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Chapter 1

Introduction

The term probability is largely used in the scientific community since, with this concept, we are
able to predict the result of many events belonging to different fields of knowledge. The concept
of probability is related to statistics, i.e. the interpretation of randomness. A clear example is
the game theory or

However, what is a probability under a mathematical and more rigorous point of view? This
theory can be studied using two different approaches:

• Frequentist approach: the probabilities describe frequencies of outcome in a random
experiments, where with frequencies we mean the average fraction of positive (or negative)
results; this approach implicitly assumes that the experiment can be repeated as many
times we want.

• Bayesian approach: a more general use of probabilities is referred to the degree of belief
in propositions that do not involve random variable, for example: the probability that Mr.
A was the murder of Mr. B, given the evidence.

We are interested in the latter case, the Bayesian approach, because we are able to use proba-
bilities to describe inferences, i.e. to associate quantitative values which predict the outcome of
an event or describe the adaptability of a model given a set of data. For these notes, we use as
reference textbooks the ones listed in the Bibliography, [1–6].

The modern logical formulation of statistics was developed by Thomas Bayes in his published
works [1] of 1763 and was successfully used by Pierre-Simon Laplace (1812) in various scientific
fields, from astronomy to medicine. These works are elegantly shown in his book [2], in which he
asserted: la thÃĺorie des probabilitÃĺs n’est que le bon sens reduit au calcul. However, these works
was largely forgotten and discredited until they were rediscovered by Harold Jeffreys (1939) and,
in more recent times, they have been expounded.

The problem was not really matter of substance but concept. To the pioneers such as Bayes
and Laplace, a probability represented a plausibility: how much they thought that something
was true, based on the evidence at hand. To the 19th century scholars, however, this seemed
too vague and subjective an idea to be the basis of a rigorous mathematical theory. So they
redefined probability as the long-run relative frequency with which an event occurred, given
many repeated (experimental) trials. Since frequencies can be measured, probability was now
seen as an objective tool for dealing with random phenomena.

Although the frequency definition appears to be more objective, its range of validity is also
far more limited. For example, Laplace used his probability theory to estimate the mass of
Saturn, given orbital data that were available to him from various astronomical observatories.

5



6 CHAPTER 1. INTRODUCTION

He computed the posterior probability (the meaning of this term will be clear later) for the mass
of the planet, given the data and all the relevant background information, such as a knowledge of
the laws of classical mechanics. Laplace stated that: it is a bet of 11,000 to 1 that the error of this
result is not 1/100th of its value. He would have won the bet, as another 150 years’ accumulation
of data has changed the estimate by only 0.63%! According to the frequency definition, however,
we are not permitted to use probability theory to tackle this problem. This is because the mass
of Saturn is a constant and not a random variable; therefore, it has no frequency distribution
and so probability theory cannot be used.

The frequency definition of probability merely gives the impression of a more objective theory.
In reality it just makes life more complicated by hiding the difficulties under the rug, only for them
to resurface in a less obvious guise. Indeed, it is not even clear that the concept of randomness
central to orthodox statistics is any better-defined than the idea of uncertainty inherent in
Bayesian theory of probability. For example, we might think that the numbers generated by a
call to a function like rand on a computer constitutes a random process: the frequency of the
numbers will be distributed uniformly between 0 and 1, and their sequential order will appear
haphazard. The illusory nature of this randomness would become obvious, however, if we knew
the algorithm and the seed for the function rand (for then we could predict the sequence of
numbers output by the computer). At this juncture, some might argue that, in contrast to our
simple illustration above, chaotic and quantum systems provide examples of physical situations
which are intrinsically random. Either way, randomness is what we call our inability to predict
things which, in turn, reflects our lack of knowledge about the system of interest. This is again
consistent with the Bayes and Laplace view of probability, rather than the asserted physical
objectivity of the frequentist approach.

The concerns about the subjectivity of the Bayesian view of probability are understandable,
and the aim of creating an objective theory is quite laudable. Unfortunately, the frequentist
approach does not achieve this goal: neither does its concept of randomness appear very rigorous,
or fundamental, under scrutiny and nor does the arbitrariness of the choice of the statistic make
it seem objective. In fact, the presumed shortcomings of the Bayesian approach merely reflect
a confusion between subjectivity and the difficult technical question of how probabilities should
be assigned. The popular argument goes that if a probability represents a degree of belief, then
it must be subjective because my belief could be different from yours. The Bayesian view is
that a probability does indeed represent how much we believe that something is true, but that
this belief should be based on all the relevant information available. While this makes the
assignment of probabilities an open-ended question, because the information at my disposal may
not be the same as that accessible to you, it is not the same as subjectivity. It simply means that
probabilities are always conditional, and this conditioning must be stated explicitly. As Jaynes
has pointed out, objectivity demands only that two people having the same information should
assign the same probability; this principle has played a key role in the modern development of
the Bayesian approach.

1.1 Cox’s Axioms

In 1946, Richard Cox tried to get away from the controversy of the Bayesian versus frequentist
view of probability. He decided to look at the question of plausible reasoning afresh, from the
perspective of logical consistency. He found that the only rules which met his requirements were
those of probability theory. Using the approach of Bayes and Laplace, he observed that the
degrees of belief can be mapped onto probabilities if satisfy some simple consistency rules, called
the Cox’s axioms. Calling x an event and P (x) its degree of belief, the Cox’s axioms postulate:
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1. Degrees of belief can be ordered, so if P (x) > P (y) and P (y) > P (z) then

P (x) > P (z) .

This condition implies that the degrees of belief can be mapped onto real numbers.

2. Exists a function f which relate a proposition x to its negation x̄, such that:

P (x) = f
[
P (x̄)

]
.

3. Exists a function g which relate a conjunction of propositions x ∩ y to the conditional
proposition x|y and the proposition y, such that:

P (x ∩ y) = g
[
P (x|y), P (y)

]
.

Let us observe that P (x∩y) is the probability of the event x and the event y, i.e. the probability
that both events are realized. Usually the intersection symbol is replaced by a comma in order to
achieve a more elegant form, i.e. P (x∩y) = P (x, y), however when it is needed we will explicitly
write this symbol (see Sec. 1.2). Moreover, the conditional probability P (x|y) is the probability
of x given y, i.e. the probability of x under the assumption that y is occurred.

Notation: From this moment, if x is an event, we use P (x) to denote the probability of the
event x and x̄ is the logical negation of the event x, with probability P (x̄) = 1− P (x). Then, if
y is another event, we can construct the following terms:

• P (x ∪ y), the probability that x or y occur;

• P (x ∩ y) = P (x, y), the probability that x and y occur;

• P (x|y), the probability that x occurs given that y occurred.

Note that we use the symbols ∪, ∩ to denote the logical operator, respectively or, and. This is
motivated by the fact that in the theory of sets, these logical operators are represented by the
operations of union and intersection.

Thus probabilities can be used to describe assumption and describe inferences given those
assumptions. The rules of probability ensure that if two people make the same assumptions
and receive the same data then they will draw identical conclusions. This more general use
of probability to quantify beliefs is known as the Bayesian viewpoint. It is also known as the
subjective interpretation of probability, since the probabilities depend on assumptions. Advocates
of a Bayesian approach to data modeling and pattern recognition do not view this subjectivity
as a defect, since in their view, you cannot do inference without making assumptions.

From the Cox’s axioms follow the sum and the product rule of probabilities, that is

P (x) + P (x̄) = 1 , (1.1)

P (x ∩ y) = P (x|y) · P (y) , (1.2)

The first equation imposes that the sum (or the integral) of the probabilities of all possible results
is normalized to unity. In the second equation we write the conditional probability of x given y,
that means the probability of x assuming y as true.
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1.2 Basic calculations

In this section we recall the basic information needed to carry out simple probability computa-
tions, such as additions and multiplications, for different cases. First of all we remark that, if x
and y are two events, x ∩ y ≡ (x, y) is the intersection of two events and it can be red as “x and
y”, while x ∪ y is the union of two events and it can be red as “x or y”.

1.2.1 Addition

If x and y are two disjointed events (i.e. these two events cannot happen at the same time in a
single experiment), the probability that x or y (x ∪ y) will occur can be written as

P (x ∪ y) = P (x) + P (y) . (1.3)

Exercise: Compute the probability of rolling 2 or 3 on a 6-sided die.
If x and y are two compatible events, in general they could happen simultaneously and

then favorable cases can arise fo both events that can be counted both for P (x) and P (y).
In this condition, if we apply Eq. (1.3), these favorable cases are double counted. From this
argumentation, it follows that the generalization of Eq. (1.3) can be written as

P (x ∪ y) = P (x) + P (y)− P (x ∩ y) . (1.4)

From Eq. (1.3) and Eq. (1.4), it follows that if two events are disjointed, the intersection of their
representative subsets is emply, P (x ∩ y) = 0.

Exercise: Suppose we draw a card from a 52 card deck. Which is the probability that the
drawn card is a king or is of aces?

1.2.2 Multiplication

If x and y are two independent events (i.e. not causally connected, in other words the realization
of x does not affect the realization of y and viceversa), the probability that x and y (x ∩ y) will
occur can be written as

P (x ∩ y) = P (x) · P (y) . (1.5)

Exercise: Suppose we toss a coin and we roll a die. Which is the probability of rolling a 6
on the die and a cross on the coin?

Exercise: Suppose we roll two die. Which is the probability of rolling a 5 and 6? (indepen-
dently from the order)

The multiplication rule Eq. (1.5) can be generalized for the case of non independent events.
In this case we have to involve the conditional probability P (x|y) which is the probability that
x occurs once y has occurred. The generalization of Eq. (1.5) coincides with Eq. (1.2),

P (x ∩ y) = P (x|y) · P (y) = P (y|x) · P (x) . (1.6)

Then it is obvious to observe that, if x and y are independent then

P (x|y) = P (x|ȳ) = P (x) .
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1.3 Bayes’ Theorem

The relations in Eq. (1.1)-(1.2) represent the basic algebra of probability. Many other results
can be derived from them, amongst the most useful are the Bayes’ theorem,

P (x|y) · P (y) = P (y|x) · P (x) , (1.7)

and the marginalization rule,

P (x) =

∫
P (x, y) dy =

∫
P (x|y)P (y) dy , (1.8)

where we used Eq. (1.2) for the second equality and the integrals are extended to the entire
domain of the variable of interest y.

The importance of these properties to data analysis becomes apparent if we replace x and
y by the statistical quantities of importance. Consider, under certain hypothesis H , a physical
event expressed by the set of parameters θ and supposing to have carried out an experiment
obtaining the data d. So, thanks to the Bayes’ theorem we can write,

P (d|θ,H )︸ ︷︷ ︸
likelihood function (L)

· P (θ|H )︸ ︷︷ ︸
prior prob. (Π)

= P (θ,d|H )︸ ︷︷ ︸
joint prob.

= P (θ|d,H )︸ ︷︷ ︸
posterior prob. (P)

· P (d|H )︸ ︷︷ ︸
evidence (Z)

. (1.9)

Usually in the literature, Eq. (1.9) is expressed using a more compact form,

L(θ) Π(θ) = P(θ)Z ,

however, in this notes we will use the full forms since this reduced expression does not highlight
the meaning of the different quantities and it could lead to misunderstandings. Every term in
Eq. (1.9) is conditioned from the initial hypothesis H . In general during our analysis, we always
start making some assumption, because there is no such thing as an absolute probability, and
so the probability of an event, is the conditional probability on that assumptions. Although
the conditioning on some hypothesis H is often omitted in calculations, to reduce algebraic
cluttering, we must never forget its existence.

The power of Bayes’ theorem lies in the fact that it relates the quantity of interest, the
probability that the model is true given the data (that is the posterior probability), to the term
we have a better chance of being able to assign, the probability that we would have observed
the measured data if the hypothesis was true. The prior probability P (θ|H ) represents our
state of knowledge, or ignorance, about the truth of the hypothesis before we have analyzed
the current data. This is modified by the experimental measurements through the likelihood
function P (d|θ,H ), which is not properly a probability since it describes the plausibility of a
model, given specific observed data. The result yields the posterior probability P (θ|d,H ),
representing our state of knowledge about the truth of the model in the light of the data. In a
sense, Bayes’ theorem encapsulates the process of learning since if we are interested in measuring
the same quantity with different experiments we are allowed to use the posterior probability as
prior probability for the new measurement.

We should note, however, that the equality of Eq. (1.7) is often replaced with a proportionality,
because the term P (d|H ) is omitted. This is fine for many data analysis problems, such as
those involving parameter estimation, since the missing denominator is simply a normalization
constant, which do not depend explicitly on the hypothesis. In some situations, like model
selection, this term plays a crucial role. For that reason, it is given the name of evidence
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P (d|H ). This crisp single word captures the significance of the entity, however this quantity is
also labelled as marginal likelihood, since using Eq. (1.7) and Eq. (1.8), it can be computed as

P (d|H ) =

∫
Θ

P (d|θ,H )P (θ|H ) dθ , (1.10)

where Θ is the entire domain of θ. Combining Eq. (1.10) with Eq. (1.9), we get

P (θ|d,H ) =
P (d|θ,H )P (θ|H )∫

Θ
P (d|θ,H )P (θ|H ) dθ

. (1.11)

This latter form highlights the fact that the evidence works like a renormalization term for the
determination of the posterior distribution P (θ|d,H ).

Exercise: You are planning a barbecue with your friends, but the morning sky is cloudy.
You have the following information:

• 50% of all rainy days start with a cloudy morning;

• 40% of all days start with a cloudy morning (cloudy mornings are common);

• Only 3 of 30 days (10%) tend to be rainy in this period of the year.

What is the chance of rain during the day?
Exercise: Let us assume that we are in a institute for medical research and we are conducting

a study on a particular genetic defect. We know that:

• 1% of people have the genetic defect;

• 90% of tests for the gene detect the defect (true positives);

• 9.6% of the tests are false positives, i.e. you get positive result for the test when you should
have received a negative results.

If a person gets a positive test result, what are the odds they actually have the genetic defect?
[To solve this problem you should use the discrete version of Eq. (1.11)].



Chapter 2

Probability Density Functions

If x is the result of an experiment, in general x depends on the particular realization of the exper-
iment itself. Then, x is a random variable. There are two types of random variables: discrete
variables, which can be enumerable with a finite list of numbers, and continuous variables. In
these notes, we will focus on the second case, the continuous variables, since they are able to fit
our aims. We note that, for utilitarian purposes, we can refer to a random variable also with the
term parameter and the parameter’s space is its domain.

In the analysis of continuous variables, it is useful to introduce the probability density function.
If we denote the random variable with x and we consider a range in the random variable’s domain
A ≡ [x1, x2] ∈ X, then we can define the probability density function (pdf) p(x) of the probability
P (x) as the function such that

P
(
x1 ≤ x ≤ x2

)
=

∫ x2

x1

p(x) dx . (2.1)

If x is a continuous outcome of an experiment, its pdf (also called probability distribution)
p(x) is a function of x such that p(x) ≥ 0 for x ∈ X, where X is the domain of x and∫

X

p(x) dx = 1 . (2.2)

Eq. (2.2) is the generalization to continuous variable of Eq. (1.1). This equation tells us an
obvious fact, i.e. the probability of x ∈ X is 100%, which means that we can be sure the x will
fall in its domain. Sometimes, it could happen that the integral over the entire domain of your
pdf differs from the unity, i.e. ∫

X

p(x) dx = N .

This means that your pdf is not normalized, and then the probability described by your function
lies outside the boundaries [0, 1]. Obviously, we can solve this issue defining a new pdf p′(x) such
that p′(x) = p(x)/N .

Notation: From this moment, we refer to a probability density function of the variable x, or
pdf, with lower-case letter, such as p(x). The integral of p(x) over the range A, which represent
the probability that x ∈ A, is labelled with the capital letter, such as P (x ∈ A) and it is called
cumulative probability function (cpf).
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Figure 2.1: Example of unimodal symmetric pdf (red), bi-
modal symmetric pdf (blue) and bimodal asymmetric pdf
(green). The vertical dashed lines represent the respective
mean, while the dotted lines are the median values. The
red pdf has only one mode and it coincides with the mean.
The blue pdf has two equiprobable modes and then the
mean value is located in their center, in correspondence of
the local minimum. The green pdf has two different modes,
then the mean value is going to be shifted toward the most
probable peak.

Figure 2.2: The figure shows the cumulative density proba-
bility functions P (x < x′) for the three pdf in Fig. 2.1. It is
possible to see that for symmetric distributions, the mean
and the median are coincident. For cumulative probabili-
ties, it is simple to identify the median point, since it is the
value µ1/2 such that P (µ1/2 < x′) = 1/2. In fact, applying
Eq. (1.1), we get P (µ1/2 < x′) = 1 − P (µ1/2 > x′) = 1/2,
and then also P (µ1/2 > x′) = 1/2. This is not valid for
asymmetric pdf, where mean and median do not coincide.

2.0.1 Mean and Variance
If x ∈ X is a random variable and p(x) its pdf, we define the mean of the pdf the quantity

µ = E[x] =

∫
X

x p(x) dx . (2.3)

This term is also called expectation value of the variable x or we can generalize the definition to
any function f(x) of a random variable. We note also that the expectation value E is a linear
operator, and so:

E[x+ y] = E[x] + E[y], E[αx] = αE[x] ,

where x and y are two random variables and α is a constant real number. Often we rely on the
mean value in order to decide if an outcome is reasonable or not, however this value coincides
with the peak of the pdf only for symmetric and unimodal distributions. The term “symmetric”
means that the pdf is symmetric with respect to the mean value. The term “unimodal” means
that the pdf has only one peak, otherwise we refer to bimodal pdf or in general multimodal pdf.
An example is given in Fig. 2.1.

Notation: Eq. (2.7) is the definition of the mean but it defines also the expectation value
operator E. This linear operator can be generalized to any function f of the random variable x
as

E[f(x)] =

∫
X

f(x) p(x) dx . (2.4)

Let us note that for the case of equiprobable outcomes p(xi) = 1/N , ∀ i = 1, . . . , N , the
definition in Eq. (2.7) returns the usual arithmetic mean,

µ = E[x] =
∑
i

xi · p(xi) =
1

N

∑
i

xi. (2.5)
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Note that the condition p(xi) = 1/N is imposed by normalization,∑
i

p(xi) = 1 ,

which is the natural discrete form of Eq. (2.2).
However, in general the mean does not coincides with a relevant value of the distribution, so

we define other quantity: the median µ 1
2
is the value of the random variable such that:∫ µ 1

2

−∞
p(x) dx =

∫ +∞

µ 1
2

p(x) dx , (2.6)

and the mode µ∗ which is the most probable value of the random variable and it correspond to
the peak of the distribution.

The definition in Eq. (2.7) can be generalized. In general, when we have a random variable,
we refer to the momentum of n-th order of the variable to denote the integral

E[xn] =

∫
X

xn p(x) dx . (2.7)

This quantities are very import to characterize a pdf. As we saw the momentum of first order is
the mean of the distribution. Then, we observe that the momentum of zeroth order is the unity,
or in general the normalization constant of the pdf. The momentum of second order is useful to
quantify the spread of the distribution around the mean value: indeed the momentum of second
order centered around the mean value is known as variance of a distribution,

Var(x) = E
[(
x− E[x]

)2]
= E[x2]−

(
E[x]

)2
, (2.8)

and its square root
√

Var(x) is called standard deviation. Furthermore, the momentum of third
order centered around the mean value is called skewness and it quantify with the symmetry of
the distribution around the mean value.

Exercise: Prove the relation in Eq. (2.8).

2.0.2 Confidence Intervals
If we want to report the result of a measurement in a scientific report or article, it is not
always convenient to use mean and standard deviation. Indeed this properties work very well
for symmetric pdf, but in general the pdf of your measurement is not symmetric and then, using
mean and standard deviation, you are going to loose the information regarding the symmetric (or
asymmetry) of your measurement. For some other cases, these quantities cannot be computed
since the integrals do not converge.

Then, if x is a random variable and p(x) its pdf, we define the confidence interval of the
N% isoprobability contour (or simply the N% confidence interval) a region CIN ≡ [a, b] of the
variable’s domain such that

P (x ∈ CIN ) =

∫
CIN

p(x) dx = N × 10−2 . (2.9)

In order to avoid misunderstandings, we note that the boundary of CIN are usually evaluated
through the computation of the integrals of the tails, i.e.

P (x < a) =

∫ a

−∞
p(x) dx =

100−N
2

× 10−2 ,

P (x > b) =

∫ +∞

b

p(x) dx =
100−N

2
× 10−2 .

(2.10)
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Figure 2.3: Example of unimodal asymmetric distribution. The red, green and blue vertical lines are respectively mode,
mean and median values. It is possible to observe that in general this values do not coincides. Moreover the purple
vertical lines represents the 90% confidence interval and the purple region is the area corresponding to the 10% of the
entire integral. The text x = 4.67+4.48

−2.70 is an example of how to report this particular measurement in a report using the
median and the its differences with respected to the boundaries of the 90% credible interval.

Let us suppose we want to compute the 90% credible interval of a random variable, Eq. (2.10)
is telling you the following: you can evaluate the boundaries a, b computing the integral of the
tails and stopping when every single integral is 5%, since when the two tail contributions are
5% each (10% in total), the central portion is the remaining 90%. In other words, a is the 5th
percentile and b is the 95th percentile of the distribution.

We can understand that if we report a central value (i.e. mean, median, . . . ) and the
confidence interval of a specified contour (i.e. 66%, 90% or 95%) we are able to discriminate if a
pdf is symmetric or not. Usually it is common to use median value and 90% confidence interval
to report the result of a measurement, since the median is a quantity more coherent with the
definition Eq. (2.10) and mostly because it suffers less the effects of statistical fluctuations with
respect to the other central quantities.

2.1 Error Propagation

Another useful tool in the statistic analysis is the error propagation. With this term we mean
the behavior of a set of parameters under a given transformation; in other words, given the set
of parameters x and a transformation x→ y = f(x), how can we relate the probability p(x) to
the probability p(y)? In order to give an answer to this question, we recall the property of a
probability for which the integration of p(x) over the entire domain must be equal to the unity
(Eq. (2.2)). This property must be true for the probability p in every analytical form, such that∫

p(x) dx = 1 =

∫
p(y) dy .
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Figure 2.4: Example of uniform, exponential and normal distributions.

From this relation we find easily that the transformation function that allows us to write p
through the new parameters is the determinant of the Jacobian of this transformation,

p(y) = p(x)

∣∣∣∣∂x∂y
∣∣∣∣ . (2.11)

We can understand that using Eq. (2.11) we are able to compute how the uncertainties and
correlations propagate from an initial set of variable x to a second set y.

Exercise: Compute the Jacobian for the transofrmation from cartesian coordinates (x, y, z)
to polar coordinates (r, θ, φ). If we assume a uniform distribution for the variables (x, y, z), which
is the distribution for (r, θ, φ)?

2.2 Standard Distributions

In this section we introduce some useful distributions for continuous random variables. However,
we note that we are omitting several very important distributions related with discrete variables,
such as the binomial pdf (useful for true-false cases), the Poissonian (used when the random
variable is an integer count) pdf and many others.

Notation: If x is a random variable and p(x) its pdf, then we denote with the form x ∼ p(x)
the sentence “x is drawn from the distribution p” or on the other way around “p is the probability
distribution for the variable x ”.

2.2.1 Uniform Distribution

The uniform distribution is used when we are completely ignorant regarding a particular outcome
of a variable. This pdf is specified only by two values a and b which correspond to the lower and
upper bounds of the distribution. If x is a random continuous variable, then U(x|a, b) is defined
as

U(x|a, b) =

{
1
b−a if x ∈ [a, b] ,

0 otherwise .
(2.12)

An example of uniform pdf is shown in Fig. 2.4. We can see that a and b are the bounds of
our pdf and there are no chance our variable x will be outside this boundaries. But inside this
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boundary every value has the same probability, i.e. we are completely ignorant on the possible
result of x.

Exercise: Compute mean and variance for the variable x ∼ U(x|a, b).

2.2.2 Exponential Distribution
The exponential distribution is characterized by a single parameter λ ≥ 0 and it is defined as

e(x|λ) =

{
λe−λx if x ≥ 0 ,

0 if x < 0 .
(2.13)

It is simply to compute the cumulative probability function (cpf) in the domain x ≤ x0, where
x0 is a possible value of x,

P (x ≤ x0) = 1− e−λx0 , (2.14)

and this form is very important is many fields of physics. Indeed Eq. (2.14) is the distribution
function used to indicate the average time interval between two successive counts, i.e. decay time
of radioactive nuclei (where 1/λ is called mean-life) or the length of the path of a particle in a
homogeneous medium (where 1/λ is called mean-free-path).

The reason why this pdf is able to describe such events underlies in its most important
property: using Eq. (1.1) and Eq. (2.14), we can write

P (x ≥ x1 + x2) = 1− P (x < x1 + x2)

= e−λ(x1+x2)

= e−λx1 · e−λx2

= P (x ≥ x1) · P (x ≥ x2) .

A distribution with such a property is called memory-less, since after every iteration, the prob-
ability for x to be above a certain value xi does not preserve the information on the previous
outcome xi−1. This condition can also be written as

P (x ≥ x1 + x2|x ≥ x1) = P (x ≥ x2) . (2.15)

Exercise: Compute mean and variance for the variable x ∼ e(x|λ).
Exercise: Let us assume to observe, starting from a moment t0, a radioactive nucleus with

mean-life 1/λ = 1 s. We ask ourselves:

• What is the probability that the nucleus has not decayed after 1 s?

• What is the probability that the nucleus has not decayed after 10 s?

• What is the probability that the nucleus has not decayed between 10 s and 11 s?

2.2.3 Normal Distribution
The normal distribution, also called the Gaussian distribution, is the most important and used
pdf. The normal distribution is characterize by two values µ, σ and it is defined as

N(x|µ, σ) =
1√
2π σ

e−
1
2

(
x−µ
σ

)2
. (2.16)
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n P (x ∈ In)
0.318639 25%
0.674490 50%

1 68.2689492%
1.281552 80%
1.644854 90%

2 95.4499736%
3 99.7300204%
4 99.993666%
5 99.9999426697%
6 99.9999998027%

Table 2.1: Table reporting the confidence interval levels for
different values of n, which define the region In = [µ −
nσ, µ + nσ]. This notation is used very often within the
scientific community, however remember that this notation
underlies the fact that you are assuming that the pdf of
your measurement is Gaussian.

We can observe that N(x|µ, σ) is defined on the entire domain of the real numbers, it has only
one mode and it is symmetric with respect to the mean.

However, even if the normal pdf fits perfectly the description of a canonical distribution, the
integral ∫ b

a

N(x|µ, σ) dx , (2.17)

has no analytical expression. Obviously, this does not mean that it cannot be evaluated (numer-
ically, in example) with the desired accuracy level. Usually, in order to avoid this problem, it is
common to define the error function erf(x) such as

erf(x) =
2√
π

∫ x

0

e−t
2

dt . (2.18)

With this definition, if x ∼ N(x|µ = 0, σ = 1), we can compute the probability that x will fall in
an interval [a, b] as √

2

4

[
erf(b)− erf(a)

]
= P (x ∈ [a, b]) .

This can be very useful to evaluate the confidence level of a pdf in a given region of the parameter’s
space. The generalization for this evaluation can be found applying the transformation t →
(z − µ)/(

√
2σ) in Eq. (2.18) and rescaling the result for σ.

At this point, it is interesting to note that if we compute (numerically) the integral∫ µ+σ

µ−σ
N(x|µ, σ) ≈ 0.68 .

This means that the credible interval µ ± σ of a normal distribution correspond to the 68%
isoprobability contour. Then we can extend the integral to the region µ±2σ and we get that the
results roughly correspond to the 95% c.i., while µ±3σ is the 99.7% credible region. Then we can
generalize this property and create a table which relates a value n, such that In = [µ−nσ, µ+nσ],
to the probability that the observed event will fall in In, as it is shown in Tab. 2.1.

Another very important property of the normal distribution is that it is a limit distribution.
Let us explain this concept with an example: the binomial distribution is used to character-
ized discrete variables with two possible outcomes, i.e. true-false, head-tail, 0-1 and so on (see
Sec. 2.3). The binomial distribution is defined for integer values k as

Bin(k|n, p) =

(
n

k

)
pk(1− p)n−k , (2.19)
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where p is the probability of one of the two possible outcomes (then 1 − p is the probability of
the other one), k represents the number of positive results (i.e. the one corresponding to the
probability p) and n is the total number of draws. This distribution as mean E[k] = np and
variance Var(x) = np(1 − p). If we take the limit n → +∞ of a binomial distribution, then
we can prove that the normal distribution is the result of this limit. The same is valid for the
Poissonian distribution, which is another pdf for discrete variables, defined as

P(k|µ) =
µk

k!
e−µ . (2.20)

This pdf reach the form of a normal distribution in the limit µ → +∞. We note that, if
k ∼ P(k|µ), then E[k] = µ and Var(k) = µ. However, the fact that the normal distribution is
the limit expression for other discrete pdf underlies the assumption that we are extending the
domain of the discrete variable k to the entire set of the real number.

In general, the normal distribution is an excellent approximation for the pdf of a measurement
since this pdf is able to describe statistical fluctuations due to summation of several independent
contributions. In physics, this happens very often when there are no systematic errors.

Exercise: Compute mean and variance for the variable x ∼ N(x|µ, σ).
Exercise: Suppose we have two independent events x, y such that x ∼ N(x|µ1, σ1) and

y ∼ N(x|µ2, σ2). How can we estimate the pdf of the quantity x+ y?

2.2.4 Other Distributions
Here we comment other important distributions. The first pdf we mention is the Lorentzian
distribution, defined as

L(x|µ, γ) =
γ

π

1

(x− µ)2 + γ2
. (2.21)

This function is often used in atomic and particle physics and it has some interesting properties.
First of all we note that Eq. (2.21) is normalized. Then, the median exist and it coincides with µ
and the distribution is symmetric with respect to this value. However the mean and the higher
momenta are not defined since the integral

γ

π

∫
x

x2 + γ2
dx =

1

2
log(γ2 + x2) ,

leads to an indeterminate form ∞ − ∞ when it is evaluated at ±∞. Then, the mean is not
defined for this distribution and the same for higher momenta. This is also one of the reason
why usually the median is preferred to the mean.

Another important distribution is the χ2 distribution. This pdf is defined only for real positive
numbers x ≥ 0 as

χ2(x|n) =
x
n−2
2 e−

x
2

2
n
2 Γ
(
n
2

) , (2.22)

where n is labelled as degree-of-freedom and Γ is the Euler’s function. This distribution char-
acterize the sum of the residuals of Gaussian variable. This means the following: suppose we
perform n measurements of the same quantity and we collect a set of values {z1, z2, z3, . . . , zn},
all these values are different realizations of the same quantity and this means that they are drawn
from the same pdf, zi ∼ N(x|µ, σ) ∀i = 1, . . . , n. Then the sum of the residuals x, defined as

x =

n∑
i=1

(
zi − µ
σ

)2

,
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is distributed as a χ2 distribution, i.e. x ∼ χ2(x|n), with degree-of-freedom n. This pdf has
existing mean and variance, and they are respectively n and 2n.

We want to mention one last useful pdf, but let us introduce it though an example. Suppose
that x is a random variable such that x ∼ U(x|a, b). Then is we perform the transformation
x → y = ex, how can we write p(y)? Using Eq. (2.11) and observing that x = log(y), we can
write

p(y) = p(x)
dx

dy
, where

dx

dy
=

1

y
,

p(y) ∝ 1

y
.

Then we can understand that p(y) ∝ 1/y is the distribution which reproduce an uniform pdf
under the transformation x→ y = ex. This fact can be expressed also on the other way around
as follows: if we assume that log(x) ∼ U(x|a, b), then x ∼ 1/x.

2.3 Example: Toss a Coin

In this section we want to examine the behaves of the posterior during an set of observations
and let us begin with a simple coin-tossing experiment. A very important check is knowing how
to recognize when a coin is fair. By fair, we mean that we would be prepared to lay an even 50
: 50 bet on the outcome of a flip being a head or a tail. In ascribing the property of fairness to
the coin we are, of course, assuming that the coin-tosser was not skilled enough to be able to
control the initial conditions of the flip (such as the angular and linear velocities).

A sensible way of formulating this problem is to consider a large number of contiguous propo-
sitions about the range in which the bias-weighting of the coin might lie. If we denote the bias-
weighting (or in general the parameter) by θ, and we consider a range in the parameter’s space
[θ1, θ2], then we can define the probability density function (pdf) p(θ) of the probability P (θ) as
the function such that

P
(
θ ∈ [θ1, θ2]

)
=

∫ θ2

θ1

p(θ) dθ . (2.23)

Furthermore, θ = 0 and θ = 1 can represent a coin which produces a tail or a head on every
flip, respectively. There is a continuum of possibilities for the value of θ between these limits,
with θ = 1/2 indicating a fair coin. Our state of knowledge about the fairness, or the degree of
unfairness, of the coin is then completely summarized by specifying how much we believe these
various propositions to be true. If we assign a high probability to one (or a closely-grouped few)
of these propositions, compared to the others, then this would indicate that we were confident in
our estimate of the bias-weighting. If there was no such strong distinction, then it would reflect
a high level of ignorance about the nature of the coin.

In the light of the data, and the above discussion, our inference about the fairness of this
coin is summarized by the conditional pdf: P (θ|d,H ), that is the posterior. To estimate this
posterior pdf, we need to use Bayes’ theorem Eq. (1.9); it relates the pdf of interest to two others,
which are easier to assign. The prior distribution represent what we know about the coin given
only the initial informations; since we know nothing about the coin, we should keep a very open
mind about its nature and a simple probability assignment which reflects this is a uniform prior,

p(θ|H ) =

{
1 if 0 ≤ θ ≤ 1 ,

0 otherwise .
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This prior state of knowledge, or ignorance, is modified by the data through the likelihood
function: P (d|θ,H ). It is a measure of the chance that we would have obtained the data that we
actually observed, if the value of the bias-weighting was given (as known). If, in the conditioning
information H, we assume that the flips of the coin were independent events, so that the outcome
of one did not influence that of another, then the probability of obtaining the data “k heads in
N tosses” is given by the binomial distribution:

p(d|θ,H ) =

(
N

k

)
θk
(
1− θ

)N−k
.

This solution is reasonable because θ is the chance of obtaining a head on any flip, and there
were k of them, and 1− θ is the corresponding probability for a tail, of which there were N − k.
According to Eq. (1.9), we can compute the posterior which represents our state of knowledge
about the nature of the coin in the light of the data. To get a feel for this result, Fig. 2.5 shows
how this pdf evolves as we obtain more and more data pertaining to the coin. This is done with
the aid of data generated in a computer simulation. The panel in the top left-hand corner shows
the posterior pdf for θ given no data (it coincides with the prior pdf); it indicates that we have
no more reason to believe that the coin is fair than we have to think that it is double-headed,
double-tailed, or of any other intermediate bias-weighting.

As far as we go with the extractions, the information we get modify our posterior distribution:
we can see that at N = 1 we have a head, then the posterior is biased from the single result we
obtained. For N = 2, we get a tail and a head, which is a pretty fair result and the posterior is
centered around θ = 1/2. With increasing N , the posterior get peaked around the expectation
value of θ, which coincides with 1/2 if the coin is fair.
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a) b) c)

d) e) f)

g) h) i)

Figure 2.5: We show the evolution of the posterior probability density as new extractions are made and the vertical
dashed lines represent the peak k/N . Increasing the number of tossed coin, we reach the value θ = 1/2 which means that
our coin is fair. Note that the posterior distributions with N < 10 are strongly affected by the statistical fluctuations.
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Chapter 3

Applications

In the following sections, we will present applications and elaboration about the concepts learnt in
the previous paragraphs. In the first section we discuss the quadratic approximation of a generic
pdf, which correspond to the Gaussian case. In the second section we explain the principles of
Bayesian model selection, based on the computation of the evidence. In the last section, we
introduce the hierarchical models and the concept of hyper-parameters.

3.1 Quadratic Approximation
The number of inference problems that can be tackled by Bayesian inference methods is enormous.
The aim of inference is to find the most probable explanation for some data. While this most
probable hypothesis may be of interest, and some inference methods do locate it, this hypothesis
is just the peak of a probability distribution, and it is the whole distribution that is of interest.

In Sec. 2.3, we have seen how the posterior pdf encodes our inference about the value of a
parameter, given the data and the relevant background information. Often, however, we wish to
summarize this with just two numbers: the best estimate and a measure of its reliability. Since
the probability (density) associated with any particular value of the parameter is a measure of
how much we believe that it lies in the neighborhood of that point, our best estimate is given by
the maximum of the posterior pdf. If we denote the quantity of interest by θ and its posterior pdf
p(θ|d,H ), then the best estimate of its value θ∗ is given by the maximum posterior condition

d

dθ
p(θ|d,H )

∣∣∣∣
θ=θ∗

= 0 . (3.1)

Then θ∗ is the mode of the posterior distribution p(θ|d,H ). In the case of uniform prior
distribution using Eq. (1.7), we found the usual maximum likelihood principle. However, we
should also check the sign of the second derivate to ensure that θ∗ represents a maximum rather
than a minimum. Moreover, the second derivative gives us information about the width of
the distribution around the peak. In order to consider the behavior of the function in the
neighborhood of a point, we perform a Taylor expansion, or to be more precise we expand the
logarithmic of the posterior pdf about the point θ = θ∗,

log p(θ|d,H ) = log p(θ∗|d,H ) +
1

2

[
d2

dθ2
log p(θ∗|d,H )

]
θ=θ∗

(
θ − θ∗

)2
+ . . . (3.2)

where the first derivate vanish since we are around the maximum and Eq. (3.1) holds. The first

23
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Figure 3.1: Example of normal distribution with µ = 15
and σ = 4. The red dashed lines represents the mean µ
and the values µ ± σ (which corresponds roughly to the
68% confidence interval), while the black lines represent
the 90% confidence interval. The quadratic approximation
is very useful since it is able to describe the result of a
measurement affected by summation of independent and
uncorrelated sources of noise.

Figure 3.2: Example of approximations with a Taylor series,
Eq. (3.2), of an asymmetric pdf. It is possible to see that
the second order approximation (red) is able to reproduce
the original pdf around the peak x∗ = 4, but it cannot
reproduce the asymmetries. Then we can see that higher
order approximations are able to improve the description
of the original pdf in the region around x∗.

term is a constant and tells us nothing about the shape of the distribution. The quartic term is,
therefore, the dominant factor determining the width of the posterior.

Consider now a distribution that can be expressed only through the quartic term in the
previous equation and all the other terms in the expansion vanishes ,

p(θ|d,H ) = a · exp

[
1

2
b
(
θ − θ∗

)2]
,

where a is the normalization constant,

a = p(θ∗|d,H ) ,

and b is defined as

b =

[
d2

dθ2
log p(θ|d,H )

]
θ=θ∗

.

This kind of distribution coincides with the normal distribution and it is usually written as,

N(θ|µ, σ2) =
1√

2πσ2
exp

[
− (θ − µ)2

2σ2

]
, (3.3)

and plotted in Fig. 3.1. The value µ ≡ θ∗ represent the mode of the pdf and the distribution is
symmetric with respect to it, under this assumptions. Its width is characterized by the parameter
σ, also called the standard deviation, which in this case corresponds to

σ =
√
−b . (3.4)

So, our inference about the quantity of interest θ is conveyed concisely by the statement θ = µ±σ.
However, this notation is valid only for quadratic approximation.
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Increasing the order of approximation of the pdf, we are able to describe the asymmetries of
the original pdf, as it is shown in Fig. 3.2. The higher-order terms capture the morphology of the
original pdf, in an interval centered around the mode θ∗. Increasing the order of approximation,
the accuracy level increase as well in an increasingly larger range. However, it is possible to see
that odd orders of expansion (third, fifth and so on) could generate divergencies in region far
from the peak of the pdf, as it is for x → +∞ in Fig. 3.2. For this reason, we suggest to use
always even orders of expansion in the case of high-order approximations, since their behavior for
x → ±∞ can be always take under control. Furthermore, we observe that, since the expansion
is performed around the mode θ∗, this value remains always a maximum point (at least local)
for every term in the expansion.

3.1.1 Multidimensional Distributions

We consider an estimation problem involving more than one parameter. Although the posterior
pdf is of a higher dimensionality, being a function of several variables, it still encodes our inference
about the values of the parameters, given the data and the relevant background information. As
before, we often wish to summarize it with just a few numbers: the best estimates and a measure
of their reliabilities. Since the probability density associated with any particular set of values for
the parameters is a measure of how much we believe that they lie in the neighborhood of those
values, our optimal estimate is given by the maximum of the posterior pdf.

If we denote with {θi} the set of parameters, the best estimate of their values is given by the
generalization of Eq. (3.1)

∂p

∂θi

∣∣∣∣
θ∗i

= 0 , (3.5)

where p(θ1, θ2) ≡ p(θ1, θ2|d,H ) and θ∗i are the values that maximize the posterior pdf. We also
need a further test, analogous to Eq. (3.1), to ensure that we are dealing with a maximum and
not a minimum or a saddle-point; we must evaluate the second derivates. As we done above, we
expand using a Taylor series and we suppose that {θi} ≡ {θ1, θ2}. Then, we can write

log p(θ1, θ2) = log p(θ∗1 , θ
∗
2) +

1

2

[
∂2 log p

∂θ2
1

∣∣∣∣
θ∗1 ,θ

∗
2

(
θ1 − θ∗1

)2
+
∂2 log p

∂θ2
2

∣∣∣∣
θ∗1 ,θ

∗
2

(
θ2 − θ∗2

)2
+ 2

∂2 log p

∂θ1∂θ2

∣∣∣∣
θ∗1 ,θ

∗
2

(
θ1 − θ∗1

)(
θ2 − θ∗2

)]
+ . . .

where we have assumed that ∂2p/∂θ1∂θ2 = ∂2p/∂θ2∂θ1. We can use a matrix notation, and
limiting our analysis to normal distributions, i.e. the quadratic approximation, we can write,

N2

(
θi|θ∗i , Cij

)
=

1√
(2π)2|C|

exp

[
− 1

2
(θi − θ∗i )C−1

ij (θj − θ∗j )

]
. (3.6)

The matrix Cij is called the matrix containing the second derivates of the pdf, |C| is its deter-
minant and in the quadratic approximation θ∗i ≡ µi. In the θ1, θ2 plane the quantity between
brackets is an ellipse centered in (θ∗1 , θ

∗
2) and the orientation and the eccentricity are determined
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by Cij . The directions of the principal axes formally correspond to the eigenvectors of the second-
derivative matrix. It is also easy to see, in the quadratic approximation, that the marginalized
pdf of θ1 and θ2 maintain a Gaussian profiles.

We are able to introduce the variance of the multidimensional pdf, which gives a measure
of its spread. It is formally defined to be the expectation value of the square of the deviations
from the mean; this is given by Eq. (2.8) for every parameter. For the one-dimensional normal
distribution of Eq. (3.3), this integral yields the result

Var(θ) = σ2 ,

where σ is the standard deviation of Eq. (3.4). This definition of the error-bar can be extended to
pdfs of more than one variable. Explicitly, for the two-dimensional case we have been considering
the marginalized posterior,

σ2
i = E

[(
θi − E[θi]

)2]
=

∫ (
θi − E[θi]

)2
p(θ1, θ2) dθ1dθ2

=

∫ (
θi − E[θi]

)2
p(θi) dθi .

The idea of variance can be broadened to consider the simultaneous deviations of both θ1 and
θ2; this covariance, which we will denote as Cov(θ1, θ2) , is given by

Cov(θ1, θ2) = σ2
12 = E

[(
θ1 − E[θ1]

)(
θ2 − E[θ2]

)]
, (3.7)

and is a measure of the correlation between the inferred parameters. If an over-estimate of one
usually leads to a larger than average value for the other, then the difference θ2 − E[θ2] will
tend to be positive when θ1 − E[θ1] is positive; if the same is true for under- estimates, so that
θ2 − E[θ2] is usually negative when θ1 − E[θ1] is as well, the expectation value of the product
of the deviations will be positive: the covariance will then be greater than zero. If there is an
anti-correlation, so that an over-estimate of one is accompanied by an under-estimation of the
other, then the covariance will be negative. When our estimate of one parameter has little, or
no, influence on the inferred value of the other, then the magnitude of the covariance will be
negligible in comparison to the variance terms; in other words, σ2

12 �
√
σ2

1σ
2
2 .

Furthermore, using the definition Eq. (3.7), we are able to construct the relation between σ2
ij

(variances and covariances) and the matrix Cij in Eq. (3.6): indeed, we obtain σ2
ij = C−1

ij . For
this reason σ2

ij is often called covariance matrix. So, according with Eq. (3.3), we will indicate
a n-dimension normal distribution using the matrix formalism as

Nn(θ|µ,σ) =
1√

(2π)n|σ|
e−

1
2

[
(θi−µi)σ−1

ij (θj−µj)
]
, (3.8)

where µ is the vector of means and σ = σ2
ij is the covariance matrix. We are also able to extend

the previous methods to n-dimensional normal distribution. The maximum of the multivariate
Gaussian is defined by the vector θ∗ = {θ∗1 , θ∗2 , θ∗3 , . . . } and calling ∇i = ∂/∂θi; the condition for
finding its components, in Eq. (3.5), can be written compactly as

∇ log p(θ)
∣∣∣
θ=θ∗

= 0 ,

where the gradient is evaluated in θ∗. By comparison with the standard one-dimensional Gaus-
sian of Eq. (3.3), we found that that the spread of the posterior should be related to the inverse
of the second- derivative matrix. Indeed, the covariance matrix is give by

Cov(θ) = σ2
ij = −

(
∇i∇j log p

)−1

. (3.9)
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θ1,

Figure 3.3: Example of 2-dimensional normal distribution
and its projection on the θ1 plane (marginalized over θ2).
Its contour in the (θ1, θ2) plane is an ellipse centered in
(θ∗1 , θ

∗
2 ) and with semiaxes defined by the correlation ma-

trix σij = −(∇i∇j log p)−1/2. The pdf marginalized over
the θ2 axis, p(θ1) =

∫
p(θ1, θ2) dθ2, is shown with the cor-

responding standard deviation σ11 = −(∇2
1 log p)−1/2. It

is possible to observe that, when. we perform the marginal-
ization, we have lost all the information about θ2 and how
it is correlated with θ1.

This equation is the generalization of Eq. (2.8) and Eq. (3.7). The square root of the diagonal
elements i = j corresponds to the marginal error-bars for the associated parameters; the off-
diagonal components i 6= j tell us about the correlations between the inferred values of θi and
θj .

3.2 Model Selection

If we want to infer about on a set of data, we would have to choose a functional form based on
the relevant background information available, including theoretical considerations, the results
of calibration measurements or merely an approximation to simplify the algebra; in all cases,
the underlying assumptions need to be stated clearly (in the conditioning on H ). Suppose we
have a set of measures of an observable and we must decide if this measure is distributed like a
Gaussian or like a Lorentzian. How can we decide which is better?

The type of question posed above is often called model selection, or model comparison.
Naïvely, we might think that a choice between proposed alternatives can be made on the basis of
how well they fit the data. A little reflection soon reveals a potential difficulty in that more com-
plicated models, defined by many parameters, will always be able to give better agreement with
the experimental measurements. Let us begin with an elementary formulation due to Jeffreys
(1939); we call it the story of Mr A and Mr B [4].

Suppose that we have the vector of data d, Mr A has a theory and thinks that the noisy
measurements of y against x are described by the law y = 0; Mr B has also a theory and
he believes that y = λ, but is not sure about the value of the constant λ; there could also
be a Mr C who is willing to allow the possibility of a non-zero slope, so that y = λ1x + λ0

and therefore has two adjustable coefficients; and so on. It is clear that we need to evaluate
the posterior probabilities for A and B being correct to ascertain the relative merit of the two
theories. Intuitively, a good value that can describe the validity of a model over another is the
ratio of the posteriors,

B =
p(A|d,HA)

p(B|d,HB)
. (3.10)
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Let us start by applying Bayes’ theorem to both the numerator and the denominator, this gives

p(A|d,HA)

p(B|d,HB)
=
p(d|A,HA)

p(d|B,HB)
· p(A|HA)

p(B|HB)
,

because the term p(d|HA,B) cancels out, top and bottom, since the data do not depend on the
hypothesis. The second term on the right-hand side reflects our relative prior preference for the
alternative theories; to be fair, we can take it to be unity. To assign the probabilities involving
the experimental measurements, we need to be able to compare the data with the predictions of
A and B: the larger the mismatch, the lower the corresponding probability. This calculation is
straightforward for Mr A, but not for Mr B; the latter cannot make predictions without a value
for λ. To circumvent this difficulty, we can use the sum and product rule to relate the probability
we require to other pdfs which might be easier to assign. In particular, we can express

p
(
d|B,HB

)
=

∫
p
(
d, λ|B,HB

)
dλ =

∫
p
(
d|λ,B,HB

)
p
(
λ|B,HB

)
dλ . (3.11)

The first term in the integrand is the ordinary likelihood function and the second term is the
prior pdf, and using Eq. (1.7) we can replace with the posterior pdf product the evidence. Since
the normalization constraints on the posterior pdf are valid, we ca rewrite the ratio in Eq. (3.10),
also called the Bayes’ factor, using the evidences as

BA
B =

p(d|HA)

p(d|HB)
=

∫
p(d|λA,HA) p(λA|HA) dλA∫
p(d|λB ,HB) p(λB |HB) dλB

. (3.12)

Then, if B is very much greater than one, then we will prefer A’s theory; if it is very much less
than one, then we prefer that of B; and if it is of order unity, then the current data are insufficient
to make an informed judgement. As usual, probability theory warns us immediately that the
answer to our question depends partly on what we thought about the two theories before the
analysis of the data.

To proceed further analytically, we have to make some considerations and approximations: for
first, the assumption of Mr A, λA = 0, is reflected in the choice of the prior p(λA|HA) = δ(λA),
where we use the Dirac δ function. Then, we assume that, a priori, Mr B is only prepared to say
that λB must lie between the limits λmin and λmax, assigning an uniform prior within this range:

p(λB|HB) =

{
1/
(
λmax − λmin

)
for λmax ≥ λB ≥ λmin ,

0 otherwise .

Let us also take it that there is a value λ∗ 6= 0 which yields the closest agreement with the
measurements; the corresponding probability p(d|λB = λ∗,HB) will be the maximum of B’s
likelihood function. As long as this adjustable parameter lies in the neighborhood of the optimal
value, λ∗ ± σλ, we would expect a reasonable fit to the data; this can be represented by the
Gaussian pdf,

p(d|λ) =
1√

2πσλ
exp

[
−
(
λ− λ∗

)
2σ2

λ

]
.

This is the likelihood function used to estimate the agreement of a model with the data. Then,
we get

p(d|HA) =

∫
δ(λA) p(d|λA,HA) dλA ,

and

p(d|HB) =
1

λmax − λmin

∫ λmax

λmin

p(d|λB,HB) dλB .
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Figure 3.4: Graphical representation of Mr B’s theory: the black line is the prior pdf, which reflects our information
before the measurement. The red line is the likelihood function for the parameter λB once he get the measurement λ∗.

Assuming that the sharp cut-offs at λmax and λmin do not cause a significant truncation of the
Gaussian pdf, its integral will be equal to 1, and then the Bayes factor becomes

BA
B = p(d|λ = 0) ·

(
λmax − λmin

)
. (3.13)

We note that often the likelihood function is defined without normalization constant. Then
the quantities computed during these previous steps could differ, but if the method is applied
consistently between the two analyzed, the final result will be the same.

The first term p(d|λ = 0) = N(λ = 0|λ∗, σλ) measures how well the prediction of Mr. A’s
model agrees with the data. This term is divided by 1, which is the integral of Mr. B’s likelihood.
Then, under a more general point of view, we can see this term as the evaluation of the agreement
of each model with the data. In our case p(d|λ = 0)� 1, then this term strongly prefers Mr. B’s
theory. However, the goodness-of-fit cannot be the only thing that matters; if it was, we would
always prefer more complicated explanations. indeed, probability theory tells us that there is
another term to be considered. As assumed earlier in the evaluation of the marginal integral of
Eq. (3.11), the prior range λmax − λmin will generally be much larger than the uncertainty σλ
permitted by the data. This means that the final term in Eq. (3.13) acts to penalize B for the
additional parameter (and it will be larger increasing the number of parameters). For this reason,
it is used to say that the Bayes’ factor include the effect of the Ockham’s razor. This factor can
play a crucial role when both theories give comparably good agreement with the measurements
and it becomes increasingly important if B’s theory fails to give a significantly better fit as the
quality of the data improves.

In our example, Mr. B’s theory is strongly preferred since the measurement leads to the value
5.0± 0.7, which lies very far from the prediction of Mr. A. This result is also expressed from the
Bayes’ factor in Eq. (3.13) which, in our case, corresponds to BA

B = 9.5× 10−10.

3.2.1 Information

A good experiment was one that yielded a likelihood function which was much more sharply
peaked than the prior, otherwise, very little is learnt from the measurements. This basic idea
can be quantified through the notion of entropy,

H =

∫
p(θ|d) log2

[
p(θ|d)

p(θ)

]
dθ , (3.14)
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with logarithm to the base 2, since the information is measured in bits. For example: consider a
parameter θ that has just two equivalent states. Then the prior would be p(θ) = (1/2, 1/2) and
the posterior can be (1, 0) or (0, 1). This situation yields to the information,

H = 1 · log2(2) + 0 · log2(0) = 1 ,

which means that we need just one bit to store a single information, 0 or 1. In this calculation,
we used the limit x log2 x → 0 for x → 0. Similarly, for four equivalent states with a prior
p(θ) = ( 1

4 ,
1
4 ,

1
4 ,

1
4 ), we gain the information H = 2, which corresponds to the number of digits

necessary to express the numbers from 0 to 3 in binary code. So, the quantity H give us the
minimum value of bits needed to store an information and Eq. (3.14) is the corner-stone of
information theory, founded by Shannon (1948).

Now suppose that we design an experiment to measure θ and the observations produce the
data d, and we know the likelihood function p(d|θ). Though these formulae are general, we
are only designing the equipment and have not yet acquired specific data. Nevertheless, we can
combine Eq. (1.9) and Eq. (1.10) with Eq. (3.14) to discover the amount of information,

H(d) =

∫
p(d|θ) p(θ)

p(d)
log2

[
p(d|θ)

p(d)

]
dθ , (3.15)

that we have about θ if we did the experiment. Even, before acquiring the data, we can obtain
the expected information as

E[H] =

∫
H(d) p(d) dd . (3.16)

This quantity represent the benefit of the experiment, quantifying the amount of information
about θ which the experiment is expected to provide.

3.3 Hierarchical Models

Hierarchical regression models are useful as soon as there are predictors at different levels of
variation. Using a hierarchical approach, we write the parameters of the prior as functions of
other unknown parameters. The sub-models combine to form the hierarchical model, and Bayes’
theorem is used to integrate them with the observed data and account for all the uncertainty
that is present. The hierarchical approach is very important also for the clusters analysis and
for the extrapolation of informations from populations, which compose many social and natural
phenomena: the students in a school, patients in a medical study, the property of an astronomical
cluster and so on.

It is important to notice that non-hierarchical model are inappropriate for hierarchical data; in
fact with few parameters, generally, the model cannot fit the data, while using many parameters,
we incur in the problem of overfitting.

3.3.1 Exchangeability

Consider a set of observation j = 1, . . . , n with the respective vector of data d and parameters
θ. If no information, except d, is available to distinguish any of the θj from any other, and no
grouping or ordering can be made on it, we must assume symmetry among the parameters and
the prior. Strictly, we have to assume that, if we exchange the parameters θ1, . . . , θn, the prior
pdf p(θ1, . . . , θn) is invariant under permutation of these parameters.
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The simplest exchangeable distribution has each θj coming from an independent distribution
governed by an unknown parameter φ, i.e. the different θj are independent and identically
distributed variables,

p(θ|φ) =

n∏
j=1

p(θj |φ) . (3.17)

Marginalizing, we found the usual prior

p(θ) =

∫
p(θ|φ) p(φ) dφ , (3.18)

where p(φ) is the prior pdf that we assume for the new parameter φ. This probability density
is sometimes called the hyper-prior, since it represents the condition of a more fundamental
set of parameters, i.e. φ which is labelled as hyper-parameter. It is also easy to generalize the
formalism to the case in which the hyper-prior has a multidimensional support.

If we are interested in the analytical form of the posterior distribution of φ, we can proceed
in two different ways:

1. If we know the analytic for of the joint posterior p(φ,θ|d) and the marginal posterior of θ,
i.e. p(θ|φ,d), we can directly apply the Bayes’ theorem and get

p(φ|d) =
p(φ,θ|d)

p(θ|φ,d)
. (3.19)

However, this relation could have some problems in the normalization constants, since they
could depend on φ as well as d.

2. If we combine Eq. (1.7) with Eq. (3.18), we can write the joint posterior pdf in terms of
the priors and the usual likelihood,

p(θ, φ|d) = p(d|θ) p(θ|φ) p(φ) , (3.20)

and, marginalizing we get

p(φ|d) =

∫
p(θ, φ|d) dθ . (3.21)

Thanks to Eq. (3.19) or Eq. (3.21), we can write the marginal posterior pdf of the hyper-parameter
φ and then we are able to infer on it.

Let us make some example: if we trow a die, every output have probability θj = 1/6 for
j = 1, . . . , 6. If we include, in the physics model, the imperfection of the die, the θj become
exchangeable, but they cannot be modeled as independent, since

∑
j θj = 1. This yields that

the prior cannot be an independent and identically distributed mixture, but the analytic form is
still invariant under permutations of j.

3.3.2 Gaussian Linear Models

Let us consider a two-level model, so we have a vector of data d, which is related to some vector
of parameters θ by a linear relation, say

d = Aθ + e ,
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where A is the matrix that define the linear relation and e is a gaussian error, with mean 〈e〉 = 0
and covariance matrix Cov(e) = V. Then, we assume that the parameters θ is defined by another
linear relation with the hyper-parameters φ, say

θ = Xφ + ε ,

where X is another matrix and ε is a gaussian error with zero mean and covariance Cov(ε) = W.
So, θ and φ are respectively the first-level and the second-level parameters and A, X are the
first-level and second-level design matrix. We observe that in general the two parameters vectors
have different dimension, say n and m. The aim of Bayesian inference is therefore to be able to
infer on the parameters θ and on the φ, even not knowing anything a priori about them, basing
our assertions on the posterior pdf p(θ|d) and p(φ|d).

In order to extract informations from the data, we can write the likelihood function p(d|θ)
and the prior p(θ), recalling the Gaussian structures of the uncertainties e, ε, as

log p(d|θ) ∝ −1

2

[
(d−Aθ)t V−1 (d−Aθ)

]
,

log p(θ) ∝ −1

2

[
(θ −Xφ)t W−1 (θ −Xφ)

]
,

then, the posterior, using Eq. (1.7), can be expressed as p(θ|d) ∝ p(d|θ) p(θ). Keeping only the
terms in θ, we get

p(θ|d) = Nn(θ|µθ,Σθ) ,

where the mean and the covariance are

µθ = Σθ

(
AtV−1d + W−1Xφ

)
, Σ−1

θ = AtV−1A + W−1 . (3.22)

Now we can apply the Bayes’ theorem to obtain the posterior pdf of φ,

p(φ|d) =
p(d|φ) p(φ)

p(d)
,

where p(φ) represent the hyper-prior of φ, that it is assumed uniform since we know anything
about the hyper-parameters. So the posterior becomes equal to the likelihood function p(d|φ),
and defining the hierarchical relation,

d = AXφ + Aε + e = Ãφ + ẽ ,

where
Ã = AX , ẽ = Aε + e , Ṽ = Cov(ẽ) = V + AWAt .

Then, we can write the posterior pdf of the hyper-parameters as a Gaussian,

p(φ|d) = Nm(φ|µφ,Σφ) ,

with mean and variance

µφ = Σφ ÃtṼ−1d , Σφ =
(
ÃtṼ−1Ã

)−1

, (3.23)

We have achieved the posterior distribution for the first-level and the second-level parameters,
expressed in terms of the data and the covariance matrix. In the simplest case of an univariate
model, where

d = a · θ + e , θ = x · φ+ ε ,
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calling the variances Var(e) = v2 and Var(ε) = w2, we get

µθ =
1

σ2
θ

(
d

v2
+

φ

w2

)
, σ2

θ =

(
1

v2
+

1

w2

)−1

,

µφ =
d

a x
, σ2

φ =
1

x2

(
w2 +

v2

a2

)
.
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Chapter 4

Monte Carlo Methods

The Monte Carlo methods are computational statistical techniques to computing integrals using
random positions, called samples, whose distribution is carefully chosen. The MC methods are
extremely general, and the basic recipes allow us, in principle, to solve any problem in statistical
physics.

The target probability distribution might be a distribution from statistical physics or a con-
ditional distribution arising in data modeling. Then, this distribution can be useful to evaluate
statistical quantities of interest, such as mean and variance of the different parameters. The
Monte Carlo (MC) methods use random paths through the parameters’ space in order to iden-
tify the bulge of the distribution. This method effectively coincides with a thermalization process,
where the potential is described by the target probability function.

Let us make an example: presently, we know that the value of π is 3.1415926535. . . , but for a
moment we conjecture to forget the value of π. So, how can we get a sufficiently good estimate?
A good idea is the following: we draw a circle of radius r and a circumscribed square, with side
` = 2 r. From geometry, we know that the ratio of these areas is

Acircle

Asquare
=
πr2

`2
=
π

4
.

So, if we throw a sufficiently large number N of points, uniform distributed in plane inside the
square, and we count the number Nin of points inside the circle, then the ratio

Nin

N
=
π

4
,

and we are able to estimate the value of π multiplying the previous ratio by 4. The result of
the algorithm is shown in Fig. ??. The procedure can be expressed using the pseudocode as it is
shown in Alg. 1.

The power of the MC methods manifests itself especially in multidimensional problems. Sup-
pose to generalize the previous example to a n-dimensional problem. Then, the probability that
the i-th outcome falls into or out of the circumference is described by a binomial distribution

Nin ∼ Bin(p,N) ,

with p = π/4. Then we have 〈Nin〉 = pN and Var(Nin) = Np(1 − p). So, we can write the
convergence speed of the algorithm using the relation∣∣∣∣π4 − Nin

N

∣∣∣∣ < ε(N) ⇒ ε(N) ∝ 1√
N
. (4.1)

35



36 CHAPTER 4. MONTE CARLO METHODS

Algorithm 1
1: Nin ←0 . Initialize the counter
2: for i← [ 1, N ] do
3: xi ← U(x|-1,1) . Get a random value on the x-axes
4: yi ← U(y|-1,1) . Get a random value on the y-axes
5: if x2

i + y2
i < 1 then . If the sampled point (xi, yi) is inside the circle...

6: Nin ← Nin + 1 . ...count it
7: end if
8: end for
9: π ← 4 ·Nin /N . Estimate π

Figure 4.1: Example of estimation of π us-
ing the Monte Carlo method implemented in
Alg. 1. The run was performed using a total
number of points N = 2500 and Nin = 1958 of
them felt inside the circumference. Then we es-
timated the value of π ≈ 3.1328. However, this
measurement has an error of ε(N = 2500) ≈
0.0088. If we want to increase the accuracy
we have to increase the number of extracted
points. Let us say we need ε(M) = 10−4, then
using Eq. (4.1), we get ε(N)

ε(M)
=
√
M√
N
, which

means M ≈ 2× 107.

This result tells us an obvious fact: increasing the total number of thrown points N we increase
the accuracy of the estimation; however Eq. (4.1) is valid for every MC process in parameters’
space with arbitrary dimension. Otherwise, if we choose to compute the integral analytically we
incur in the rest of Lagrange, which brings an uncertainty proportional to N−2/n (where N is
the total number of points and n is the dimension of the problem). So, for n > 4 we can easily
see that the statistical evaluation of an integral becomes favored than the analytical approach.

In general, the Monte Carlo methods are able to generate a set of samples from a posterior
pdf and to estimate the integrals, that, in the case of interest, are the expectation values of the
physical observables. Usually this techniques use a chain, in which every step is an iteration of a
partial algorithm. If the outcome of a step is determined (or conditioned) by the previous one,
the algorithm is called Markov Chain Monte Carlo (MCMC).

4.1 Rejection Sampling

The simplest application of a MC method is the rejection sampling; our purpose is to generate
samples from a probability density p(x) starting from a prior distribution Π(x) (usually taken
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as flat in a prior range), which is simpler and easier to control. We assume a one-dimensional
problem, then we can write the pseudocode for the rejection sampling algorithm as it is shown
in Alg. 2.

Algorithm 2
1: iter← 0 . Initialize the counter
2: while iter< N do
3: x∗ ∼ Π(x) . Generate an element from Π(x)
4: p∗ ∼ U[ 0, 1 ] . Generate a random probability
5: if p∗ < p(x∗) then . If x∗’s probability is large enough . . .
6: Collect x∗

7: iter←iter+1
8: end if
9: end while

The algorithm stops when it produces N samples. We can see that this method is very
roughly: we generate a point x∗ in the prior, then if the probability p(x∗) is greater than a
random value p∗ between 0 and 1, we accept the new point, otherwise we discard it and we
iterate the algorithm until iter (the iterator) reaches N . We note that the random extraction
of p∗ is fundamental in order to describe the target pdf, since it introduce some indetermination
in the algorithm.

This method is able to generate a good set of independent samples, but usually it is not
the best way to obtain a sufficiently description of the posterior pdf p(x), since the rejection
sampling is not able to return smooth functions. Moreover, a rejection sampling is usually very
computational expensive, i.e. it requires a lot of time to complete the loop, since the acceptance
ratio could be very low, especially if the prior distribution is very different form the posterior.

4.2 Metropolis-Hastings Sampling

A powerful implementation of a MCMCmethod comes from Metropolis and Hastings. In contrast
to rejection sampling, it is not necessary that Π(x) look at all similar to p(x) in order for the
algorithm to be practically useful, because using this approach the prior density depends on the
current state x∗ and it can be any fixed density from which we can draw samples. More exactly,
calling Π(x) the prior distribution of the variable x of interest, q(s) is a proposal distribution
that determines the step s in the parameter’s space and p(x) is the posterior pdf, also called
in this context, target distribution. We describe a simplified version of the pseudocode for a
Metropolis-Hastings sampling as it is shown in Alg. 3.

The parameter α is arbitrary parameter (usually sampled in a flat prior between 0 and 1, as it
is shown in our example), its role is to introduce more randomness in the algorithm. We can see
that the i-th outcome depends on the previous result xi−1, or, more precisely, on the posterior
probability of the previous outcome. However, it is important to analyze the convergence of
Metropolis sampling; since the algorithm start from a random point in the prior, it need some
steps to reach the range of the posterior maximum.

This approach become more interesting increasing the number of parameters, in fact MCMC
methods play a crucial role in the evaluation of multidimensional integrals. Especially when the
dimensionality of the problem increases, it became harder to compute analytically the values of
the interested integrals, so a simulations became a powerful tool.

The Metropolis Sampling evaluates with a good approximation the target distribution and the
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Algorithm 3

1: x0 ∼ Π(x) . Sample an initial value from the prior
2: for i← [ 1, N ] do
3: si ∼ q(s) . Sample a random step
4: xi ← xi−1 + si . Compute the new point
5: αi ← U(α|0, 1) . Assign random value
6: if p(xi) > αi · p(xi−1) then
7: Collect xi . Collect the new point for the new interation
8: else
9: xi ← xi−1 . Use the old point for the new iteration

10: end if
11: end for

statistical quantities, such as the median value and the variance, and give us back a satisfactory
set of posterior samples. However, this algorithm (and MCMC methods in general) is not able
to help us in the model selection, since these codes are not optimize to estimate the value of
the evidences of different models. An algorithm able to estimate the evidence with a very good
accuracy is the nested sampling, but this topic will not be treated in these notes.

We observe that Alg. 3 can be generalized for the case of multi-dimensional parameter
space. In this case the value x becomes a point in a n-dimensional parameters’ space x =

(x(1), x(2), . . . , x(n)). Now every sample is an array of n elements xi = (x
(1)
i , x

(2)
i , . . . , x

(n)
i ) and

then also the proposal distribution q(x) must admit a n-dimensional domain.

4.2.1 Exploring the Parameters’ Space

In an MCMC chain, we start with some arbitrary initial position in the parameters’ space and
we move our vector in a random direction according to the proposal distribution. However, the
proposal distribution can be informed from the set of collected samples, i.e. we can compute the
correlation of the samples and move the point consistently in order to make more efficient steps.

A standard practice is to start with a multidimensional normal distribution with mean zero
and covariance matrix equal to the identity (or another diagonal matrix), after a certain number
m of steps, we can evaluate the covariance matrix of our collected samples and we replace it
instead of the previous one, and so on reaching the optimal covariance matrix for our steps in
order to run across a quicker path for maximize the likelihood and so, to make the iteration
faster and more efficient. This technique is called adaptive MC, since the algorithm adapt his
jobs over the previous data. We can easily implement this option inserting the follows algorithm
inside the for cycle, as it is shown in Alg. 4.

Algorithm 4

1: for i← [ 1, N ] do
2: . . . . The previous code
3: if i mod m = 0 then
4: C ← cov(x) . Adapt the covariance of the step
5: end if
6: end for

Moreover, since a chain start from a random point, it is possible that a single sequence of
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extracted points is not enough to explore properly the parameters’ space. This is very common
with multimodal target distribution: if a chain falls in a local maximum, then with a Metropolis
sampling, this chain is not able to escape from this maximum and find the other one(s). This is
due to the architecture of this algorithm. In order to avoid this problem, usually the sampling is
performed with multiple parallel chains, where each of those is a Metropolis sampling which
started from its random initial point (different from the others). In this way, different chains are
able to explore different regions of the parameters’ space and moreover, in the case of multimodal
target distribution, the importance of every peak is given by the ratio between the number of
chains that converged into the peak and the total number of chains.

4.2.2 Extraction of Independent Samples
Fig. 4.2 shows an example of the evolution of a chain in a Metropolis-Hastings sampling. We per-
formed a uni-dimensional sampling with a gaussian target distribution and proposal distribution,
such that

p(x) ∼ N(x|µ = 9.38, σ = 0.02) , q(s) ∼ N(s|µ = 0, σ = 0.01) .

In Fig. 4.2, it is possible to observe that the initial value is randomly chosen and then the
algorithm explores the parameter’s space, moving in order to find the region that maximize the
likelihood. However, zooming on the chain, we can see that not all the points are independent
from the others. The reason is the following: the algorithm saves a point in the chain at every
iteration, but it actually moves toward a new point only when its likelihood increase with respect
to the likelihood of the previous one, otherwise the same point is kept. So we are collecting series
of identical numbers that are not independent at all. Then the sampled chain could appear
independent on large scale but if we go to analyze in detail it’s easy to see that the algorithm
repeats the same value until it accepts a new one.

First of all, the initial part of the chain, called the shrinking or burn-in, is not extracted
from the correct distribution. In fact the first value is randomly chosen from the algorithm and
the subsequent ones range in the parameters’ space until they reach the bulge of the likelihood.
So we cannot consider these first points as good ones, they do not came from our researched
distribution, we have to wait until the thermalization process of the algorithm converges. Usually,
the first half of the chain is discarded, so if we start with a chain of N elements, we obtain a
chain of N/2 elements.

Then we have the problem of repeated points. In order to avoid this problem and to extract
an independent set of samples, we have to evaluate the autocorrelation function (ACF) of
the chains and determine its autocorrelation length (ACL). Then we will take one samples every
ACL from the remaining chain. For a stochastic stationary process, the ACF function depends
on the lag `, i.e. the difference in the positions of the elements. This function is even with respect
to ` and then we can take into account just the positive semi-axis of `. We can evaluate the ACF
of a set of samples {θi} as follows,

ACF` (θ) =

N∑
k=1

(
θk − E[θ]

)(
θ`+k − E[θ]

)
σk σ`+k

, (4.2)

where E[θ] is the mean of the samples and σk is the standard deviation of the k-th element.
We clearly expect that for values of the lag around zero the autocorrelation is very close to

the unity (since every point is correlated with itself) and then it decreases fluctuating around
zero, if the samples are actually independent. An example of ACF is shown in Fig. 4.3. The ACL
is defined from the ACF as the first value of ` for which the ACF becomes zero, i.e. the lower
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intersection between the ACF and the lags axis. If we have a set of multidimensional parameter,
i.e. θ = (θ(1), θ(2), . . . ), the ACL of the entire set is taken to be the larger ACL for every single
parameter. We note also that the ACL for a set of sample is an integer number.

a) b) c)

Figure 4.2: The figure shows a chain (of 20000 elements) collected with a Metropolis-Hastings algorithm. In the first
panel (a) it is shows the overall chain. The second panel (b) represents a zoom on the first iteration in order to visualize
better the shrinking. The third panel (c) is a zoom around the center of the chain: one can observe the autocorrelation
between the elements and the high recurrence of the same elements.

Figure 4.3: ACF of the chain shown in Fig. 4.2. As we expect in zero the ACF is equal to 1, and then decrease reaching
zero for the first time at ` = 24. So we set ACL= 24. We are allowed to use this value because after ` = 24, the
ACF fluctuates around zero, proving that above a lag of 24 elements there are no correlations (in average) between the
elements of the chain.

Let us summarized: suppose that a Metropolis-Hastings algorithm returns a list of N ele-
ments, labelled as {θi}. This points are not independent and this list contains the shrinking
portion, which is not supported by the target distribution a priori. So we throw away the initial
segment of the chain (usually the first half of the chain) and we remain with a N/2-dimensional
array labelled as {θ′i}. Then we evaluate the ACL, in order to construct an independent set of
samples, labelled as {θ̂i}: we append to this list the first element of {θ′i}, the ACL-th one, the
(2×ACL)-th one and so on until (M +1)×ACL > N/2. At this point we have obtained an array
with M = N/(2 · ACL) elements which corresponds to an independent set of samples extracted
from the target distribution. We can compute these processes as it is shown in Alg. 5, where n
is the number of parameters and N is the initial number of points in the chain.
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a) b)

Figure 4.4: The figures show the final set of independent samples. Left panel is the scatter plot of the 417 elements of
x̂. The right panel shows the histogram of the samples extracted from the target distribution. From this information,
we can extrapolate the most important stochastic quantities as the mean, the variance and the evidence.

Algorithm 5

1: Estimate ACF(x)
2: ACL← first root of ACF(x) . Estimate ACL
3: {x′} ← x[N/2,N ] . Throw away the shrinking
4: for i← [1, N/(2 ·ACL)] do
5: x̂i ← x′i·ACL . Collect an element each ACL iteration
6: end for

In our example, we start with 20000 samples and in the end we get ACL= 24, so the effective
number of independent elements is 417 that describe satisfactory the posterior distribution of
our parameters. For higher-dimension problems, the number of samples required to describe the
target distribution increases, since the algorithm has to investigate the different correlations and
explore properly a large parameters’ space. It’s important to observe that we have thrashed
about the 98% of the initial set and this is happened for a unidimensional problem. We will
see that increasing the dimensionality of the space (in other words increasing the number of free
parameters), the efficiency falls down very rapidly. So when we are going to perform MCMC
techniques in multi-dimensional spaces, we must increase the numbers of initial points to be able
to generate a sufficient statistic.

Now from the samples x̂ we can reproduce the posterior distribution through an histogram
(Fig. 4.4) and analyze its statistical property, such as mean and standard deviation,

x = 9.37± 0.03 ,

or median and 90% credible interval,

x = 9.38± 0.05 .

Although the value of the median is preferred.

4.2.3 Convergency and Efficiency
It can be shown that for any proposal distribution q(s), the probability distribution described
by xi tends to the target distribution p(xi) for i→ +∞. The Metropolis method is an example
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Figure 4.5: Graphical representa-
tion, in a 2-dimensional parame-
ters’ space, of a random step in a
Metropolis-Hastings sampling algo-
rithm. The terms p(x) and q(s)
denote respectively the target and
the proposal distributions. At ev-
ery iteration, a step si is extracted
from q(s) and it defines the random-
walk through the parameters’ space.
Then, the i-th point of the chain xi
is moved according with the random
step xi+1 = xi + si. If p(xi+1) >
p(xi), the new point is accepted,
otherwise it is discarded. The figure
shows also the characteristic length-
scales L and ε.

of a MCMC. In contrast to rejection sampling, where the accepted points {xi} are independent
samples from the desired distribution, Markov chain Monte Carlo methods involve a Markov
process in which a sequence of states {xi} is generated, each sample xi having a probability
distribution that depends on the previous value, xi−1. Since successive samples are dependent,
the Markov chain may have to be run for a considerable time in order to generate samples that
are effectively independent samples from the target p(x).

The Metropolis method is widely used for high-dimensional problems. Many implementations
of the Metropolis method employ a proposal distribution with a length scale ε that is short relative
to the longest length scale L of the probable region (Fig. 4.5). A reason for choosing a small
length scale is that for most high-dimensional problems, a large random step from a typical point
(that is, a sample from p(x)) is very likely to end in a state that has very low probability; such
steps are unlikely to be accepted. If ε is large, movement around the state space will only occur
when such a transition to a low-probability state is actually accepted, or when a large random
step chances to land in another probable state. So the rate of progress will be slow if large steps
are used.

The disadvantage of small steps, on the other hand, is that the Metropolis method will explore
the probability distribution by a random walk, and a random walk takes a long time to get
anywhere, especially if the walk is made of small steps. Recall that the first aim of Monte Carlo
sampling is to generate a number of independent samples from the given distribution (a dozen,
say). If the largest length scale of the state space is L, then we have to simulate a random-walk
Metropolis method for a time

T ≈
(
L

ε

)2

(4.3)

before we can expect to get a sample that is roughly independent of the initial condition âĂŞ
and thatâĂŹs assuming that every step is accepted: if only a fraction f of the steps are accepted
on average, then this time is increased by a factor 1/f .

This rule of thumb gives only a lower bound; the situation may be much worse, if, for example,
the probability distribution consists of several islands of high probability separated by regions of
low probability.
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