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Exercise 1.1: Quadrupole approximation

Consider the following sources of gravitational radiation (see Fig. 1):

1. Two point particles with mass m oscillating with pulsation ω along a fixed axis;

2. Free-falling point-particle with mass m in a Newtonian gravitational field (of mass
M);

3. Ellipsoid (with semi-axes a, b, c) rotating around one of its principal axis with
frequency ω;

4. Two point particles (with different masses m1, m2) in Newtonian circular orbit.

For these cases, compute:

• Inertia tensor of the source,

Qij(t) ≡ Iij − 1

3
δij Ikk =

∫
d3x ρ(t, ~x)

(
xixj − 1

3
r2δij

)
. (1)

Note that Iij is the standard inertia tensor, while Qij is the trace-free inertia
tensor.

• Gravitational wave emitted in quadrupole approximation in the TT gauge,

hTT
ij (t, ~x) =

2G

r c4
Λij,mn(θ, φ) Q̈mn(t− r/c) , (2)

where Λij,mn is the TT projector.
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Solution ??
1. Oscillating particles:

• In the center of mass frame, the equation of motion can be reduced to the
dynamics of a single particle of mass µ = m/2. Then, fixing the oscillation
along the z axis, we can write

δ̈ + ω2δ = 0 , (3)

where δ = z1 − z2 is the distance between the two particles. From Eq. (3), it
follows the equation of motion for δ(t) ∝ cos(ωt). Then, the inertia tensor of
the source in the center of mass frame can be computed as

Iij = µxi(t)xj(t) . (4)

The only non-zero component of Iij correspond to i = j = 3 since the mo-
tion is constrained on the z axis (by construction). This form can be easily
mapped into its trace-free version, which takes a diagonal form, Q11 = Q22 =
−(1/3)mδ2(t) and Q33 = (2/3)mδ2(t).

• From this result, we can derive the gravitational strain hTT
ij in the TT gauge

as

h+ = − G

rc4
sin2 θ Ï11(t) h× = 0 . (5)

Note that the radiate GW will be a monochromatic signal with frequency
ωgw = 2ω only if the rest separation between the particle is zero. Otherwise,
the GW spectrum will be characterized by two peaks located at frequency ω
and 2ω.

2. Free-falling particle:

• Taking the z-axis parallel to the velocity of the particle, In the Newtonian
approximation, we can write

1

2
mż2 − GMm

z
= 0 , (6)

where ż represent the derivative of z with respect to time (i.e. the velocity).
Then it follows,

ż = c

√
Rs

z
⇒ z(t) ∝ t2/3 , (7)

where Rs = 2GM/c2 is the Schwarzschild radius of the central object. Now
we can compute the inertia tensor for the free-falling particle as

Iij = mxi(t)xj(t) , (8)

where the only non-vanishing term is I33 = mz2(t). This form can be easily
mapped into its trace-free version, which takes a diagonal form, Q11 = Q22 =
−(1/3)mz2(t) and Q33 = (2/3)mz2(t).
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• From this result, we can derive the gravitational strain hTT
ij in the TT gauge

as

h+ = − G

rc4
sin2 θ Ï33(t) h× = 0 . (9)

3. Rotating ellipsoid:

• We can write the inertia tensor for a non-rotating ellipsoid (in a Cartesian
frame with coordinates parallel to the axes of the ellipsoid) as

I11 =
m

5

(
b2 + c2

)
, I22 =

m

5

(
a2 + c2

)
, I33 =

m

5

(
a2 + b2

)
, (10)

and the other components are zero. If the body rotates with angular velocity
ω around the z-axis then we have

I ′ij = RimRjnImn , (11)

where Rij is the matrix representation of the rotation R(ωt, ẑ) of an angle ωt
around the z-axis. Then we get

I ′11 = I11 cos2(ωt) + I22 sin2(ωt) = 1 +
I11 − I22

2
cos(2ωt) ,

I ′12 =
I11 − I22

2
sin(2ωt) ,

I ′22 = I11 sin2(ωt) + I22 cos2(ωt) = 1− I11 − I22
2

cos(2ωt) ,

I ′33 = I33 ,

(12)

while I ′13 = I ′23 = 0. Then, observing that the trace of Iij is invariant under
rotations, we can write the mass momenta as Qij = −I ′ij + cij where cij are
constant terms which will vanish after the derivation. Therefore,

Q11 = −I11 − I22
2

cos(2ωt) + constant ,

Q12 = −I11 − I22
2

sin(2ωt) + constant ,

Q22 = +
I11 − I22

2
cos(2ωt) + constant ,

(13)

• Now let us compute the GW received by an observer at distance r, whose
line-of-sight makes an angle θ with the direction of spin of the star (without
loss of generality we set φ = 0). Inserting Eq. (13) into the definition of hTT

ij

we get

h+ =
1

r

4Gω2

c4
(I11 − I22)

1 + cos2 θ

2
cos(2ωt) ,

h× =
1

r

4Gω2

c4
(I11 − I22) cos θ sin(2ωt) .

(14)
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4. Binary system:

• Consider two point particles with masses m1 and m2 in Newtonian circular
orbit at distance R. We choose the frame so that it is centered in the center
of mass (CM) and the orbit lies in the xy-plane and the trajectory is given
by

x(t) = R cos(ωt+ π/2) ,

y(t) = R sin(ωt+ π/2) ,

z(t) = 0 ,

(15)

where we assume φ0 = π/2 (since it is a useful choice). We define the total
mass of the system as M = m1 + m2 and the reduced mass of the system,
µ = m1m2/M . From the definition of mass momenta, in the CM frame, we
get

Qij = µxi(t)xj(t) , (16)

where

Q11 = µR2 1− cos(2ωt)

2
,

Q22 = µR2 1 + cos(2ωt)

2
,

Q12 = −1

2
µR2 sin(2ωt) ,

(17)

while the other components vanish. Therefore,

Q̈11 = −M̈22 = 2µR2ω2 cos(2ωt) ,

Q̈12 = 2µR2ω2 sin(2ωt) .
(18)

• Using Eq. (18) in the definition of hTT
ij in the quadrupole approximation we

get

h+(t) =
1

r

4GµR2ω2

c4
1 + cos2 θ

2
cos(2ωt+ 2φ) ,

h×(t) =
1

r

4GµR2ω2

c4
cos θ sin(2ωt+ 2φ) .

(19)
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