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Exercise 5.1: Stationary phase approximation
Let us consider an inspiralling compact binary as source of gravitational radiation in the
Newtonian limit, i.e. 0th post-Newtonian (0PN) order, such as ω2 � ω̇ where ω is the
orbital frequency of the source. The two objects are assumed to be point-particles with
different masses, m1 and m2. In such approximation, the quadrupole formula gives us the
analytic expression for the radiated GW strain. By assuming the energy balance between
the gravitational power emitted in the quadrupole approximation and the energy loss
in presence of a Newtonian gravitational potential (see previous exercises), we are able
to recover an analytical expression for the (instantaneous) orbital frequency ω ≡ ω(t).
Then, we define the evolution of the GW phase (which is 2×the orbital phase) as

Φ(t) = 2

∫ t

t0

ω(t′) dt′ = −2

(
5GM
c3

)−5/8

τ5/8 + φ0 , (1)

where τ = tcoal − t encodes the time dependency, tcoal is the coalescence time, M is the
chirp mass and φ0 is a reference phase value. In these conditions, the emitted GW strain
can be written as

h+(tret) = A(tret) cos Φ(tret) , h×(tret) = A(tret) sin Φ(tret) , (2)

where

A(t) =
1

r

(
GM
c3

)5/4( 5

cτ

)1/4

D+,×(ι) , (3)

and D+,×(ι) is a scale factor that depends on the inclination of the source.

• Compute the frequency-domain strain h̃(f) for the same source (i.e. the Fourier
transform) by employing the stationary phase approximation (SPA) [Hint: ex-
pand the exponent to leading (nonvanishing) order in t− ts(f), where ts(f) is the
stationary point with respect to the Fourier variable f , defined through the equa-
tion 2πf = Φ̇(ts). Note that the Fourier variable f and the instantaneous GW
frequency F = Φ̇/2π are in principle not the same thing!]
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• What is the frequency dependence of the amplitude |h̃(f)|2? Is this behaviour
intuitively correct and why?

Solution ??
In the Exercise Sheet n.1, we saw that, assuming that GWs are the only energy loss
of the system, it is possible to write a solution for the orbital frequency of the binary
imposing the energy balance

dE

dt
= −Pgw . (4)

This solution leads to the dynamical evolution of the phase of the emitted GWs at
Newtonian order of approximation (0PN),

f(τ) =
1

π

(
5

256

1

τ

)3/8(GM
c3

)−5/8

, (5)

where f is the frequency of the GW signal, and then the phase,

Φ(t) = −2

(
5GM
c3

)−5/8

τ5/8 + φ0 , (6)

where τ = tcoal − t encodes the time dependency, M is the chirp mass, tcoal is the
coalescence time and φ0 is a reference phase value. This equation represents the leading
order term of the post-Newtonian expansion of the GW solution for a binary system
expressed as a function of the time.

In order to perform the Fourier transform of this signal, we focus on the + polarization,
which can be written as

h+(tret) = A(tret) cos Φ(tret) , (7)

with

A(tret) =
1

r

(
GM
c3

)5/4( 5

c(t0 − tret)

)1/4(1 + cos2 ι

2

)
, (8)

where t0 is the retarded reference time and ι is the inclination angle of the binary with
respect to the line of sight. The Fourier transform can be written as

h̃+(f) =

∫
dtA(tret) cos Φ(tret) e

2iπft

=
1

2
e2iπfr/c

∫
dtretA(tret)

(
eiΦ(tret) + e−iΦ(tret)

)
e2iπftret .

(9)

Now in the last integral we can rename the integration variable tret → t. We are going
to compute this integral on a saddle stationary point, then we can avoid to write the
integration boundaries. All we need is that the stationary point lies within the range
t < t0. The stationary point is the value of the time t∗(f) that satisfies the condition
2πf = Φ̇(t∗). This equation obviously express the relation between the phase and the
frequency of the wave, but now we are imposing also that the Fourier variable must
satisfy the same identity.
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We restrict our analysis to positive frequencies f > 0, since for a generic Fourier
function we can write h̃(−f) = h̃∗(f). Then, observing that Φ̇ = ω > 0 ∀ t, we can see
that only the contribution proportional to e−iΦ+i2πft has a stationary point, while term
eiΦ+i2πft is always oscillating. Therefore,

h̃+(f) ' 1

2
e2iπfr/c

∫
dtA(t) e−iΦ(t)+2iπft . (10)

Expanding to the second order the exponential around the stationary point, we get

h̃+(f) ' 1

2
A(t∗) e

i[2πf(t∗−r/c)−Φ(t∗)]

(
2

Φ̈(t∗)

)1/2 ∫ +∞

−∞
dx eix

2
. (11)

The integral can be solved using the Fresnel formulae, and we get∫ +∞

−∞
dx eix

2
=
√
π e−iπ/4 , (12)

and then

h̃+(f) ' 1

2
A(t∗) e

iΨ+

(
2

Φ̈(t∗)

)1/2

, (13)

where
Ψ+ = 2πf(t∗ + r/c)− Φ(t∗)− π/4 . (14)

Combining Eq. (6) and Eq. (8), we get

A(t∗)

(
2

Φ̈(t∗)

)1/2

=
1

π2/3

√
5

24

c

r

(
GM
c3

)5/6

f−7/6

(
1 + cos2 ι

2

)
, (15)

and analogously

Ψ+(f) = 2πf(t∗ − r/c)− φ0 −
π

4
+

3

128ν

(
π
GM

c3

)−5/3

f−5/3 , (16)

where ν = m1m2/M
2.
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