Bondi-Sachs argument, which is based on a careful inte-
gration of the Einstein field equations in the far-away wave zone. Both approaches
lead to the same result, expressed by Eq. (7.1.4) or Eq. (7.1.5). In Sec. 7.3 we
give two applications of this result. First, we derive Eq. (7.3.6) or Eq. (7.3.8), the
celebrated quadrupole formula of gravitational-wave physics. Second, we calculate
the energy radiated by a two-body system in circular, post-Newtonian motion; this
is expressed by Eq. (7.3.18). In Sec. 7.4 we calculate the gravitational potentials
that are required in the computation of the radiation-reaction force, which is car-
ried out in Sec. 7.5. The final result for the radiation-reaction force is given by
Eq. (7.5.32) for the general N-body system, and by Eq. (7.5.49) for a two-body
system. This final section also provides a discussion of energy balance; we show
that the radiation-reaction force does work on the N bodies, and we verify that in
a coarse-grained sense, the work done is equal to the energy radiated.

7.1 Energy radiated: Landau and Lifshitz

The most direct way of calculating the rate at which energy is radiated by a source
of gravitational waves is based on the conservation identities of Sec. 1.2. These, we
recall, are a direct consequence of the Landau-Lifshitz formulation of the Einstein
field equations, which was reviewed in Sec. 1.1.

Recall from Eq. (1.2.2) that

3

PO[V] = e }é 0, H"0° ds,
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represents the zeroth component (the energy divided by ¢) of the total momen-
tum four-vector associated to a three-dimensional volume V bounded by a two-
dimensional surface S; the integrand is related to the gravitational potentials h®?
via the relations HV = g*Bgnv — govgfr and g*% = 8 — h*#. The rate at
which this quantity changes with time is given by Eq. (1.2.3), which we write as

dE\V
g L
S

having set E[V] = P°[V]c and 2° = c¢t. In the limit in which V becomes infinitely
large, this must become equal to (minus) the rate at which the gravitational waves
carry energy away, and we have

E,
dﬁwzc%(ﬂmﬁd&, (7.1.1)

an equation that relates ng to the surface integral of the normal component of
(—g)t% | the Landau-Lifshitz flux vector.

We evaluate Eq. (7.1.1) in the far-away wave zone, and we take the limit r — oo
at the end of the calculation. We work in the TT gauge of Sec. 6.1.4, and we use
the gravitational potentials of Eqs. (6.1.26)—(6.1.28),

4GM " Wb e
ho = ot R R R (7.1.2)

Here, M is the total gravitational mass of the spacetime, and h“TIZr depends on the
retarded time 7 := t — /¢, the angular vector Q := x/r, and falls off as 7~1; it also
satisfies the transverse-tracefree conditions

Q% = 0 = Sahhr.

Equation (7.1.2) is valid to leading order in 7~!, and the neglected terms are of

order 2.

We need an expression for (—g)t)$ that is sufficiently accurate in the far-away
wave zone. Because the Landau-Lifshitz pseudotensor is dominantly quadratic in
the gravitational potentials, the leading-order terms fall off as r~2, and we may
neglect cubic and higher-order terms that will not survive the limit » — co. Going
back to the original definition of Eq. (1.1.5), we substitute g®? = n®# — po8 g8 =

n*¥ 4+ O(h), and we obtain

11 1
(—g)td = 16; G{anhwa%w — 20RO — Oy 0" b

— Oy, 0O + 6uh01,8“h"c},

in which indices are lowered with 7,,, and h = 7,,h*”. When we substitute
Egs. (7.1.2) into this expression, we notice first that h° does not participate, be-
cause its time derivative is zero, and because its spatial derivatives fall off as r~2.
We notice also that h = 0 in the TT gauge, and we recall that in the far-away wave
zone, spatial derivatives can be expressed in terms of retarded-time derivatives ac-

cording to 9. = —c10.0,, a statement that follows from Eq. (6.1.10).
With these simplifications, we find that the Landau-Lifshitz flux vector reduces

to

Oc __ c? hTThab Q¢ 71.3
(_g)tLL_% ab il (7.1.3)
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in which an overdot indicates differentiation with respect to retarded-time 7. If we
take S to be a surface of constant r, then dS. = r2Q, dS2, where dQ = sin 6 dfd¢ is
an element of solid angle, and Eq. (7.1.1) becomes
3 . .

s = 3 P rhey hipy dO. (7.1.4)
The energy flux can also be expressed in terms of the gravitational-wave polariza-
tions hy and hy, by involving Eq. (6.1.40) and the orthonormality of the basis
vectors @ and ¢. We obtain

3

c . . .
Bew = 15— rlinéof{ﬂ (h2+ + hi) doQ. (7.1.5)

It is understood that h“TIZF, hy, or hy are expressed as functions of 7 and €2, and
that they fall off as »—!; as a consequence, the factors of r disappear from both
Egs. (7.1.4) and (7.1.5).

This derivation of ng leaves much room for criticism. To begin, the calculation
is based on the (fairly arbitrary) definitions for momentum and momentum flux
introduced by Landau and Lifshitz. While the conservation identities that follow
from these definitions are perfectly rigourous, the interpretation of cP°[V] as a
physical energy is not, and it becomes meaningful only when the spacetime is static,
and when V is infinitely large. There is no guarantee that this quantity should
provide a sound description of total gravitational energy in dynamical situations,
and the current foundation of Eqgs. (7.1.4) and (7.1.5) is not as solid as one might
wish. In addition, the calculation of ng was carried out in the TT gauge, and
there is no guarantee that the result should be gauge invariant. In view of this
criticism, we provide in the next section an alternative, more rigourous derivation

of Egs. (7.1.4) and (7.1.5).

7.2 Energy radiated: Bondi and Sachs

The derivation of Egs. (7.1.4) and (7.1.5) presented in this section is based on a
careful integration of the Einstein field equations in a neighbourhood of r = oo, in
the far-away wave zone. The method goes back to the celebrated work of Bondi,
van der Burg, and Metzner (1962), and of Sachs (1962). The presentation here
follows closely the paper by Brown, Lau, and York (1997). We shall establish
Eq. (7.1.5) directly, and this is sufficient, because Eq. (7.1.4) can be recovered from
it by involving the equations that precede Eqgs. (6.1.41) and (6.1.42).

7.2.1 Bondi-Sachs metric

We work in a system of coordinates (u,r, 8, ¢), with the usual relation to a Cartesian
system (t,x,y,z) given by u = ¢t —r, x = rsinfcos¢p, y = rsinfsing, and z =
rcos . We denote the angular coordinates collectively by 84 = (6, ¢), with an index
A that runs from 2 to 3. The metric is put in the form

ds* = —UV du® — 2U dudr + r*Qap (d0? + W4 du) (d607 + WP du), — (7.2.1)

in which U, V, W4, and Qup are functions of u, r, and 4. To reduce the number
of independent components from seven to six, we impose the condition

Q := det[Qap] = sin? 6. (7.2.2)

This ensures that a two-surface of constant v and r has a proper area equal to
47r?; Eq. (7.2.2) is therefore a normalization of the radial coordinate r, which is
interpreted as an areal radius.
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The geometrical meaning of the coordinates is revealed by an examination of
the inverse metric, which is given by g** = 0 = g"4, ¢~ = —1/U, ¢'" = V/U,
g4 = WAJU, and g*B = QA8 /r2 in which Q4P is the inverse to Q45. The
vector

ko := —0qu

is normal to hypersurfaces of constant u, and from the inverse metric we find that
g*P kokg = g""* = 0; the vector is null, and each surface u = constant is therefore
a null hypersurface. These surfaces are generated by null geodesics to which the
vector k® is tangent. We can show that the angular coordinates 4 are constant
along the null generators: kﬁﬁgﬂA = gaﬁka{)‘gﬂ“‘ = ¢g"4 = 0. And we can show
that the change in r along each generator is determined by the metric function U:
kPOsr = g*Pka0sr = g*" = —1/U. The meaning of the coordinates is therefore
clear: The retarded-time coordinate u labels a family of null hypersurfaces, the
angular coordinates 64 label the null geodesics that generate the hypersurfaces,
and the areal radius r runs along each generator. Because U is positive, r decreases
toward the future (because k¢ is future directed), and the generators converge
toward r = 0; this implies that the null hypersurfaces are converging light cones.

The metric of Eq. (7.2.1) is required to be asymptotically flat, and this implies
that the metric functions must satisfy the conditions

U—1, V —1, w4 =0, Qap — diag[l,sin? 4]

when r — oo.
To integrate the Einstein field equations in a neighbourhood of » = oo we intro-
duce the asymptotic expansions

A(u, 64) n B(u, 64)

U o= 1+ S+ O(r™3), (7.2.3)
Vo= 1- QGTZS; ) +0(r™?), (7.2.4)
WA = CA(Z’ " DA(:;’ ) 0w, (7.2.5)
Qgg = 1+ X(u;eA) + X+ Y22j2p(u’6A) +0(r ), (7.2.6)
gy = sine{y(u;aA) + Q(i’fA) —|—O(r3)], (7.2.7)
Qpp = sinze{l - X(“;QA) + X+ YQQZQP(“’GA) + 0(7‘_3)} (7.2.8)

We have introduced a number of functions of u and #4 (such as A, B, m, C4, D4,
P, and Q) that will be determined by the field equations. The functions X and
Y will remain free, however, and will be seen to represent the gravitational-wave
degrees of freedom of the solution. The function m(u, %), called the mass aspect
of the spacetime, will play an important role below. And finally, we remark that
the specific forms introduced in Egs. (7.2.6)—(7.2.8) for Q4p are designed to enforce
the normalization condition of Eq. (7.2.2).

7.2.2  Integration of the field equations

The strategy is to substitute the expansions of Eqgs. (7.2.3)—(7.2.8) into the metric
of Eq. (7.2.1), and then to use this metric to calculate the Ricci tensor. Because
we wish to construct a solution to the vacuum field equations, we set Ry,3 = 0 and
examine the consequences. (These computations are best carried out with a tensor
manipulation package such as GRTensorll running under Maple.)
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The computation returns the Ricci tensor expressed as an expansion in powers
of r~1, and we must set the coeflicient of each term equal to zero. The leading terms
are Ry, = O(r1), Ryr = O(r=2), Ryua = O(1), Ry = O(r=3), Rpa = O(r~1), and
Rap = O(l)

We begin by enforcing R,, = 0 at leading order, and this immediately implies
that A = 0. Next we set R,y = 0, and this produces C4 = 0. With these
assignments, we find that all the leading terms in R,g vanish.

Moving on, we now enforce R,.4 = 0 at the next order, and we deduce that

1/0X cos 6 1 9Y
0 _ el il
b (aa +2$in9X+sin98¢>

T2
and 1 aYy 0 1 0X
S S Sl Vi
b 2sin9<89 +2sin0 sin @ 8¢))'

Continuing like this, we also produce the relations B = —1(X? 4+ Y?), P =0, and
Q=0.

The final piece of information comes from setting the O(r=2) term in Ry, to
zero. This reveals that

om 2 /ox\? [ov\?| ¢ oFr
o0~ T1G (m) + (m) G on (72.9)
where
2 2 2
P 0 X cosf 0X 90X 1 0°X 2 0°Y cosf 0Y (7.2.10)

= 67 " 5ine o0 26 097 | sm0000p 56 06
Equation (7.2.9) determines how the the mass aspect changes with time, assuming
that the functions X (u, #4) and Y (u, #4) are known. Notice that these two functions
are not determined by the field equations; they represent unconstrained degrees of
freedom, and in Sach’s treatment, they are combined into a single complex quantity
known as the news function. It is an important fact then when there is no news,
that is, when X =Y = 0, the mass aspect becomes independent of the retarded-
time w. And what’s more, it can be also shown (by involving additional pieces of
the field equations) that when X =Y = 0, the mass aspect must be independent
of the angles. Under these conditions, m is a constant, the asymptotic spacetime is
spherically symmetric, and m remains as the sole characterization of the spacetime.

7.2.8 Mass-loss formula

Our results in the preceding subsection imply that the time-time component of the
metric tensor is given by

2Gm(u, 64)

c2r

—Guu =UV =1— +0(r?), (7.2.11)
and the origin of the name “mass aspect” for m(u,#4) becomes clear. As we have
just seen, the interpretation of m as a mass parameter is firm when the functions
X (u,04) and Y (u,#4) vanish; in these circumstances m is independent of both u
and 64, the asymptotic spacetime is spherically symmetric, and Eq. (7.2.11) informs
us that m is the total gravitational mass of the spacetime.

The angular average of the mass aspect is what is known as the Bondi-Sachs
mass,

Miss (1) = i / m(u, 0, 6) dS. (7.2.12)
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This depends on w only, and its rate of change is obtained by integrating Eq. (7.2.9)
over a unit two-sphere. We shall prove below (in Sec. 7.2.5) that [ FdQ = 0, and

we find that
MBS - 62 0X\2 dY \ 2
du 167G / {( au) + (8u) ] s (7.2.13)

This is the celebrated Bondi-Sachs mass-loss formula. We shall attempt to give
an interpretation to this formula in terms of a flux of gravitational-wave energy
(represented by the right-hand side) producing a decrease in the energy function of
the source (represented by the Bondi-Sachs mass).

The interpretation is especially clear when the spacetime proceeds from an ini-
tial stationary state, becomes dynamical for a while, and settles down to a final
stationary state. In the initial stationary state there is no news (X =Y = 0), the
mass aspect m is a constant, and according to Eq. (7.2.12), it is equal to the initial
value M; := Mgg(uq) of the Bondi-Sachs mass (here u; denotes the initial retarded
time); the initial mass content of the spacetime is therefore measured by M;. Much
of the same is true for the final stationary state: The news has turned off, the mass
aspect m is once again constant, and it is equal to the final value My := Mpg(us2)
of the Bondi-Sachs mass (ug is the final retarded time); the final mass content of
the spacetime is therefore measured by Ms.

Between v = w; and u = wus the spacetime is dynamical, and the functions
X (u,04), Y (u,04) are nonzero. According to Eq. (7.2.13), the Bondi-Sachs mass
must decrease while there is news, and we find that My is necessarily smaller than
M. The spacetime has lost some of its mass, and it must be the gravitational
waves (represented by the news) that have transported this energy away from the
source. The rate at which the waves carry energy must therefore be given by the
right-hand side of Eq. (7.2.13).

It is important to notice that we are introducing here a notion of coarse-grained
rate: What we can say with full certainty is that in the time interval Au = us — uq,
the spacetime has lost an amount of mass given by AM = My — M, and that
the averaged rate at which the waves carry energy must be given by AM/Au.
This coarse-grained rate can be calculated by integrating the right-hand side of
Eq. (7.2.13) between u = uy and u = ug, and dividing the result by Auw.

The scenario elaborated here is based on the idea that the spacetime is dynam-
ical for a period of time Auwu, and the mass-loss formula allows us to calculate the
accumulated change in mass over that period. The scenario does not allow us to take
the limit Au — 0 and to conclude that in this limit, AM/Au becomes dMpg/du
as given by Eq. (7.2.13). The reason is that while the limit is mathematically well
defined, the physical interpretation of the result, in terms of an operationally well-
defined mass function, does not survive the limiting procedure. We must therefore
learn to live with a coarse-grained notion of gravitational-wave energy flux, and
abandon the idea that there might exist a precise, physically meaningful, notion of
fine-grained energy flux in general relativity. This said, we shall nevertheless allow
ourselves to view Eq. (7.2.13) as a plausible expression for the energy flux, keeping
in mind that the interpretation is valid only after coarse graining.

7.2.4  Gravitational-wave flux

The interpretation of Eq. (7.2.13) as an energy-flux formula relies on an identi-
fication of X and Y with the spacetime’s gravitational-wave degrees of freedom.
There are many ways of establishing this connection, but to avoid the many dan-
gers associated with different coordinate systems and gauge conditions, we rely on
the discussion of Sec. 6.1.5, in which h4%; is related to certain components of the
spacetime’s asymptotic Riemann tensor (a gauge-invariant quantity in the far-away
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wave zone). We recall the relation
hzl;r = *QRtatb + O(Tiz)a

in which an overdot indicates differentiation with respect to 7 := u/c. This equation
is expressed in harmonic coordinates, but it can easily be written in covariant form
if instead of dealing with the tensor hEbT , we work with the polarizations h; and
hy, which are scalar quantities. Recalling Egs. (6.1.41) and (6.1.42), we have that

hy = —(9a9b - ¢a¢b)Rtatb
and
hy = —(0°¢" +¢“6") Ruany,
and these equations can be written in fully covariant form as

hi = —Ruaust! (0°0° — ¢°¢°)t" + O(r—2) (7.2.14)

and
hx = —Rpuaust” (0267 + ¢20°)t" + O(r~2). (7.2.15)

Here, t“ is a timelike vector that asymptotically coincides with the timelike Killing

vector of Minkowski spacetime at r = oo, and 6% and ¢® are vectors that asymp-

totically coincide with unit vectors pointing in the § and ¢ directions, respectively.
We are interested in the quantities

Ay = lim rhy, Ay = lim rhy,
7—00 rT—00
which can be evaluated with the help of Egs. (7.2.14) and (7.2.15). Performing
the calculation with the Bondi-Sachs metric of Eqgs. (7.2.1)—(7.2.8), we arrive at
Ay = X and Ay =Y, and we conclude that

A, =X, A=Y

The components of the complex news function do indeed represent the spacetime’s
gravitational-wave degrees of freedom.

We insert these results within Eq. (7.2.13), which we write in terms of the Bondi-
Sachs energy Epg := Mpgc?. The result is

dEBS 04 2 8h+ 2 8hx 2
=— —_— Q.
du 167TG/T <8u)+<8u) d
This is the rate at which the spacetime is losing energy, and this must be equal

to (minus) the rate at which the gravitational waves carry energy away from the
source. Writing u = c7, we have arrived at

b [ G e

the same statement as Eq. (7.1.5), which was obtained on the basis of the Landau-
Lifshitz pseudotensor. It is comforting that we get the same expression from two
radically different approaches. We shall keep in mind, however, the lesson that was
learned in the preceding subsection, that Eq. (7.2.16) is meant to be involved in a
coarse-graining procedure whereby it is averaged over an interval of time §7 during
which the spacetime is strongly dynamical.
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7.2.5 Integration of F

We still have to show that [ F'dQ = 0, where the quantity F is given by Eq. (7.2.10).
Here X and Y are to be viewed as arbitrary functions of 6 and ¢, and their depen-
dence on u is irrelevant.

We begin with a formal proof of the statement. We first place a metric 245 on
a topological two-sphere, with components

Qoo = 1+eX +0(e?),
Qg¢ = sinf [EY + 0(62)] ,
Qs = sin®0[1 —eX + O(e?)],

where X and Y are arbitrary functions of # and ¢, and where € < 1 is a parameter
that measures the deformation of the two-sphere relative to a perfectly round shape.
[These equations are the same as Eqgs. (7.2.6)—(7.2.8), with the dependence on u
removed and with r~! replaced by e.] We next calculate the Ricci scalar associated
with this metric,

R=2+eF 4+ O(é?),

where F is defined by Eq. (7.2.10), and we integrate this over the manifold:
/R\/ﬁdedgb = 87r+e/FdQ + O(e?).

The Gauss-Bonnet theorem states that the integral of R over the two-dimensional
manifold is a topological invariant; its value depends on the topology of the manifold
(through its Euler characteristic, which depends on the genus of the surface), but
it must independent of the metric. In our case the integral of R must be equal to
87, the value of the topological invariant that is appropriate for a two-sphere, and
it must be independent of e. We conclude that

/FdQ =0, (7.2.17)

irrespective of the form of the functions X (6, ¢) and Y (0, ¢).
To see how this “miracle” happens, we examine the specific form of the function
F. Equation (7.2.10) can be written as

0% cosf O cosf O 1 02X 2 0 (0 cosb
F= (892+sin9 69>X+2<sin9 89_1>X_Sin29 0¢? —}_sinﬂ&b<89+sin9)y7

which is the same as

1 0. 0X 2 0 1 90X 2 9 (0 cosb
F= sin@@@(smef)ﬂ>+Sin080(cosex>_sin29 0¢? +Sin08¢)<89+sin9)y

Integration of all derivatives with respect to ¢ gives zero, and integration of the
first terms yields

1 90/(. 0X)\ . . 0X
/0 S5m0 90 <sm€a€> sin 6 df = sm@w

The only remaining term is

=0.
0

1 0
P 77( 0X)'9d0:—2X L0) + X(0,0)].
A 5999 \ ¢ sin (X (m,¢) + X(0,9)]
This is actually independent of ¢, because a regular function X (6, ¢) cannot depend
on ¢ when it is evaluated at the poles ( = 0 or § = 7). Furthermore, elementary
flatness at the poles requires that X (6 = 0) = X(6 = 7) = 0, and we find that the
second integral must vanish also. The statement of Eq. (7.2.17) is therefore verified.
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7.3 Energy radiated: Quadrupole formula and
circular orbits

7.3.1 Quadrupole formula

In this first subsection we calculate ng to leading order in a post-Newtonian ex-
pansion, for an arbitrary source of gravitational waves. Our end result will be the
celebrated quadrupole formula for the energy radiated by gravitational waves.

We recall from Sec. 6.9 that to leading order in a post-Newtonian expansion,
the gravitational potentials are given by

2G
het = EI“”, (7.3.1)
where
I = /px“xb >z (7.3.2)

is the Newtonian quadrupole moment of a mass distribution with density p :=
T /c2. For a system of N bodies with masses m 4 and positions z(t), this is I** =
> amaz42Y. These are Egs. (6.9.1) and (6.9.2), respectively, with all expressions
truncated at Newtonian order. The transverse-tracefree part of this is

i = (11)%, b, (7.3.3)
in which the TT projector
1
(t1)*,4 = PLP" — ipabpcd, (7.3.4)
with
P = 6% — Q% (7.3.5)

was first introduced in Sec. 6.1.6. To calculate the energy flux, at this order of
accuracy, we must substitute Eq. (7.3.1) into Eq. (7.3.3), and that into Eq. (7.1.4).

Using the properties P% P9 = P9 and P9 = 2 of the transverse projector, it is
easy to show that

. . 1 o
h;[‘l;rh%lfr = (Pachd — 2Pachd> hathd_

This becomes

Lo L gl 4G (g God — Lbundoa — 8 b
ha,b hTT = @ acObd — 5 abOcd — achQd - banQc

1 1 1
+ 5008 + 501 + ZQaQchﬂd) 706G ped(3)

after substitution of Egs. (7.3.1) and (7.3.5).
Putting this into Eq. (7.1.4),

. CS . .
Bo = 5o | Tttty as,
we find that the gravitational-wave luminosity is given by

. G 1
ng = ﬁ <5a65bd - i(sabécd - 6ac<<Qde>> - 6bd<<Qan>>

1 1 1
+ 50a{ Q) + 50ca () + 2<<QaQbQCQd>>)I“b<3>ch<3>,
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in which ((---)) := (4m)~! [(---)dQ indicates an angular average. Importing the
relevant results from Sec. 1.8.4, we eventually arrive at

: 1G ab(3) 1(3) 1 (3)2
By = 55(1 1§ - <1 ) (7.3.6)
which expresses ng in terms of the third derivative of the quadrupole moment with
respect to retarded-time 7 :=t —r/c.

An alternative expression involves

1
Iab) .— ab _ gaabl, I:= 61" (7.3.7)

the tracefree version of the Newtonian quadrupole moment. It is easy to show that
I8 [y = 114, — 112, so that Eq. (7.3.6) can also be written as

B = L& ptan®) 1)

=3 o (7.3.8)

Equation (7.3.6), or its alternate form of Eq. (7.3.8), is the well-known quadrupole
formula of gravitational-wave physics.

To illustrate the content of the quadrupole formula, we apply it to a Newtonian
two-body system. Working in the reference frame of the barycentre, we have from
Eq. (6.11.13) that

1% = mnz?2°, (7.3.9)

where m := my +msq is the total mass, n := mymsy/ m? is the dimensionless reduced
mass, and z := 2z — 29 is the relative position vector. The Newtonian relative
acceleration is

a=-——n, (7.3.10)

in which z := |z| and n := z/z. After differentiating three times with the help of
Eq. (7.3.10), Eq. (7.3.9) gives

2Gm?
790(3) — 777; N [—2(v“nb +n?) + 32n“nb],
z
where v := v1 — v3 is the relative velocity vector, and 2 = n - v is the radial velocity.
Substitution into Eq. (7.3.6) gives

8 G (mn)*(Gm)?

Egw = 15 8 24

(120* — 1127). (7.3.11)

This is the quadrupole formula applied to any Newtonian two-body system.
For circular orbits we have 2 = 0 and v? = Gm/z, so that Eq. (7.3.11) becomes

. 3202
Eyy = Ta(v/c)lo. (7.3.12)

The Newtonian orbital energy is E = —Gm?n/(22), and the relation E = —E’gw
implies that the orbital radius must decrease according to

64n G3m3
z2=—-—— . 7.3.13
5 P23 ( )
This equation can easily be integrated for z(¢). It implies that the orbital velocity
v, and the angular velocity w = \/Gm/z3, increase with time. This reaction of the
orbital motion to the emission of gravitational waves will be examined more closely
in Secs. 7.4 and 7.5.
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7.8.2 Post-Newtonian circular orbits

In this subsection we use Eqgs. (7.1.5) or (7.2.16) to calculate the energy radiated
by a two-body system in a post-Newtonian circular orbit. The gravitational-wave
polarizations were obtained in Sec. 6.12.4, and according to Egs. (6.12.17) and
(6.12.18), we have that

h+ = ZHJ,_, h>< = I'HX, (7314)

where

x = (Gm”> . (7.3.15)

is the post-Newtonian expansion parameter, written in terms of the total mass
m := mj +mq and the orbital angular velocity w. The functions H; and Hyx admit
post-Newtonian expansions of the form

H=HO 4 Ae2H02 o g 4 AG2 B/ 4 320 L 0(2?),  (7.3.16)

where A := (m; — ms)/m?, n := mims/m?, and the various terms are listed in
Egs. (6.12.19)—(6.12.28). These depend on § via C := cosf and S := sin 6, and they
depend on 7 and ¢ through the phase variable ¥ := w7t — ¢.

Differentiation of hy and hy with respect to 7 involves differentiating H, and
H, with respect to ¥, and we indicate this with a prime. After squaring, we get
something of the form

o 4(Gmn)?
2 _ 22772
Using Eq. (7.3.15) we express w?xz? as ¢52° /(Gm)? and rewrite the previous expres-
sion as 5
. 4cn
2 _ 51712
Substitution into Eq. (7.2.16) gives
- e I\2 2] .
B = pogn’a® [ ()" + (H,)"] sinodoav, (7.3.17)

where we have replaced an integration with respect to ¢ by an integration with
respect to the phase variable W.

The computation of H/ and H! and the evaluation of the integral is tedious
but straightforward. After expanding the result in powers of z and eliminating A2
in favour of 1 — 47, we obtain

5
Egw = 52 ¢ e [1 - (1323? + ?Zﬁ)x + 4ma®? + O(2?)|. (7.3.18)
We observe that ng contains no correction term at order z'/2, in spite of the fact
that the gravitational-wave polarizations do possess such terms; a %PN correction
to the energy flux would have to come from an interaction between the H and
H[/2] terms within H, but because these signals are out of phase, the interaction
produces no flux. We observe also that ng contains a term at order #3/2, and such
a term has three possible origins. First, it might have originated from an interaction
between H® and H[?/2 but this produces no flux because these signals also are
out of phase. Second, it might have originated from an interaction between HU
and H/2! but this does not contribute for the same reason. The only remaining
possibility is an interaction between H and H!; these signals are in phase, and
their interaction does indeed contribute to the energy flux. The 47z3/? term within
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Eq. (7.3.16) has its origin in the tail effect; it is a wave-propagation correction to
the Newtonian expression that appears outside the large square brackets.

From Egs. (6.12.6) and (6.12.9) we find that the orbital energy of the two-body
system is equal to

1 1
Eorbital = —imnczx [1 —O+nz+ 0(:02)} . (7.3.19)
This, we recall, includes the kinetic and gravitational potential energies, but ex-
cludes the rest-mass energy of each body. The orbital energy must decrease ac-
cording to Eorbital = —Fgw, and inserting Eqgs. (7.3.18) and (7.3.19), we obtain a
differential equation for the post-Newtonian parameter x:

64cn o 743 11 3
P LS 2 4ra®/? + O(2?)]. 7.3.20
v 5Gmx[ (336+4n>$+ T+ 06 (7.3.20)

This equation governs how the angular velocity w increases with time; it describes
the reaction of the orbital motion to the emission of gravitational waves. Notice,
however, and this was already pointed out in Sec. 6.12.1, that this radiation reaction
is not incorporated in the 1PN equations of motion that were involved in the deriva-
tion of Egs. (7.3.18) and (7.3.19). This is an effect of higher post-Newtonian order
— %PN order to be precise — whose existence is (plausibly, but not rigourously)
inferred on the basis of the statement of energy balance, E‘orbital = fE.’gW. A cal-
culation at higher order is required to confirm the result of Eq. (7.3.20), and this
shall be our focus in the following two sections.

7.4 Radiation-reaction potentials

7.4.1 Introduction

As we have seen, a system of N bodies moving under their mutual gravitational
attraction emits gravitational waves, and these waves carry energy away from the
system. It is physically imperative that the system respond to this loss of energy,
and the equations of motion should contain terms that account for the effect. There
should therefore exist a radiation-reaction force that does work on each body within
the system and dissipates a fraction of its energy; the rate at which these forces do
work should be equal to the rate at which the gravitational waves remove energy
from the system. Our purpose in this section and the next is to calculate the
post-Newtonian radiation-reaction force. Equation (7.3.8) indicates that ng scales
as ¢ ° to leading order in a post-Newtonian expansion, and we expect that the
radiation-reaction force also should scale as ¢=®. This, then, will make a term of
gPN order in the system’s equations of motion. Recall that the equations of motion
were calculated at OPN and 1PN order in Chapter 5; there is no term at %PN order,
and we shall bypass a calculation of the 2PN corrections in order to focus on the
radiation-reaction term at 2PN order.

It is appropriate that the radiation-reaction force, which causes energy dissipa-
tion within the system, would scale as an odd power of ¢~1; this is in contrast with
lower-order terms, which are conservative and scale as even powers of ¢~'. This
behaviour can be understood as follows.

We have seen that the Einstein field equations can be cast in the form of

167G
us Taﬂ

aff _
Ohe? = - =227,

(7.4.1)

a wave equation for the gravitational potentials h*”, and that post-Newtonian the-
ory is based on an iterative solution to this equation. It is appropriate to select the
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retarded solution to the wave equation, to correctly enforce the notion that cause
should precede effect. It is as a result of this choice that the gravitational waves are
outgoing, and that they carry energy out to infinity. Mathematically, we see that
the wave field depends on retarded-time ¢t —r/c, and that ng is a positive quantity
that scales as ¢~°. And finally, we infer that there will be a radiation-reaction force
that drives a decrease in the system’s energy, so that global energy conservation is
maintained; this force also will scale as ¢~°.

Suppose now that instead of the retarded solution, we incorrectly select the
advanced solution to the wave equation. We would now find that the waves are
incoming instead of outgoing, and that they bring energy to the system instead
of taking it away. Mathematically we would see that the wave field depends on
advanced-time ¢ + 7/¢, and that ng — the outward flux of gravitational-wave
energy — is a negative quantity that scales as ¢~®. And finally, we would infer
that in this situation, the radiation-reaction force should drive an increase in the
system’s energy, which would match the energy input provided by the waves; the
force would still scale as ¢~°, but it would now come with the opposite sign.

The incorrect solution (advanced potentials, incoming waves, inward flux of
gravitational-wave energy, and increase of system’s energy) is obtained from the
correct solution (retarded potentials, outgoing waves, outward flux of gravitational-
wave energy, and decrease of system’s energy) simply by reversing the sign of ¢~1.
This reversal must change the sign of the radiation-reaction force, and it follows
directly that this force must scale as an odd power of ¢~!. On the other hand,
the conservative terms in the equations of motion are not sensitive to the choice
of boundary conditions (retarded versus advanced), and they therefore scale as an
even power of ¢~1. The radiation-reaction force must therefore be associated with a
fractional post-Newtonian order, and as we have seen, it first makes an appearance
at %PN order.

In this section we construct the gravitational potentials that are required in the
evaluation of the radiation-reaction force; these necessarily come with an odd power
of ¢71, and they are easily identified. In the following section we will involve these
potentials in a calculation of the equations of motion at %PN order, skipping OPN
and 1PN orders (which were handled previously in Chapter 5) and bypassing 2PN
order (which would require many additional computations).

Before we proceed it is useful briefly to review the situation in flat-spacetime
electrodynamics. (We consider the slow-motion limit, and ignore all relativistic
effects.) Tt is well known that the radiation-reaction force acting on a point particle
of electric charge ¢ is given by F,, = kq?a, where k=1 := 6megc®, and a is the
particle’s acceleration vector. Notice that as we might expect, the force scales as
an odd power of ¢c~!. As the charge moves with velocity v, the force does work at
arate W = Fy, - v = kq®a - v. We next write a - v = d(a - v)/dt — |a|? and obtain
the fine-grained conservation statement

) . d
W + Eyaves = _ﬁEbounda
where Eyaves := kq?|a|? is the rate at which the electromagnetic waves carry energy
to infinity, as calculated in the electric dipole approximation. We also have intro-
duced Eyound := —kq?a-v as the piece of the electromagnetic field energy that stays
bound to the particle. Averaging over a time interval At produces a coarse-grained
statement of energy conservation:

_ AElbound

<W> + <EwaveS> = At )

where AFE}ound is the net change in Fyoung during the time interval. In situations
in which the motion is periodic with period At, or when it begins and ends with a
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vanishing acceleration, we find that AFpoung = 0 and the conservation statement
becomes

<W> = <Ewaves> .

Under these conditions, and in a coarse-grained sense, we have energy balance: The
work done by the radiation-reaction force matches the energy taken away by the
electromagnetic waves. We recall that coarse-graining was an essential aspect of
the Bondi-Sachs derivation of the energy lost by radiating sources, and we should
anticipate that coarse-graining will be involved also in a statement of gravitational
energy balance (to be written down in Sec. 7.5.8). It is interesting to find that
coarse-graining plays an important role even in the relatively mundane context of
flat-spacetime electrodynamics.

7.4.2 Post-Newtonian expansion of the potentials in the near zone

We introduce the notation
4
=ve b= Cjwab, (7.4.2)

as well as
790 = pc?, 707 = jc, 7o = rab, (7.4.3)

and we write the wave equation of Eq. (7.4.1) as the set
OV = —47Gp, OvV® = —4nGj°, OW?® = —4xGr°. (7.4.4)

A method to integrate the wave equation was developed in Chapter 2. The solution
in the near zone is written as an integral over the past light cone of the field
point x, which is decomposed into contributions from a near-zone domain .4 and
a complementary wave-zone domain % . It was shown in Sec. 4.2.8 that in the near
zone, h?;f first appears at 3PN order, and because our considerations in this section
are limited to the gPN order, it makes no contribution to our near-zone potentials.
An expression for hig can be found in Sec. 2.4.2, and Eq. (2.4.7) reveals that this
takes the form of an expansion in powers of ¢~!. Explicitly, and to a sufficient
degree of accuracy, we have

0 10 1 02
V = G|:/|w_ml|d3xl_cat/pd3xl+2628t2 p|w—w’|d3xl

10 1 o
/p|:c—w’2d3x/+——/p|w—m'\3d3x’

6c3 O3 24ct ott
1 85 214 13 1 —6
~ 1505 35 ple —2'|* 2" + O(c™°) |, (7.4.5)
a [ ja 3/ 18 ca 33,/ 1 82 / - 33,/
v G_/ |z — | rocar ) x+2628t2 Jle—alld
1 03 .a N2 331 —4
_ ab 2
ab T 3, 10 ab 33,/ 190 ab 1 3.0
_ A B’ 4 — = —a'|d
v G_/ woa " e )T P T aage [T @A
10 ab 22 33/ —4
= |z —x'|* d*2x’ + O(c™*)|. (7.4.7)

In each integral 77 is expressed as a function of ¢ and 2, and the integration is over
the near-zone domain .# defined by 7’ := |z’| < R, where R is the arbitrary cutoff
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radius between the near zone and the wave zone. As usual we shall be interested in
the R-independent pieces of the potentials.

The terms that come with an odd power of ¢=* in Egs. (7.4.5)—(7.4.7) shall be
the focus of our attention. We shall have to be careful and keep in mind that while
some of the factors of ¢~ appear explicitly in these equations, some are contained
implicitly in the source functions p, j, and 7%, which are constructed partly from
the potentials. To account for the complete (explicit and implicit) dependence on
powers of ¢~!, we write

V o= V[0]+c2V[2] +c V4] +0(c°)
+ VA + cBV[B] 4+ VB + O(c7T), (7.4.8)
Ve = V0] 4+ c2V2l + O(c?)
+ ¢ W) 4 ¢ 3V3] + O(c7P), (7.4.9)
W = W]+ c2W*2] + O(c™?)
+ T TWO ] 4 e BWR3] + O(c7P). (7.4.10)

Here, for example, V5] includes a contribution from the last term in Eq. (7.4.5),
in which we would substitute p = p[0], but it includes also a contribution from the
first term, in which we would substitute p = ¢=5p[5]. The dependence of the source
terms on powers of ¢! will be revealed in due course.

7.4.3 Multipole moments and conservation identities

To help with the evaluation of the potentials we introduce a number of multipole
moments and link them with a number of identities. These are a consequence of
the conservation equations

O¢p + 0,5 =0, 0§ + O =0, (7.4.11)

which follow directly from dz7%? = 0 after involving the definitions of Eq. (7.4.3).
The discussion here follows closely the developments of Sec. 3.3.1, except that those
applied to the wave zone instead of the near zone.

We define

7 = /pd?’:m (7.4.12)
7% = /pa:a >z, (7.4.13)
7% = pxiaz dz, (7.4.14)
7% = pxtalzt dix, (7.4.15)
P = [ j%d3z, (7.4.16)

pete = [ joxbat dBa, (7.4.18)

Jo = (j“xb - jbx“) dz, (7.4.19)

Jebe = (jab — jP2)a¢ &z, (7.4.20)

M= [ 7 @By, (7.4.21)

/
/
/
pab . / jogb B, (7.4.17)
/
/
/
/
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Mabc = /T“bxc d3$, (7422)
Mabcd = /Tab{L‘C.’IId d3$7 (7423)

in which the sources are expressed as functions of ¢t and @, and the integrations
are over the domain M now described by r := & < R; the multipole moments are
functions of ¢ only. At the Newtonian order we have that p = >, mad(x — z4),
and 7 reduces to the total mass m := > , ma, Z% reduces mZ® := 3 , maz%, and
Z% reduces to the Newtonian quadrupole moment I := Yoam Azf‘zi. Similarly,
at the Newtonian order P® reduces to the total momentum P* := )" , m4v% and
J reduces to the angular-momentum tensor J% := 3" , ma(v%2Y — 240%).
From the conservation identities of Eq. (1.4.1)—(1.4.4) we deduce that

7 = —743'@ dS., (7.4.24)
¢ = Ppo_ ?{jbxa dSs, (7.4.25)
po - _ 74 7 48y, (7.4.26)
J® = - f(f‘”xb — 72 dS., (7.4.27)
pab = %(f“b + J“b) + %%jcx“aﬂb dS., (7.4.28)
pabe _ %(I'abc Ty %%jdxaxbxc dS,, (7.4.29)
M = %f‘lb + % 7{(7“%1) + 7Pz — adTCdac“xb) ds., (7.4.30)
AMabe  — %jabc I é(jacb +Jbea 4 %% j{jdxaxbxc s,
+ % ]{(T“da:bxc + rbdgage — TCdx“xb) dSy, (7.4.31)

where the surface integrals are evaluated on r = R, and where an overdot indicates
differentiation with respect to t. The derivation of these identities is straightforward,
and it follows the general strategy outlined in Sec. 3.3.1. For example, Eq. (7.4.25)
follows from ;% = 9;(px®) + 9y(j°2*), which is a direct consequence of the first of
Eqgs. (7.4.11).

One major difference with respect to the developments of Sec. 3.3.1 concerns
the boundary terms. These were not present in the earlier treatment, because
the source functions were constructed entirely from the material energy-momentum
tensor, which has its support in a small region deep within the near zone. Here
the source functions contain contributions from the potentials, and these do not
vanish at 7 = R. The boundary terms must be carefully evaluated, but we assert
that at all post-Newtonian orders to be considered within this section, the boundary
terms contain no R-independent pieces, and they can be safely discarded. (We shall
not prove this assertion, but you may be comforted with the recollection that each
boundary integral evaluated in Chapter 6 was shown to make no R-independent
contribution to the final result.)

We may set

I°=0="P° (7.4.32)

by placing the origin of the coordinate system at barycentre, and Eqgs. (7.4.25) and
(7.4.26) guarantee that these conditions can be imposed at all times.
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The conservation identities allow us to simplify the expression of the odd terms
that appear in Eqs. (7.4.5)—(7.4.7). First, Eqgs. (7.4.24) and (7.4.26) imply imme-
diately that the terms of order ¢~! vanish in Eqgs. (7.4.5) and (7.4.6). Second,
expanding |z —x’|? as r2 — 2z - 2’ +r'? and involving the definition of the multipole
moments reveals that

/p|:c —'Pd* = r°T —22°T,+1I°,

/p|:1: —2'*d = M — Ar?2°T, + 27T, + Ax 2P Ty, — 42°T,C + T,

/ja|a: —2/)?d® = P —22°PY + P,
/Tab dsl’/ — Mab
/Tab|33 . $,|2 de/ _ T,QM(lb o Q’ICMabC + Mabcc,

These relations become

[rle—aPata — 1.

/p|w —2/|*d® = 2(r?6" + 222") T, — 42°T°C + 1,
Al W2 330 . bga }'ac g ac
jle -2’ |*d’r = xzb+310+3‘70’
/T“bd3x’ _ Lgw
2 )
1 " 2 . .
/Tab|x _ 13,‘2 de/ _ 2 QIab chz-abc _ gxc(k7acb +jbca) _"_./\/labcc7

after involving Eq. (7.4.32) and the conservation identities, and discarding terms
that will vanish after differentiation with respect to t.
After taking all this into account, Eqgs. (7.4.5)—(7.4.7) become

1 82 1 33, —4
vV = |:13— +ﬁ@ ple —x'|d°z" + O(c™%)

1
3 2 cab a,.by7(5) a7(5 (5)
- @Ip S [2(r 5% + 2220) 1) — 4207 4+ 765)

L0 (07)}’ (7.4.33)
ve = G{/ |z i x| d°a’ + 0(0_2)
+ o [B0T0 - T 271 + O<c‘5)}, (7.4.34)

we = {/|m_ d’z' +0(c™?)

1
_ Iab(s) {3 27ab(5) _ 9 .cqab(5) _ gp.c( 7a b(4) b a(4)
2c 36¢3 ¢ o (j et )

+ 6M“b§3)} + 0(c5)}, (7.4.35)

where a number within brackets indicates the number of differentiations with respect
to t.
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As a consequence of the fact that Z is a conserved quantity, Eq. (7.4.33) does
not contain a term that scales explicitly as ¢~!. And because p cannot contain a
¢! term, there is no implicit dependence, and we conclude that

V(1] =o0. (7.4.36)

Similarly, P* is a conserved quantity, and Eq. (7.4.34) does not contain an explicit
term at order ¢~ !. Because j cannot contain a ¢! term, we conclude that

Ve =o. (7.4.37)

7.4.4 Odd terms in the effective energy-momentum tensor

To proceed we must identify the orders at which odd powers of ¢! appear within
the source functions p, j%, and 7%°. We recall from Eq. (1.3.5) that the effective
energy-momentum tensor is expressed as

78 = (—g)(T*? + 17 +15), (7.4.38)

in terms of the material energy-momentum tensor 7%%, the Landau-Lifshitz pseu-
dotensor of Eq. (1.1.5), and the harmonic-gauge contribution of Eq. (1.3.6).

We begin with an examination of the material contribution. The energy-momentum
tensor of a system of N point masses is given by Eq. (4.1.3),

(—g)T*P = Z mAvjvﬁ Lé(z—za), (7.4.39)
A

where v = (c,v4) and the relativistic factor I' is defined by

M=——Y"9 (7.4.40)
V=gV vs /c?

The odd terms will be contained in I', and to calculate this we must first obtain the
metric from the gravitational potentials. It is sufficient to work at linear order in
h*? and according to Egs. (1.6.4) and (1.6.6), we have gag = nag+has— 5h1aps and
V=g = 1—3h, where h = 1q3h®?. After involving Eqs. (7.4.2) and (7.4.8)—(7.4.10),

we obtain

2
vV—g = 1+ (even)+ —5( —W]) +0(c™),
2
goo = —1+ (even)+ 5(VH+W[ ])JFO(CJ),
Gab = 5ab+( )+O( 5),
where (even) designates terms of order ¢=2, ¢™*, and so on, and W[1] := 6,,W2[1].

To arrive at these results we have set V[1] = 0 according to Eq. (7.4.36), and as a
consequence of Eq. (7.4.37), we find that the odd terms in gg, first appear at order
¢~ % and can be neglected. We next obtain

I' =1+ (even) + %(31/[3] —W[]) +0(c™), (7.4.41)
and we conclude that odd terms first appear at order ¢~° within the material energy-
momentum tensor. (This conclusion will require revision. We shall find that in
actual fact, 3V[3] — W[1] = 0, so that the first odd term in I" appears at order ¢~ 7.)

We next examine the Landau-Lifshitz pseudotensor. We shall not go through a
detailed computation here (this is postponed until Sec. 7.5.2), but merely determine
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the expected scaling of the leading odd terms. Noticing that (—g)t%ﬁ is at least
quadratic in the gravitational potentials, we observe that the leading odd terms in
(hoo)2 and h%°h? scale as ¢~7, and that other products come with additional powers
of c1; inserting these scalings within Eq. (1.1.5), we find that the leading odd terms
in (— g)tOL and (—g)t# scale as ¢~3, while the leading odd term in (—g)t)¢ scales as
*4 The conclusion of this simple exercise is that the Landau-Lifshitz pseudotensor
is expected to make an odd contribution to p at order ¢=%, to j¢ at order ¢~%, and
to 79 at order ¢3. (These conclusions will require revision. A closer examination
will reveal that in actual fact, the pseudotensor contributes to p and j* at order
¢~ 7 only, and to 7% at order ¢~° only.)

The expected scaling of the leading odd terms in (—g)tﬁﬁ is determined in a
similar way. Here we find that this pseudotensor contributes to p at order ¢=°,
to j at order ¢~°, and to 7% at order ¢ ®. (These conclusions will not require
revision.)

These considerations allow us to write down the following expansions for the
source functions:

p = p[O] +c¢2p[2] + O(c™) + ¢ Pp[5] + O(c™7), (7.4.42)
3¢ = 0]+ 252l + O(c™) + ¢75545] + O(e™7), (7.4.43)
T = 70+ ¢ 2T 2] + O(c ) 4+ P E] + TP B] + O(¢TT). (7.4.44)
2

The zeroth-order terms are of course the Newtonian expressions. The terms in ¢~
are the post-Newtonian corrections, and these were carefully evaluated in Chapter
4; they will not be needed in this section. Expressions for p[5] and 7%°[3] will be
obtained below, but j[5] and 79°[5] will not be required.

7.4.5 Odd terms in the gravitational potentials

We next substitute Eqgs. (7.4.42)—(7.4.44) into Egs. (7.4.33)—(7.4.35) and compare
with Eqgs. (7.4.8)—(7.4.10). This reveals that the odd terms in the gravitational
potentials are given by

V3] = —1G2<3> [0}, (7.4.45)
1
= (39 r25ab a, b (5)
+35 “Ifwl[O] 1201£Zid[0]}7 (7.4.46)
1 yoa 1 1
v = GGt T - T - g7l (7.4.47)
Web[] — %GI&M [0], (7.4.48)
ab _ 1_1 ab(3) __— 27ab(b) i crab(5)
W3] = G{ ‘w_ QI [2] = 57?2 [0] + g2 7o)
1

In these expressions we indicate the order in ¢! at which the multipole moments
are to be evaluated. For example, Z¢°[0)] is the zeroth-order term in an expansion of
the quadrupole moment in powers of ¢~1, and ¢2Z?[2] is the second-order term.
Said differently, Z2°[0] is the Newtonian quadrupole moment 1% = ", m 42924,
and ¢~2Z7[2] is its post-Newtonian correction.

A number of observations are in order. First, we notice that apart from two
exceptions, V[3], V[5], V¢[3], W4[1], and W4*[3] involve the Newtonian multipole
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moments only; the exceptions concern Z%°[2], the 1PN correction to the quadrupole
moment. Second, we notice that V[3] and W4[1] are functions of time only, while
V5], V¢[3], and W?[5] are also functions of the spatial coordinates. And third, we
observe that 3V[3] — W[1] = 0, which implies that the term of order ¢~5 vanishes
in Eq. (7.4.41).

Our results thus far imply that the gravitational potentials admit the following
expansions:

R0 = 042{‘/[0] + 02+ 3VB + V5] + O(c_7)},
RO = ;‘;{va[o] +0(c?) +cPVep + 0(05)},
hab — ;{Wab[()] + 0(672) _|_671Wab[1] + 073Wab[3] + 0(65)}

Their spatial derivatives are given by

0.0 — j;{acwo] +O(c?) + 50V 5] + 0(0—7)},
dch" = j;{acva[o] +O0(c7?) + 720V [3] + O(c—5)},
4

ab
Och = a

{acwab[o] +0(c™?) + ¢ 30.W[3] + 0(05)},

and their time derivatives are

doh?® = ;{V[O] + 0™ +c3V[3] + O(cf’)},
dohlt = ;‘;{Va[()] +0(c™2) + 3V 3] + 0(c—5)},
Ooh®® = ;{Wab[o] +0(c™?) + W] + 0(c—3)},

in which an overdot indicates differentiation with respect to ¢t = 2°/c. We notice
that V[3] and W?[1] do not appear in our expressions for 9.h% and 9.h%, because
these potentials do not depend on the spatial coordinates.

7.4.6  Computation of p[5] and T7°°[3]

The time has come to do some real work and to evaluate the source terms for the
radiation-reaction potentials. We must carefully construct p[5] and 72°[3], which
come from (— g)tﬁg and (—g)t%ﬁ ; there is no contribution from the material energy-
momentum tensor, because as we have seen, the odd terms contained within I" in
Eq. (7.4.39) scale as ¢~ 7.

Equation (1.1.5) reveals that a typical term in the Landau-Lifshitz pseudotensor
has the form of ggdhdh. (There are also terms of the form ggggohoh, but they
need not be distinguished for the purpose of this argument.) There are two ways
of generating terms that contain an odd power of ¢=!. The first is to let dhdh be
odd in ¢!, and to keep the prefactor gg even; the second is to let gg be odd, and
to keep 0hOh even.

In the first scenario, we need to multiply an even term in one of the factors 0h
by an odd term in the remaining 0h. Using the expansions displayed at the end
of the preceding subsection, we find that the dominant scaling of such products is
c¢~®, and that it is produced by the set

P = {8Ch°°8dh°a, 8.h%09,h% 8Ch006dh“b}.
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We also find that the set of products

o = {0h0u, O Da OO, OO Dal™,
aChOaaO hOO, 8ch0“80hbd, aOhOOaO hOO, 80 h0080 hab}

participates at order ¢=?.
In the second scenario we let the factors of g supply the odd terms, and we keep
OhOh even. The leading odd terms in ¢g come from h% at order ¢, h%® at order

¢ 6, and h* at order ¢=°. The leading even term in Ohdh comes from 0,h°09yh"°
at order ¢~*. After multiplication we find that the set

Sy = {hooachooadhoo, habachooadhoo}
also participates at order ¢Y.

The next step is to decide how the various terms listed in .7, %%, and .%3 enter
in the components of the Landau-Lifshitz pseudotensor. A careful examination of
Eq. (1.1.5) reveals that .#; appears only in (—g)t%, whose dominant odd term
therefore scales as ¢~%; this produces a contribution to j%[5]. It reveals also that
S5 and %3 appear in (—¢)t?% and (—g)t¢% , whose dominant odd terms scale as
¢~%; this produces a contribution to p[7] and 7°[5]. We may conclude from all this
that the Landau-Lifshitz pseudotensor makes no contribution to p[5] and 79°[3], the
quantities that concern us in this subsection.

The source functions must therefore originate from (— g)tﬁﬁ , the harmonic-gauge

contribution to the effective energy-momentum tensor. This quantity is defined in

Eq. (1.3.6),
4

c
(Ot = 1o (0uh™ 017 — 0,17,
and here odd terms must be produced by the first scenario. Using the expansions
displayed at the end of the preceding subsection, we easily find that the leading odd
term in (—g)t% scales as ¢~ and comes from the product h® 9., h%; this makes a
contribution to p[5]. We also find that the leading odd term in (—g)t&’ scales as
¢~% and therefore makes no contribution to 7%°[3].

These considerations lead us to the conclusion that only (—g)t% contributes to
p[5], and that 79°[3] = 0. The mass density is produced by

02

_ ab 00
167G ol

and from the equations listed at the end of the previous subsection, we find that

pl5) = —— W10 V0]

Inserting Eq. (7.4.48) gives

1
5] = —Z®)[0]9,,V[0].
pl5) = 5T 00V [0
To put this in its final form, we recall that the [0] label refers to the Newtonian limit.
The quadrupole moment is therefore the Newtonian moment I??, and the potential
V[0] is the Newtonian potential, which was denoted U in previous chapters.
What we have obtained, therefore, is

1
o5] = %Iab@)aaba (7.4.50)
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and we have also established that
73] = 0. (7.4.51)

Another important outcome of this subsection is that we have identified the types
of terms that contribute to (—g)tY9 at order ¢=5, to (—g)t?% at order ¢=*, and to
(—g)t?% at order ¢~?; this information will be required in Sec. 7.5.2).

7.4.7  Computation of V5]
The only term that remains to be evaluated in Eq. (7.4.46) is the integral

0[5] 3
@

in which p[5], given by Eq. (7.4.50), is expressed as a function of ¢ and x’. Making

the substitution gives

ijab(s)/aa wU(t @ )d3 /

27 |z — x|
The integral is defined over the domain .#, and it is evaluated in the following
paragraph.

We begin by writing
Owy U oy U 1
b = aa’ ) - 81,/ U@a/ —_—
|z — | |z

@~ —a

Noticing that dg/|x — @’| = —0,|x — @’|, this is

U U U
w2\ ) T\ e )

Applying this trick once more, we obtain

aa/ /U 8/U U U
s R el R el I e B

Integration over the domain .# yields

Oury U , % 31;/ dS +a]{ ,dSb+8ab/ B
|$—$| E E | |z

Inspection of the surface mtegrals, which are evaluated on 0., reveals that they
scale as R™!; they do not give rise to R-independent contributions to the po-
tential. The remaining volume integral is, within the domain .#, a solution to
V2 = —4nU. We already know the solution to this equation: According to
Eq. (3.2.4), V2X = 2U, ¢ must be equal to —27X, where X is the post-Newtonian
superpotential. Our final expression for the integral is therefore —270,,X.

We have arrived at

_Iab(3)aabX’

|z — /|

and with this established, Eq. (7.4.46) becomes

1
V[s] = G{ 1G9, X — 61530[ | = g5 (0% + 202" Iy
1
227 1 4.52
+ 55 30 acc 120 cdcd (7 5 )

The potential is expressed in terms of Newtonian multipole moments, the su-
perpotential X, and the post-Newtonian correction c_QIab[2] to the Newtonian
quadrupole moment.
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7.4.8 Summary: Radiation-reaction potentials

Our computation of the radiation-reaction potentials is complete. We have shown
that the gravitational potentials can be expanded as

RO — ;‘;{U +O0(c?) + VB + V5] + 0(07)}, (7.4.53)
nle = ;{U“ +0(c™?) + 3V + 0(05)}, (7.4.54)
het = j; {P‘“’ +O0(c7?) + ¢ WP 4 ¢ PW ] + O(c“”)}, (7.4.55)

in which U := V[0], U := V¢[0], and P := W4[0] are the leading-order, near-
zone potentials listed in Sec. 4.2.10; the Newtonian potential, in particular, is given
by

U= Z | Gima (7.4.56)

T —zal

The terms that come with an odd power of ¢! are the radiation-reaction potentials,
and they are given by

Vil = ”G]C(g)’ (7.4.57)
1
VB = G-I"00,X - IO - (20 + 20 1)
1 5
g e mfc(did} (7.4.58)
VegE) = @ 1 ppa 1 Loy _ L e (7.159)
_6 b ]_8 9 cc )
1
L e (7.4.60)
we*R = G ——EI“”@) [2] — 1 27ab5) + 1 cqabs)
L 2 12 187 "
: 1
(17 + D) - s M “bc(f’)} (7.4.61)

They are expressed in terms of the Newtonian multipole moments

I = Y “maziah, (7.4.62)
A

I = ZmAzszzj, (7.4.63)
A

Jobed  — ZmAzszzfqui, (7.4.64)
A

Jabe = ZmA(viszzaAvﬁ‘)zj, (7.4.65)
A

Mabed  — ZmAvjvgzjzfl. (7.4.66)
A

The potentials also depend on ¢ 2Z?[2], the 1PN correction to the Newtonian
quadrupole moment I% := I“b[O]; an expression for this could be obtained by
importing the relevant results from Chapter 4, but this is not necessary, because
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Z7%[2] will not be required in future calculations. In addition, V[5] depends on the
post-Newtonian superpotential X. According to Eq. (4.2.37), this is given by

X =Y Gmalz - zal. (7.4.67)
A

It is noteworthy that V[3] and W2[1] are functions of time only. This property
ensures that these potentials will have no effect on the equations of motion, because
only spatial gradients of these potentials could be involved. This, in turn, ensures
that the radiation-reaction force scales as ¢, and not as ¢~ as might naively be
expected. In fact, V[3] and W4[1] could be eliminated by means of a coordinate
transformation; we shall not pursue this here, as the transformation would take us
away from the harmonic gauge adopted throughout this work.

7.4.9 Transformation to Burke-Thorne gauge
[TO BE WRITTEN? IF SO REVISE PREVIOUS SENTENCE]

7.5 Radiation-reaction force and energy balance

7.5.1 Strategy

In this section we calculate the %PN term in the acceleration vector a4 of each
body within the N-body system. Our general strategy is based on the methods
of Chapter 5, in which the post-Newtonian equations of motion are derived on the
basis of conservations identities that follow from the Einstein field equations. We
recall from Sec. 5.1 that the basic law of motion for each body A is

Maan =Py — Myvs— Qo — Dy, (7.5.1)
where )
c

Ma = CHOCObd 59

A7 167G 9 Sy (7.5.2)

is the mass parameter of each body, which changes in time according to

. 1 v
My = ,,f (—9) (tgL 9 A) dSp. (7.5.3)
C Sa

We also have that P4 is the momentum vector of each body, and its rate of change
is given by

Pg = —7{ (—g) (tbe e ”A) dSy. (7.5.4)
Sa c

The law also involves the quantities

1
Q% = 7]{ (—9) (t(ﬂ — 129 UA) (z —29) dS, (7.5.5)
C Sa C
and
HO(‘Od _La\ _ HOaOc:| . 5.
Each integral is evaluated on a two—sphere S4 surrounding each body, which is
described by the equation s4 := | — z4| = constant. And finally, we recall that

HMBY is related to the gravitational potentials through the relation

FonBy — gaﬁg,tw _ gaugﬁﬂ7 (7.5.7)
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where g*# = n®8 — h*P is the gothic inverse metric.

We want to compute the %PN contributions to Ma, Ma, Pa, Qa, and D4, and
insert them within Eq. (7.5.1) to determine the %PN contribution to the acceleration
vector. (We will also have to make sure that there are no contributions at %PN
order.) According to the equations listed previously, these computations require,
in addition to the radiation-reaction potentials obtained in Sec. 7.4, expressions
for the odd terms in the Landau-Lifshitz pseudotensor. In particular, we need an
expression for (—g)t)9 that is accurate to order ¢~3, an expression for (—g)t?¢ that
is accurate to order ¢*, and an expression for (—g)tili that is accurate to order
¢=°. According to the considerations of Sec. 7.4.6, however, there is no contribution
to (—g)t?% at order ¢=3, and this component of the pseudotensor plays no role in
the radiation reaction. The same considerations revealed that .#; enters (—g)t%%
at order ¢~*, while .%5 and .%3 enter (—g)t{% at order ¢~°; these components will
be computed carefully.

Once the relevant components of H**# and (—g)t®¥ are at hand, it will be
a simple matter to follow the methods outlined in Chapter 5 and to calculate the
various quantities that appear in Eq. (7.5.1). The end result will be an explicit
expression for

aarr] == cPaal), (7.5.8)

the radiation-reaction force (per unit mass) acting on body A. And once this is
known, we shall be able to verify whether the work done by all the radiation-reaction
forces matches the energy radiated by the source in the form of gravitational waves.
This, we recall, is expressed by the quadrupole formula of Eq. (7.3.6),

- 1G ab(3) 7(3 1 cc
By = gg(f MO~ 21 <3>I§§>). (7.5.9)
The answer, of course, will be in the affirmative, but in the same coarse-grained
sense that applies to flat-spacetime electrodynamics (as reviewed in Sec. 7.4.1).

7.5.2  Computation of the Landau-Lifshitz pseudotensor

We already have noted that
(—g)t, = (7.5.10)

at order ¢3; its leading, odd-order contribution scales as c¢~°.

To calculate the time-space components at order ¢~*, we return to the consid-
erations of Sec. 7.4.6, which indicated that this quantity must be constructed from
Y1, the first set of products OhOh that are listed there. A careful expansion of
Eq. (1.1.5) next reveals that the answer is given by the ¢~ piece of

C4

3 1
(8% = 1o {480h008“h00 +0.h% (9% — R0 — 480h“6“h00} .

This becomes

(—g)t)% = % [1 (3V[3] — W[1])o"U + (9°Ve[3] — 8CV“[3])5'CU}
mGct | 4
after involving the equations listed near the end of Sec. 7.4.5. Finally, from Egs. (7.4.57)
and (7.4.60) we find that the first group of terms vanishes, while from Eq. (7.4.59)
we see that 9,V,[3] = %GI(%), which implies that the second group vanishes also.
We conclude that
(—g)t¥s =0 (7.5.11)

at order ¢~ 4.
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The spatial components of the pseudotensor require a much more labourious
calculation. Returning once more to Sec. 7.4.6, we recognize that the terms that
can participate at order ¢~° are contained in .% and .%3. A careful expansion of
Eq. (1.1.5) next reveals that the answer is given by the ¢~° piece of

A

1 1 1
o ab ~ 9a1,009b700 ~9a1,009b7 cc ~ aaz,ccqby 00
(—g)tt = {48h(‘3h O ROORE 4 L0 h SR

_ (8ah0c _ achOa) (8bh0c _ achob) + aOhOaabhOO + aOhObaahOO

1 1
— Qoh“ "R — Boh*“9"h%° 4 6 {—Sachooa%oo — 4 0h™ 0 h™
1
+ 5 0ch% (0°h™ = 9h%) — oh O™ + Boh™ Db’
1
— gaohooaohoo + 480h0080h0°}

1
+ —(29%g™ — gabng)googooachooadhoo}-

8
This eventually becomes
(—g)tih = % {—(WU@”C”IX + 0T I X — 5°0,U9°4X) 11
- é(x“@bU +2b9°U — 5*ad0,U) 1)
+ gx (orv1"® +o'ure® — 6o'u1))
- 135 (oD + U — 5o U1
- g(aaw”g}) + oMU — 5o v ))
19 (aa UchC(4) i abUcIac(4) _ 6abadUcIC(‘dl))
+ %é)aUc‘)bUIC(f) +20°U0°UT" + 20°U0°U 1)
- gaabacUaCUlgi;) —5*ouatuI - aCUaCUIab@] (7.5.12)

after a long computation involving the equations listed near the end of Sec. 7.4.5,
as well as the radiation-reaction potentials of Eqs. (7.4.57)—(7.4.61).

7.5.8 Internal and external potentials

To simplify the notation it will be advantageous to proceed as in Sec. 5.2, and
to focus our attention on a particular body, the one labeled by A = 1. We let
m := myi, z := 21, v := v1, and so on. In addition, we introduce the vector
s := &« — z, and decompose it as s = sn, in terms of its length s := |s| and the
unit vector n := s/s. In this notation, the two-sphere S that surrounds the body
is described by s = constant, and the surface element on S is dS, = s2n, dS, in
which df? is the usual element of solid angle.

The potentials U, U%, and X are decomposed into internal and external pieces
according to Egs. (5.2.10), (5.2.12), (5.2.15), (5.2.18), (5.2.20), and (5.2.22). We
have

G
U = 4 U, (7.5.13)
S
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G
Ue = ”Sw +uUe,, (7.5.14)
X = Gms+ Xex, (7.5.15)
with
GmA
Uext = Z |:13 — ‘ (7516)
A#1 A
Uy = Y. Gmavy (7.5.17)
ext - 0.
= |z — zal’
Xext = Y Gmalw —zal. (7.5.18)
A#1

For later convenience we also list the identities

OaS = MNa, (7.5.19)
Oaps = %(5@ — M), (7.5.20)
OapesS = —Si(&lbnc + 8aeb + Opelg — 3nanbnc) (7.5.21)
involving derivatives of s := |x — z|.

7.5.4  Computation of M and D

We first compute the odd contributions to M := M; and D := D, starting from
their definitions in Egs. (7.5.2) and (7.5.6). Recalling the work carried out in Chap-
ter 5 — and especially the discussion at the beginning for Sec. 5.4.1 — we understand
that it is sufficient to calculate all surface integrals to order s°, and to ignore all
contributions at order s and higher.

According to Eq. (7.5.7),

HOaOb — _6ab _ hOOéab 4 hab 4 hOOhab _ hOahOb7

and we wish to evaluate this at orders ¢=° and ¢=7 in order to calculate the ¢~3
and ¢~° terms in M and D, respectively. With Eqs. (7.4.53)—(7.4.55) we find that
HOW0V[5] = —459°V[3] + 4W (1], and inserting Eqs. (7.4.57) and (7.4.60) produces

1
HO%[5] = —2G (Iab(i%) — 35!1”[(53)). (7.5.22)

At the next order we get
HO0b[7) = —4590V [5] + 4W[3] — 8GU ), (7.5.23)

in which we may substitute the radiation-reaction potentials of Eqs. (7.4.58) and
(7.4.61).

The fact that 9, H%*%*[5] = 0 implies that there is no contribution to M at order
¢3. To compute the contribution at order ¢~ we must substitute Eq. (7.5.23) into
Eq. (7.5.2) and evaluate the surface integral to order s°. After inserting the known
expressions for V[5] and W4[3], we find that the terms within 9, H°°°[7] that are
sufficiently singular to produce a finite integral in the limit s — 0 are

AGI® X — 8GI"® U

these scale as s~2, while all other contributions are bounded as s — 0. We next
decompose U and X into internal and external pieces, as in Egs. (7.5.13) and
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(7.5.15), and we make use of Egs. (7.5.19) and (7.5.21). The previous expression
becomes )
4G*m 3 c c
—Tlc(d) (nb(5 4 3nn nd).
Multiplication by dSj = s2n;, d2 produces
0 HO O [7]dSy, = —4G?mIL} (65 - 3n°n?),

and integration over the sphere gives zero, because according to the results of
Sec. 1.8.4, (n®nP) := (4m)~* [ nnb dQ = 6.
We have obtained the statements that

MI3] = M[5] =0, (7.5.24)

and we find that M makes no contribution to the radiation-reaction force. On the

other hand, inspection of the integrand in Eq. (7.5.6) reveals that it is of order s—1,

so that the integral itself is of order s. We therefore write
DI[3] = D[5] =0, (7.5.25)

and conclude that D also makes no contribution to the radiation-reaction force.

7.5.5 Computation of M, Q, and P

The computation of M := M; and Q := Q; is exceedingly simple in view of
Egs. (7.5.10) and (7.5.11). Inserting these within Eqs. (7.5.3) and (7.5.5), we im-
mediately obtain )

MI[5]=0 (7.5.26)
and

Q5] = 0. (7.5.27)

These quantities also do not participate in the radiation-reaction force.

We are left with the computation of P := P;, which is based on Eq. (7.5.4) and
the stress tensor of Eq. (7.5.12). The calculations are very similar to those carried
out in Sec. 5.3.3. We write

Pe5] = —<<52Fabnb>>,

where I'% := 47c5(—g)t{% and the angular brackets indicate an average over a two-
sphere s = constant. We take each line in turn in Eq. (7.5.12) and substitute the
decompositions of Egs. (7.5.13)—(7.5.15) for the potentials U, U?%, and X. We use
Egs. (7.5.19)—(7.5.21) to differentiate the internal potentials, and we expand each
external potential in a Taylor series about & = z. Finally, we perform the angular
integrations using the rules of Sec. 1.8.4, and discard all terms of order s and higher.

We list some of the intermediate results that are produced in these computations:

<<823“ U@dean>> = —%Gm(‘)aCdXext — %GméCdaaUext,
s°0°U 0% X’be = —Gmd** Xext
2qb d d
— %Gm(éCdaaUext + 6% U + 610 Uexs),
<<82naanaech>> — _%GmaaCdXext

2
_ BGm (5cdau Uext 4 5ac8d Uext 4 6adac Uext) ,
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(s*0°Uny) = —éGm(Sab
<<528aUcnb>> = —éGméabvc
(s*0"UoUny)y = %GméabaCchtf%Gmacbaacht.

We emphasize that these expressions are valid up to corrections of order s, and that
the external potentials are evaluated at @ = z after differentiation.
Collecting results, we find that

) 4
Pe5] = Gm(—[c(g)&“dXext + 279U,y + g.rg;?)aaUext

3 1 2 2
7Ia(5) c 71'(5) a 2[0,(4) c 7]11(5) _ “ 7a(4) ) 59
+ 5T c Z 5ce z+ c v 15" ¢ 3Jcc (7 5 8)

7.5.6  Radiation-reaction force: Reference body

We now have everything we need to compute the radiation-reaction force. We return
to Eq. (7.5.1), . ' . )

Ma=P—-Mv—-—Q—- D,
and apply it to our reference body. Equation (5.3.3), together with Eq. (7.5.24),
imply that at %PN order,

M =m+c 2M[2] + ¢ *M[4] + O(c™"),

with no odd term making an appearance. Equation (5.3.5), together with Eq. (7.5.26),
imply that ) . .
M =c2M[2] + ¢ *M[4] + O(c™),

and this also does not include an odd term. Equation (5.3.9), together with
Eq. (7.5.27), imply that

Q=c?Q[2l + Q4] + O(c™%),

and once more we notice the absence of an odd term. We note also that D = O(s),
and that it is therefore irrelevant to the equations of motion. This leaves us with
P, and Egs. (5.3.7) and (7.5.28) imply that

P = P[0] + ¢ 2P2] + ¢ *P[4] + ¢ P P[5 + O(c™9),

where P[0] = md®Uey is the Newtonian gravitational force, and P*[5] is given
explicitly by Eq. (7.5.28). An odd term has finally appeared within the law of
motion.
The preceding equations imply that the acceleration vector has an expansion of
the form
a = al0] + cal2] + c*af4] + ¢ Pal5] + O(c™9), (7.5.29)

and a[rr] := c~?a[5] is the radiation-reaction force per unit mass. The Newtonian
and post-Newtonian terms were evaluated in Secs. 5.4.1 and 5.4.4, and a calculation
of ¢c*a[4], the 2PN acceleration, was completely bypassed. The %PN term in the

acceleration, however, is given by P[5]/m, and according to Eq. (7.5.28), this is

G 4
afrr] = (—Igf’;)aﬂcdxext + 273 Uy + §I§§)8“Um

&
2

3 1 2
2ra) e 1) a 4 gra(d)ye 2 a(d)
+ 5 c z 5 cc Z + c v 15 cc 3

J“c(f)) . (7.5.30)
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This is expressed in terms of Newtonian multipole moments, and in terms of the
potentials Uyt and Xey that are external to the reference body.

For our final expression we calculate 0%Usy; and 9%¢X.; with the help of
Egs. (7.5.16), (7.5.18), and we evaluate the results at = z. In terms of the vector

Z14 =z — z4, its length 214 := |z — z4], and the unit vector n14 := z14/214, we
have
Gmy
OUext = — E ZTntllA
A#1 1A
and

Gm

b A b b b b

0 Xext = — E 5 (5“ ni4 +0%nj, +0"nfy — 3n‘11An1An§A).
A#1 1A

After insertion of these expressions within Eq. (7.5.30), we arrive at

a G 3 Gma e 1 Gma .,
alrr] = 65(—3Il§c) Z zTnlAnlfA”iA - glc(g) 2 1A

A#1 14 A#£1 1A

1. 2 e 2
+ gfab(%b - gfggw 274yt — 1—51“6(5) - 3Jac<;>). (7.5.31)

This is the radiation-reaction force (per unit mass) acting on the reference body.

7.5.7 Radiation-reaction force: Final answer

Equation (7.5.31) generalizes easily to any body within the N-body system. We
simply replace the label “1” by an arbitrary label “A”, and we obtain

G 3 GmB c 1 GmB
ajlrr] = 65(—3Iz§c) > ZT”?AB”IAB”AB - gfc(g) p; nip
B#A AB B#A AB
3 . 1 a 2 . 2 .
+ 1 (5) 28 — glc(i)zj + 21l — =1 {5) _ 57 C<C5>>. (7.5.32)
This is our final answer. The radiation-reaction force is expressed in terms of the
interbody distance zap := |24 — zp| as well as the unit vector
ZA — 2B
NaABp=1_—""_7
|24 — zB|

which points from body B to body A. It involves also the Newtonian multipole
moments

I =Y " maziah, (7.5.33)
A

I =Y “mazgahas, (7.5.34)
A

Jabe = ZmA(vjzgfzaAvZ)zj, (7.5.35)
A

which are functions of time ¢; the number within brackets indicates the number of
differentiations with respect to ¢. As a final comment we note that Eq. (7.5.32)
gives only the leading-order term in a post-Newtonian expansion of the radiation-
reaction force; a more complete calculation would reveal correction terms at order

¢~ 7, and so on.



7.5 Radiation-reaction force and energy balance 161

7.5.8 Energy balance

We next calculate the rate at which the radiation-reaction forces do work on the
N bodies, and verify that this is equal (in a coarse-grained sense) to the rate at
which the system’s energy is lost to gravitational waves; this loss is expressed by
the quadrupole formula of Eq. (7.5.9).

The rate at which the forces do work is

W = ZmAG,A[I"I"] VA (7536)

We insert Eq. (7.5.32), and we notice that the terms involving 7%. and J%, dis-
appear, because they each multiply P := )", mava; this is the Newtonian total
momentum, and this can be set equal to zero by placing the origin of the coordinate
system at barycentre. After rearranging the double sums, we obtain

a b
—5tab 2 ("AB ‘ ”AB)”AB”AB
AB AB

_ Ly Gmams

G [ 3 ) 5~ Gmamg

. nAB - VAB) 5 1% ZmAvAzA
AB AB

—glc(f)ZmA ZA-V4) +21(b ZmAUAUA] (7.5.37)

the double sums exclude the case A = B, and vag := v4 — vg is the relative
velocity between bodies A and B.
To proceed we need to establish a number of helpful results. First, we note that

ZAB =MAB " VAB, nap = —— (Vi — ZaBn%p).
ZAB
Second, we work out expressions for the first three derivatives of the quadrupole-
moment tensor. We evaluate these with the help of the Newtonian acceleration
vector,

Gm
GA:*Z BTLAB+O( Y,
A AB

and after some straightforward computations, we obtain

v = Z ma(v4zh + 250Y), (7.5.38)
A
for = T TEATE e b 2 manhed, (7.5.39)
Ap AB A
Gmam . @ a a
193 = Z % [3ZABTLAB”ZAB - Q(WAB”Z;B + nAngB)}' (7.5.40)

From this last expression we also get

Gmamp ,
I == =5 —tas. (7.5.41)
AB AB

Returning to our main development, we notice in Eq. (7.5.37) that the first
double sum can be expressed as

1., 2 Gmamp , , a
3! "+ 3 > — — (Vapnhp + nhpvas).
AB AB
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We notice also that the second double sum is equal to —Ic(c) In addition, the third

term can be expressed as 10]22)1 @ and the fourth term as ——Ic(g)l . With all
this, Eq. (7.5.37) becomes
: G 1 3 3 GmAmB
W= = {_2[(51))]%(3) — 1% Z ﬁ(vjlgnf’w +n%pvhp)
AB

1
+ éfgi?)]cc(?’) 4 3 p0jar _ L) jee o 21> " m Avgvg] . (7.5.42)

ab ce
10 10 "

In the final sequence of steps we distribute the time derivatives. We write, for
example,

5) ja d 4) ja 3) 7a 3) ra
10 = (151 = 11 ) + 1 1o

and
4 a d .3 » 3) d
I(Eb) ;mAUAUZ =7 (Ing) gmAvAvZ) - Iab) 7 ZmA’UA’UA.

The second term becomes

(3) Gmamp , o a b
§Iab Z 2 (vipnag + nhpvag),
AB AB

and we obtain our final expression,

: G (3) 7ab(3) (3) (3) di|3 (4) jab (3) yab
- 21® ga [ e (I job — 3 fa )
W 05{ 5 ab 1 T |10 ab
-1 (1(4)ICC - Ic(f)f“) +21)> " m Auﬁ,vfﬁ,] } (7.5.43)
A

This is the desired energy-balance equation.
In view of Eq. (7.5.9), Eq. (7.5.43) can be written as

d
7Ebound7 (7544)

Wt Bow = —

where ng is the rate at which the gravitational waves carry energy away, and
G Wi @5\ L (i )
Browa = = |2 (1310 — 11 ) = — (107 — 1 )
v [10 ab 10\ ce
21, Z mA”A”A] (7.5.45)

is the piece of the gravitational-field energy that stays bound to the system. Equa-
tion (7.5.44) is a fine-grained statement of energy balance. Averaging over an ap-
propriately selected time interval At gives rise to the coarse-grained statement

<W> = _<ng>7 (7546)

which says that on the average, the radiation-reaction forces do work at a rate that
matches the rate at which energy is removed by radiation. Because ng > 0, the
forces do negative work, the N-body system loses energy, and the effect occurs at
the gPN order.

Notice that in order to arrive at Eq. (7.5.46), we have to assume that the net
change in Eyound is zero over the time interval. This would be the case if the
Newtonian motion is periodic, or if the system begins and ends in an unaccelerated
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state. (Recall from Sec. 7.4.1 that the situation is very similar in the context
of flat-spacetime electrodynamics.) Alternatively, we might absorb Fhouna into
a redefinition of the Newtonian energy, Fnew = Fold + Fbound, and write W =
Fpew. In this language, Eq. (7.5.44) becomes Frew = —ng, and we preserve
the fine-grained statement of energy balance. Because the definition of energy
is ambiguous at gPN order, by virtue of the very fact that the dynamics is not
conservative, this interpretation of the results is just as valid as the original, coarse-
grained interpretation. We confess, however, a marked preference in favour of the
original interpretation, because as we have argued back in Sec. 7.2.3, the very
notion of a gravitational-wave flux involves an implicit coarse-graining operation.
We therefore prefer to keep the coarse-graining explicit in Egs. (7.5.44) and (7.5.46).

7.5.9 Momentum renormalization

We have seen that the terms involving % and J%_, in Eq. (7.5.32) play no role in the
energy balance. Indeed, these terms do not really belong to the radiation-reaction
force, and they are best absorbed into a change of momentum variable.

Let us write the equations of motion in the form

dpa

T4 = mA[aA[O]+c*2aA[2}+c*4aA[4]+c*5aA[5]+0(c*6)}

Gma [ 2 2
_ A 2 qad) 4 2 jald)
o (15 cc + 3 J cc ’

where ps := mav,a is the Newtonian momentum of body A, and where c=%a[5] is
what remains of the radiation-reaction force after removal of the terms involving I,
and J%.. Because these are total time derivatives, they can be moved the left-hand
side of the equation, which can then be written as

i5
% =ma|aal0] +c 2aa2] +c taa[d] + cPaad] + 0(6_6)}7

where

m 2 2
iy = ply + (151“5;“ + SJ%S;*))

is a new momentum variable. The terms in /% _ and J¢_, therefore, are naturally in-
terpreted as a gPN correction to the Newtonian momentum of each body. Adopting
the new definition, these terms can be removed from the expression of Eq. (7.5.32)
for the radiation-reaction force.

A consequence of this change is that the expression for the total momentum
changes also, according to

_ Gm [ 2 2
pPr=poy (@ 4 Z g
+ cd (15 ce’ T 3J )

where m := 3" , ma is the total mass. With @ [rr] = ¢c~°@4[5] as radiation-reaction
forces, P is a constant of the motion, and the total momentum can be set equal to
zero by placing the origin of the coordinate at the (corrected) barycentre.

7.5.10 Specialization to a two-body system

In the barycentric frame, the motion of each body in a two-body system is com-
pletely determined by the relative position vector z := z; — zo. At Newtonian
order, z; = (ma/m)z and zo = —(m1/m)z, where m := my + mo is the total
mass. We introduce also the relative velocity v := v; — vs, the relative acceleration
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a = a; — as, the dimensionless reduced mass 7 := mlmg/mQ, and the unit vector

n := z/z, where z := |z|. The relative Newtonian acceleration is
G
a= Zm n+0(c2), (7.5.47)

and from Sec. 6.11.3 we recall the consequences

w:_iﬂHO( 2), zz—vQ—z'?—%"JrO( %), (7.5.48)

where Z = n - v is the radial component of the relative velocity vector.
According to Eq. (7.5.32), the radiation-reaction forces acting on bodies 1 and
2 produce the relative acceleration

" G| Gm e 1
a“rr] = Cs{ 7 <3IZEC) ’ +3Ic(c))
3 a(5) 1 (5),,a a(4),.c
5 2", gzlcc n® 4+ 27040 . (7.5.49)

Notice that the terms involving 1% and J%_. have once more dropped out of sight.
The quadrupole-moment tensor is given by

1% = mnz®2°, (7.5.50)

and this must differentiated a number of times in order to turn Eq. (7.5.49) into
something fully explicit.

Making repeated use of Egs. (7.5.47) and (7.4.48), a straightforward computation
returns

2Gm?

a ’r] 2o a,. a a
Jeb(3) = [3zn nb — 2(v*n® 4+ n vb)], (7.5.51)
2
Jeb4) 2GTZ N |:<31)2 — 1532 + Gm>nanb
z z
— 4" + 9z (v n” + n“vb)] , (7.5.52)
2Gm?
e = 28 ”[ 15(302 — 75%) 2n®n® + 30200
z
2 22 Gm a, a a, b
+4(3v* = 1522 — — | (v"n® + n“°) |. (7.5.53)
z

Inserting these results within Eq. (7.4.49), we eventually arrive at

2,42
af] = 2571 {(3 LU sz>zn - <v2 + 3sz)'v]. (7.5.54)

5c523 3

This is the radiation-reaction force (per unit mass) acting on the relative orbital
motion. This should be added to the right-hand side of Eq. (5.5.18) to account
for the dissipative nature of the motion at %PN order. Its effect on the radius of a
circular orbit is described by Eq. (7.3.13).

The radiation-reaction forces do work at a rate W = mja; [rr]-v1 +meas(rr]- vy =
mnalrr] - v, and according to Eq. (7.5.54), this is

. 8G2mPy? 17G €]
W:F)cg'lj{(g +3:">Z - (v2+3zm>02]. (7.5.55)
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The rate at which energy is radiated in the form of gravitational waves was computed
in Sec. 7.3.1, and according to Eq. (7.3.11), this is

8G3m4772

Eew = 15c524

(120* —1127). (7.5.56)
It is easy to verify that these rates are related by the (fine-grained) energy-balance
equation

W+ ng = _aEbound7 (7557)

where )
8G?*m?>n? v?

5ch 22
This expression for Fhound can be obtained on the basis of Eq. (7.5.45), using the
results of Egs. (7.5.51) and (7.5.52).

Bpound = (7.5.58)
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