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Exercise 4.1: Binary dynamics
We saw that it is possible to define a stress-energy tensor for GWs, which can be written
in the case of flat background as

Θµν =
c4

32πG

〈
∂µhαβ∂νh

αβ
〉
, (1)

where 〈 . . . 〉 denotes the average over a certain time-scale (much larger than the GWs
time-scale). From this result, we can write the emitted power for an inspiralling com-
pact binary system in quasi-circular orbit (i.e. ω2

src � ω̇src, where ωsrc is the orbital
frequency), at the leading order of approximation, as

Pgw =
32

5Gc5
(GMωsrc)

10/3 . (2)

Suppose that the gravitational radiation is the only source of energy loss in the system.

• Write the energy balance equation

dEtot

dt
= −Pgw , (3)

where Etot = Ekin + Egrav = −Gm1m2
2R and compute the the evolution of the

separation R(t) between the two objects and the evolution of the orbital frequency
ωsrc(t) using Newtonian approximation. Relate this results with the phase of the
emitted GW. [Hint: it is useful to define the time to coalescence τ = tcoal − t]

• Compute the time to coalescence for the following binaries:

1. Hulse-Taylor binary system: M1 = 1.441 M�, M2 = 1.387 M�, T = 7.75
hours

2. Earth-Sun system: M� = 1.9891 × 1030 kg, MEarth = 5.972 × 1024 kg, T =
365 days
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Solution ??
• In the case of inspiralling binaries in quasi-circular regime, as long as ω2 � ω̇, we

are allowed to apply the Kepler law and we can rewrite the total energy of the
system in terms of ωsrc instead of using R,

Etot = Ekin + Egrav = −Gm1m2

R
= − 3

√
G2M5ω2

src

8
, (4)

where in the second step we used the virial theorem and in the third we applied
the Kepler law ω2

src = GMR−3, where M = m1+m2 is the total mass of the binary
and M = (m1m2)

3/5M−1/5 is the chirp mass.

Recalling that we can write the emitted power for inspiralling binaries (in the
slow-motion and weak-field approximation) as

Pgw =
32

5Gc5
(GMωsrc)

10/3 , (5)

we can impose the equality of Eq. (3) and find

ω̇gw =
12

5
3
√

2

(
GM
c3

)5/3

ω11/3
gw , (6)

where ωgw = 2ωsrc in the quadrupole approximation. Then defining τ = tcoal − t
(which is the time to coalescence and it is negative in the inspiral phase), we can
integrate the previous expression and get

ωgw(τ) = 2

(
GM
c3

)−5/8 ( 5

256

1

τ

)3/8

. (7)

We can observe that, ω̇gw is never lower than zero, and this means that the fre-
quency always increase. Furthermore, the frequency evolution can be used to
compute the phase of the emitted gravitational radiation as

Φ(t) =

∫ t

t0

ωgw(t′) dt′ . (8)

In this case, we get

Φ(t) = −2

(
5GM
c3

)−5/8
τ5/8 + φ0 , (9)

where φ0 is the value of the phase at t0.

Now, still using the Kepler law and the previous solution, we note that

Ṙ

R
= −2

3

ω̇gw

ωgw
= − 1

4τ
. (10)
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Integrating on the time τ we get

R(τ) = R0

(
τ

τ0

)1/4

, (11)

which show that the distance between the two objects decrease while the frequency
increase, since they are spiralling around each other.

• Putting together the solutions of Eq. (7) and Eq. (11), we are able to estimate the
time to coalescence of a binary,

τ0 =
5

256

c5R4
0

G3M2µ
(12)

where µ = m1m2/M is the reduced mass. Now we are able to compute R0 using
the Kepler law and we can compute the times of collapse of the listed binaries:

1. Hulse-Taylor binary: τ0 = 5.16× 1016 s = 1.64× 109 yr,

2. Earth-Sun binary: τ0 = 3.37× 1030 s = 1.07× 1023 yr.
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