# Gravitational waves - Exercise sheet n. 3 Solutions 

Matteo Breschi<br>matteo.breschi@uni-jena.de

01.06.2022

## Exercise 3.1: Spherical tensor components

In order to introduce to describe any traceless rank-2 symmetric tensor, we need to introduce the spherical tensor harmonics. Let us recall the standard spherical harmonics $Y^{\ell m}(\theta, \phi)$ for $\ell=2$,

$$
\begin{align*}
& Y^{22}(\theta, \phi)=\sqrt{\frac{15}{32 \pi}}\left(e^{i \phi} \sin \theta\right)^{2}, \\
& Y^{21}(\theta, \phi)=\sqrt{\frac{15}{8 \pi}} e^{i \phi} \sin \theta \cos \theta,  \tag{1}\\
& Y^{20}(\theta, \phi)=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right),
\end{align*}
$$

and the harmonics with $m<0$ are given by $Y^{\ell-m}=(-1)^{m} Y^{\ell m^{*}}$. This definition assumes that the unit radial vector can be written as $\mathbf{n}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$. Then, we can introduce the tensor spherical harmonics $\mathcal{Y}_{i_{1} \ldots i_{\ell}}^{\ell m}$ as

$$
\begin{equation*}
Y^{\ell m}(\theta, \phi)=\mathcal{Y}_{i_{1} \ldots i_{\ell}}^{\ell m} n_{i_{1}} \ldots n_{i_{\ell}} . \tag{2}
\end{equation*}
$$

- Compute the tensor spherical harmonics $\mathcal{Y}_{i j}^{\ell m}$ for $\ell=2$.
- Show that $\mathcal{Y}_{i j}^{\ell m}$ are an orthogonal basis for the traceless symmetric rank-2 tensors.
- Given a generic traceless symmetric rank-2 tensor $Q_{i j}$, compute the components $Q_{m}$ such that

$$
\begin{equation*}
Q_{i j}=\sum_{m} Q_{m} \mathcal{Y}_{i j}^{\ell m} . \tag{3}
\end{equation*}
$$

## Solution ??

- Noticing that

$$
\begin{equation*}
e^{i \phi} \sin \theta=n_{1}+i n_{2}, \quad \cos \theta=n_{3}, \tag{4}
\end{equation*}
$$

we can rewrite $Y^{2 m}$ as

$$
\begin{align*}
& Y^{22}(\theta, \phi)=\sqrt{\frac{15}{32 \pi}}\left(n_{1}+i n_{2}\right)^{2}, \\
& Y^{21}(\theta, \phi)=\sqrt{\frac{15}{8 \pi}}\left(n_{1}+i n_{2}\right) n_{3},  \tag{5}\\
& Y^{20}(\theta, \phi)=\sqrt{\frac{5}{16 \pi}}\left(3 n_{3}^{2}-n_{i} n_{i}\right) .
\end{align*}
$$

From these results it follows,

$$
\begin{align*}
& \mathcal{Y}_{i j}^{22}=\sqrt{\frac{15}{32 \pi}}\left(\begin{array}{ccc}
1 & i & 0 \\
i & -1 & 0 \\
0 & 0 & 0
\end{array}\right)_{i j}  \tag{6}\\
& \mathcal{Y}_{i j}^{21}=-\sqrt{\frac{15}{32 \pi}}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & i \\
1 & i & 0
\end{array}\right)_{i j}  \tag{7}\\
& \mathcal{Y}_{i j}^{20}=\sqrt{\frac{5}{16 \pi}}\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{array}\right)_{i j} \tag{8}
\end{align*}
$$

and the harmonics with $m<0$ are given by $\mathcal{Y}_{i j}^{\ell-m}=(-1)^{m} \mathcal{Y}_{i j}^{\ell-m^{*}}$.

- The harmonics $\mathcal{X}_{i j}^{\ell m}$ are 5 elements. The same is the cardinality of the space of traceless symmetric rank- 2 tensor. Thus, from previous results, we can easily see that $\mathcal{Y}_{i j}^{2 m}$ are orthogonal, i.e.

$$
\begin{equation*}
\sum_{m m^{\prime}} \mathcal{Y}_{i j}^{2 m} \mathcal{Y}_{i j}^{2 m^{*}}=\frac{15}{8 \pi} \delta^{m m^{\prime}} \tag{9}
\end{equation*}
$$

This allows us to write any traceless symmetric rank-2 tensor as decomposition of $\ell=2$ spherical tensor harmonics, i.e.

$$
\begin{equation*}
Q_{i j}=\sum_{m=-2}^{+2} Q_{m} \mathcal{Y}_{i j}^{2 m}, \tag{10}
\end{equation*}
$$

where $Q_{m}$ are called spherical components. Note that

$$
\begin{equation*}
Q_{i j} n_{i} n_{j}=\sum_{m=-2}^{+2} Q_{m} Y^{2 m} \tag{11}
\end{equation*}
$$

- From the previous results, we can write $Q_{m}=(-1)^{m} Q_{-m}$; thus, we can limit to compute the spherical components for $m \geq 0$. From Eq. (9) and Eq. 10), we can write

$$
\begin{equation*}
Q_{m}=\frac{8}{15 \pi} Q_{i j} \mathcal{Y}_{i j}^{2 m^{*}} \tag{12}
\end{equation*}
$$

from which we obtain the explicit expressions for the spherical components,

$$
\begin{align*}
Q_{ \pm 2} & =\sqrt{\frac{2 \pi}{15}}\left(Q_{11}-Q_{22} \mp 2 i Q_{12}\right) \\
Q_{ \pm 1} & =\mp \sqrt{\frac{8 \pi}{15}}\left(Q_{13} \mp i Q_{23}\right)  \tag{13}\\
Q_{0} & =-\sqrt{\frac{4 \pi}{5}}\left(Q_{11}+Q_{22}\right)
\end{align*}
$$

